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STABILITY OF THE BARON––VOLKMANN FUNCTIONAL EQUATIONS
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Abstract. In this paper we prove the stability of the equations supλ∈T f (x+λy) = f (x)+ f (y)
and infλ∈T f (x + λy) = | f (x)− f (y)| . Here, f is a real-valued function on V , where V is
a complex vector space and T = {z ∈ C : |z| = 1} . Each of these equations characterizes the
absolute value of complex linear functionals.

1. Introduction

Denote by R the space of real numbers, by C the space of complex numbers, and
by T the unit circle in C , that is,

T = {z ∈ C : |z| = 1}.

Throughout this paper let V be a complex vector space. Consider the functional equa-
tions

sup
λ∈T

f (x+λy) = f (x)+ f (y), x,y ∈V (1.1)

and
inf
λ∈T

f (x+λy) = | f (x)− f (y)|, x,y ∈V. (1.2)

These equations were introduced by K. Baron and P. Volkmann in [1], where the
following result was proven:

THEOREM 1.1. ([1], Theorem 1) For f : V →R the following are equivalent:
(a) f satisfies (1.1).
(b) f satisfies (1.2).
(c) f is of the form f (x) = |φ(x)| , x ∈V , where φ : V →C is a linear functional.

In this paper we investigate the stability of equations (1.1) and (1.2); that is, for
each of these equations we show that if g is an approximate solution then there exists
an exact solution which is close to g .

Our main results read as follows:

Mathematics subject classification (2010): 39B82, 39B22.
Keywords and phrases: Absolute value of linear functional; functional equations; stability.

c© � � , Zagreb
Paper MIA-14-16

193



194 BARBARA PRZEBIERACZ

THEOREM 1.2. For δ � 0 , let g : V → R be an approximate solution of (1.1),
i.e.,

|sup
λ∈T

g(x+λy)−g(x)−g(y)|� δ , x,y ∈V. (1.3)

Then, there exists a solution of (1.1) of the form f = |φ | , where φ : V → C is a linear
functional, such that

| f (x)−g(x)| � 17δ , x ∈V. (1.4)

THEOREM 1.3. For δ � 0 , let g : V → R be an approximate solution of (1.2),
i.e.,

| inf
λ∈T

g(x+λy)−|g(x)−g(y)||� δ , x,y ∈V. (1.5)

Then, there exists a solution of (1.2) of the form f = |φ | , where φ : V → C is a linear
functional, such that

| f (x)−g(x)| � 49δ , x ∈V.

2. Proof of Theorem 1.2

Given real numbers a,b and ε � 0 we shall often use the notation a
ε∼ b to mean

|a−b|� ε . Notice that the following implications hold:

a
ε1∼ b

ε2∼ c ⇒ a
ε1+ε2∼ c,

a � b
ε∼ c ⇒ a � c+ ε,

a
ε∼ b � c ⇒ a � c+ ε.

Further, if I is a set of indices, then we have

ai
ε∼ bi, i ∈ I ⇒ sup

i∈I
ai

ε∼ sup
i∈I

bi and inf
i∈I

ai
ε∼ inf

i∈I
bi,

provided the involved suprema and infima are finite.
We proceed with the following simple lemma.

LEMMA 2.1. Let g : V → R satisfy (1.3). Then:
(i) |g(0)| � δ ,
(ii) g(x) � −δ , x ∈V ,
(iii) g(x+ y) � g(x)+g(y)+ δ , x,y ∈V .

Proof. Part (i) is obtained by putting x = y = 0 in (1.3). Part (ii) is a consequence
of (1.3) and part (i), since

2g(x) δ∼ sup
λ∈T

g(x+λx) � g(0) � −δ .



STABILITY OF THE BARON–VOLKMANN FUNCTIONAL EQUATIONS 195

Part (iii) follows from

g(x+ y) � sup
λ∈T

g(x+λy) δ∼ g(x)+g(y). �

We shall next deal with the stability of equation (1.1) in the one-dimensional case
V =C . In this case every linear functional φ : C→C is, of course, of the form φ(z) =
cz where c is a complex constant.

PROPOSITION 2.1. Let g : C→ R satisfy (1.3). Then there exists a solution of
equation (1.1) of the form f (z) = c|z| where c is a nonnegative constant, such that

|g(z)− f (z)| � 7δ , z ∈C.

Proof. For convenience denote Sr := supλ∈T g(λ r) for r ∈ [0,∞) . By (1.3) with
x = 0 and by Lemma 2.1(i), we get

S|y| = sup
λ∈T

g(λy) 2δ∼ g(y), y ∈ C. (2.1)

More precisely, since

g(y) � sup
λ∈T

g(λy) = sup
λ∈T

g(λ |y|) = S|y|,

we have
S|y| −2δ � g(y) � S|y|, (2.2)

and
S|y| −2δ � g(|y|) � S|y|.

Therefore,

g(y) 2δ∼ g(|y|), y ∈ C. (2.3)

We will show that the restriction g|[0,∞) is 5δ –approximately additive, that is,

g(x+ y) 5δ∼ g(x)+g(y), x,y ∈ [0,∞). (2.4)

By Lemma 2.1(iii), we have g(x+y) � g(x)+g(y)+δ . Hence, to prove (2.4) it suffices
to show that g(x)+g(y) � g(x+y)+5δ . Let 0 � r � t . From (1.3), (2.2) and (2.1) we
obtain

2g(r) δ∼ sup
λ∈T

g(r+λ r) � sup
λ∈T

Sr|1+λ | = sup
|z|�2r

g(z)

� sup
|z|�2t

g(z) = sup
λ∈T

St|1+λ |
2δ∼ sup

λ∈T
g(t +λ t) δ∼ 2g(t).

Hence,
g(r) � g(t)+2δ . (2.5)
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Fix 0 � y � x . By (1.3), (2.3) and (2.5) we get

g(x)+g(y) δ∼ sup
λ∈T

g(x+λy) 2δ∼ sup
λ∈T

g(|x+λy|) � g(x+ y)+2δ ,

so (2.4) follows.
Since (2.4) holds, it is well known ([2], Ch. XVII, §1, Theorem 1) that there exists

a unique additive function h : [0,∞) →R such that

|g(x)−h(x)|� 5δ , x ∈ [0,∞). (2.6)

Thus, combining (2.6) and Lemma 2.1(ii), we obtain h(x) � −6δ for all x ∈ [0,∞) .
Consequently, h is continuous (e.g. [2], Ch. XII, §1, Theorem 3 ), so h must be of the
form h(x) = cx , x ∈ [0,∞) , where c is a real constant. Of course, c � 0, as cx � −6δ ,
x ∈ [0,∞) . Finally, for an arbitrary z ∈C , we use (2.3) and (2.6), to obtain

g(z) 2δ∼ g(|z|) 5δ∼ c|z|. �

We now pass to the general case:

Proof of Theorem 1.2. In view of Proposition 2.1 we may assume that the complex
vector space V is at least two-dimensional. Define

W = {x ∈V : sup
α∈C

g(αx) < ∞}. (2.7)

Considering Lemma 2.1(iii), we see that W is a subspace of V .
For x ∈V , let gx : C→R be the function defined by

gx(α) := g(αx). (2.8)

It is not hard to see that for every x ∈V ,

sup
λ∈T

gx(α +λβ ) δ∼ gx(α)+gx(β ), α,β ∈ C.

Hence, in view of Proposition 2.1, we get

g(αx) = gx(α) 7δ∼ cx|α|, α ∈ C, (2.9)

where cx is a nonnegative constant. If x ∈ W we thus infer that cx = 0. So conse-
quently, g(αx) � 7δ for all α ∈ C , x ∈W , and in particular,

g(x) � 7δ , x ∈W. (2.10)

If W = V , the above inequality ensures that f = 0 satisfies (1.4). So we may
assume that W is a proper subspace of V , in which case we will show that codimW =
1. As in [1], this will be done by proving that every two-dimensional subspace of V has
a nonzero element which belongs to W . To this end fix arbitrary linearly independent
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elements x̂, ŷ∈V . Consider the function p : C2 →R defined by p(α,β ) = g(α x̂+β ŷ) .
Further, for each pair (α,β ) ∈ C2 define the function q(α ,β ) : C→ R by q(α ,β )(ξ ) =
p(ξα,ξβ ) . It is easily verified that p , as well as the functions q(α ,β ) , satisfy the
functional inequality in (1.3). From Proposition 2.1 we conclude that for every (α,β )∈
C2 there is a nonnegative value k(α,β ) such that

q(α ,β )(ξ ) 7δ∼ k(α,β )|ξ |, ξ ∈ C. (2.11)

Now, by (2.11), and since p satisfies (1.3), we find that for every z,w,u,v,ξ ∈ C ,

sup
λ∈T

k((z,w)+λ (u,v))|ξ | 7δ∼ sup
λ∈T

q(z,w)+λ (u,v)(ξ )

= sup
λ∈T

p(ξ (z,w)+λξ (u,v)) δ∼ p(ξ (z,w))+ p(ξ (u,v))

= q(z,w)(ξ )+q(u,v)(ξ ) 7δ+7δ∼ k(z,w)|ξ |+ k(u,v)|ξ |.
Thereby,

sup
λ∈T

k((z,w)+λ (u,v))|ξ | 22δ∼ (k(z,w)+ k(u,v))|ξ |. (2.12)

Next, dividing (2.12) by |ξ | and letting |ξ | → ∞ , we get

sup
λ∈T

k((z,w)+λ (u,v)) = k(z,w)+ k(u,v),

i.e., the function k : C2 → R satisfies (1.1). Therefore, by Theorem 1.1, k is the abso-
lute value of a linear functional from C2 to C ; hence of the form k(α,β ) = |cα+dβ | ,
where c and d are complex constants. We conclude that there exist α̂ , β̂ ∈C , not both
zero, for which k(α̂, β̂ ) = 0. By (2.11), it follows that

g(ξ (α̂ x̂+ β̂ ŷ)) = p(ξ α̂,ξ β̂ ) = q(α̂,β̂ )(ξ ) 7δ∼ k(α̂ , β̂ )|ξ | = 0, ξ ∈C.

This implies that α̂ x̂+ β̂ ŷ ∈W , showing that codimW = 1.
We now claim that

g(x+ y) 10δ∼ g(x), x ∈V, y ∈W. (2.13)

Indeed, by (1.3),

g(x)+g(y) δ∼ sup
λ∈T

g(x+λy) δ∼ g(x)+g(−y),

which implies

g(y) 2δ∼ g(−y). (2.14)

By Lemma 2.1(iii) and by (2.10) and (2.14), for every x ∈V and y ∈W ,

g(x+ y) � g(x)+g(y)+ δ � g(x)+7δ + δ
= g(x+ y− y)+8δ � g(x+ y)+g(−y)+ δ+8δ

2δ∼ g(x+ y)+g(y)+9δ � g(x+ y)+7δ+9δ ,

(2.15)
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which proves (2.13).
Finally, since codimW = 1, we have V =Cx0⊕W , where x0 is some fixed vector

in V and Cx0 is the one-dimensional subspace of all complex multiples of x0 . It
follows that every x ∈ V can be written as x = αxx0 + yx , where αx ∈ C and yx ∈W
are uniquely determined. By (2.13) and (2.9) we obtain

g(x) = g(αxx0 + yx)
10δ∼ g(αxx0) = gx0(αx)

7δ∼ cx0 |αx|,
so

|g(x)− cx0 |αx|| � 17δ .

Hence, introducing the linear functional φ(x) := cx0αx we see that f (x) = |φ(x)| sat-
isfies the inequality in (1.4), and the proof is complete. �

3. Proof of Theorem 1.3

LEMMA 3.1. Let g : V → R satisfy (1.5). Then
(i) |g(0)| � δ ,
(ii) g(x) � −δ , x ∈V ,
(iii) g(x+ y) � g(x)+g(y)+ δ , x,y ∈V .

Proof. We obtain part (i) by putting x = y = 0 in (1.5). Part (ii) is an immediate
consequence of (1.5). Part (iii) follows from

g(x+ y)−g(y) � |g(x+ y)−g(y)| δ∼ inf
λ∈T

g(x+ y+λy) � g(x+ y− y). �

As in previous section, we first deal with the one-dimensional case of Theorem 1.3,
that is, V = C .

PROPOSITION 3.1. Let g : C→ R satisfy (1.5). Then there exists a solution of
equation (1.2) of the form f (z) = c|z| where c is a nonnegative constant, such that

| f (z)−g(z)| � 23δ , z ∈ C. (3.1)

Proof. We claim that

inf
λ∈T

g(λy) � g(y) � inf
λ∈T

g(λy)+2δ , y ∈ C. (3.2)

Indeed, the first inequality is obvious. To obtain the second, we consider two cases. If
g(y) � g(0) , then by (1.5) with x = 0 and Lemma 3.1(i),

inf
λ∈T

g(λy) δ∼ |g(0)−g(y)|= g(y)−g(0) δ∼ g(y).

Otherwise, by parts (i) and (ii) of Lemma 3.1, we have

−δ � inf
λ∈T

g(λy) � g(y) < g(0) � δ .
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So, (3.2) is proved, from which we obtain

g(y) 2δ∼ g(|y|), y ∈ C. (3.3)

Let x � 0. Using (3.3) and Lemma 3.1(iii) we get

g(|1+λ |x) 2δ∼ g(x+λx) � g(x)+g(λx)+ δ
2δ∼ g(x)+g(x)+ δ = 2g(x)+ δ

for every λ ∈ T . Therefore,

supg([0,2x]) = sup
λ∈T

g(|1+λ |x) � 2g(x)+5δ , x � 0. (3.4)

Taking again advantage of (3.3), we have

infg([t− x,t + x]) = inf
λ∈T

g(|t +λx|)
2δ∼ inf

λ∈T
g(t +λx) δ∼ |g(t)−g(x)|, 0 � x � t.

(3.5)

Thereby, for 0 � x � y � t , we obtain

|g(t)−g(y)| 3δ∼ infg([t− y,t + y]) � infg([t− x,t + x]) 3δ∼ |g(t)−g(x)|.
Hence,

|g(t)−g(y)|� |g(t)−g(x)|+6δ , 0 � x � y � t. (3.6)

Notice that if g(z) � 15δ for every z ∈C , then with f = 0 we get (3.1). So, from
now on we can assume that there is z ∈ C with g(z) > 15δ . By (3.3), therefore,

g(|z|) 2δ∼ g(z) > 15δ . (3.7)

We will next show that
lim

R�x→∞
g(x) = ∞. (3.8)

Suppose, on the contrary, that there is a real sequence {an}n∈N tending to infinity, such
that {g(an)}n∈N converges to some real limit. Since {g(an)}n∈N is a Cauchy sequence,
there exists N ∈N such that |g(an)−g(aN)|< δ for every n � N . By this and by (3.5)
we infer that infg([an − aN ,an + aN]) < 4δ for all n � N . Hence, there exists a real
sequence {bn}n tending to infinity, such that g(bn) < 4δ , n ∈N . Substituting bn for x
in (3.4) we obtain supg([0,∞)) � 13δ . But this contradicts (3.7); so we proved (3.8).
Thereby, for any 0 � x � y , we can choose t , t � y , with g(t) � max{g(x),g(y)} . For
this t , (3.6) implies

g(x) � g(y)+6δ , 0 � x � y. (3.9)

Fix 0 � x � y and notice that if g(y) < g(x) then, by (3.9), |g(y)−g(x)|= g(x)−
g(y) � 6δ . Therefore, |g(y)−g(x)|+g(x)−g(y)� 12δ . Hence,

|g(y)−g(x)|� g(y)−g(x)+12δ .



200 BARBARA PRZEBIERACZ

Of course, if g(y) � g(x) , then the above inequality is also true. Moreover, by (3.9),
g(y− x) � infg([y− x,y+ x])+6δ . By this inequality, and by (3.3) and (1.5), we get

g(y− x)−6δ � infg([y− x,y+ x]) = inf
λ∈T

g(|y+λx|)
2δ∼ inf

λ∈T
g(y+λx) δ∼ |g(y)−g(x)|� g(y)−g(x)+12δ , 0 � x � y.

Therefore,
g(x)+g(y) � g(x+ y)+21δ , x,y � 0. (3.10)

Lemma 3.1(iii) and (3.10) imply that the restriction g|[0,∞) is 21δ –approximately ad-
ditive. Now, as in Proposition 2.1 we conclude that there exists an additive continuous
function of the form h(x) = cx , x∈ [0,∞) , where c is a nonnegative constant, satisfying

g(x) 21δ∼ h(x) . Finally,

g(z) 2δ∼ g(|z|) 21δ∼ c|z|, z ∈ C.

Hence, (3.1) holds with f (z) := c|z| . �
We are now ready to prove the general case of Theorem 1.3.

Proof. [Proof of Theorem 1.3] As in the proof of Theorem 1.2, we may assume
that dimV � 2. Let W be the subspace of V defined in (2.7). As before, it can be
shown that codimW = 1, provided W �V .

Now, for every x ∈V we recall the function gx in (2.8). Since gx is a solution of
the functional inequality (1.5), we use Proposition 3.1 to obtain

g(αx) = gx(α) 23δ∼ cx|α|, α ∈ C, (3.11)

where cx is a nonnegative constant. We see that cx = 0 for x ∈W ; whence

g(x) � 23δ , x ∈W. (3.12)

Moreover, we claim that

g(x) 2δ∼ g(−x), x ∈V. (3.13)

Indeed, notice that

|g(0)−g(x)| δ∼ inf
λ∈T

g(λx) = inf
λ∈T

g(λ (−x)) δ∼ |g(0)−g(−x)|.

Thereby,

|g(0)−g(x)| 2δ∼ |g(0)−g(−x)|.
If the signs of the differences g(0)−g(x) and g(0)−g(−x) are identical, then (3.13) is
a consequence of the last formula. Otherwise, we can assume without loss of generality
that g(−x) < g(0) < g(x) . By Lemma 3.1(i) and (1.5), we get

g(−x) < g(x) = (g(x)−g(0))+g(0)
δ∼ inf

λ∈T
g(λx)+g(0) δ∼ inf

λ∈T
g(λx) � g(−x).
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This ends the proof of (3.13).
Using Lemma 3.1(iii), (3.12) and (3.13), we repeat the calculations in (2.15) to

find that
g(x+ y) 26δ∼ g(x), x ∈V, y ∈W. (3.14)

Again, we have two possibilities: either W = V , so in view of (3.12), f = 0 satisfies
(1.3); or V = Cx0 ⊕W for an x0 ∈ V . In this latter case, for every x ∈ V there are
unique αx ∈ C and yx ∈W such that x = αxx0 + yx . The function φ : V → C defined
by φ(x) := cx0αx is a linear functional. By (3.14) and (3.11), we have

g(x) = g(αxx0 + yx)
26δ∼ g(αxx0) = gx0(αx)

23δ∼ cx0 |αx| = |φ(x)| =: f (x),

and the proof is at hand. �

Acknowledgements. This paper was supported by the Department of Mathematics,
the Silesian University, Katowice, Poland (Discrete Dynamical Systems and Iteration
Theory).

The author wishes to thank Professor Moshe Goldberg and Professor Peter Volk-
mann for valuable discussions.

RE F ER EN C ES

[1] K. BARON, P. VOLKMANN, Characterization of the absolute value of complex linear functionals
by functional equations, http://www.mathematik.uni-karlsruhe.de/~semlv, Seminar LV, No.
28, 10pp (2006).

[2] M. KUCZMA, An introduction to the theory of functional equations and inequalities, Cauchy’s equa-
tion and Jensen’s inequality, Silesian University Press, Katowice, 1985.

(Received July 9, 2009) Barbara Przebieracz
Institute of Mathematics

Silesian University
40-007 Katowice, Poland

e-mail: przebieraczb@ux2.math.us.edu.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


