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IMPROVED HARDY–SOBOLEV

INEQUALITIES FOR RADIAL DERIVATIVE

WEI-CANG WANG AND QIAO-HUA YANG

(Communicated by J. Pečarić)

Abstract. We prove some Hardy-Sobolev inequalities for radial derivative and obtain the corre-
sponding sharp constant.

1. Introduction

Hardy inequality in R
N reads, for all f ∈C∞

0 (RN) and N � 3,

∫
RN

|∇ f |2dx � (N−2)2

4

∫
RN

f 2

|x|2 dx (1.1)

and (N−2)2
4 is the best constant in (1.1). A similar inequality with the same best constant

holds if R
N is replaced by an arbitrary domain Ω⊂ R

N and Ω contains the origin. On
the other hand, the classical Sobolev inequality

∫
RN

|∇ f |2dx � SN

(∫
RN

| f | 2N
N−2 dx

)N−2
N

. (1.2)

is valid for any f ∈ C∞
0 (RN) , where SN = πN(N − 2)(Γ(N

2 )/Γ(N))
2
N is the best con-

stant(cf. [2, 7]). Stubbe’s result ([6]) states that for 0 < δ < (N−2)2
4 ,

∫
RN

|∇ f |2dx− δ
∫

RN

f 2

|x|2 dx �
(

1− δ
(N−2)2

4

) N−1
N

SN

(∫
RN

| f | 2N
N−2 dx

)N−2
N

(1.3)

and the constant in (1.3) is sharp (see also [4]). Recently, Adimurthi, S. Filippas and A.
Tertikas established the following Hardy-Sobolev inequality: for all f ∈C∞

0 (B1) ,

∫
B1

|∇ f |2dx− (N−2)2

4

∫
B1

f 2

|x|2 dx � CN,a

(∫
B1

X
2(N−1)
N−2

1 (a, |x|)| f | 2N
N−2 dx

)N−2
N

, (1.4)
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where B1 ⊂ R
N is the unit ball centered at zero and

X1(a,s) := (a− lns)−1, a > 0, 0 < s � 1.

The best constant CN,a in (1.4) satisfies

CN,a =

⎧⎨
⎩

(N −2)−
2(N−1)

N SN , a � 1
N−2

a−
2(N−1)

N SN , 0 < a < 1
N−2 .

When restricted to radial functions, the best constant in (1.4) is given by

CN,a,radial = (N−2)−
2(N−1)

N SN ,∀a � 0.

Our goal in this note is to establish analogous inequalities (1.2)–(1.4) for radial
derivative of f , i.e., fr = ∇ f · x

|x| with r = |x| . Recall that the Hardy inequality in R
N

for radial derivative reads, for all f ∈C∞
0 (RN) and N � 3,

∫
RN

| fr|2dx � (N−2)2

4

∫
RN

f 2

|x|2 dx.

The Sobolev inequality for radial derivative reads (cf. [3]), for all f ∈ C∞
0 (RN) and

N � 3, ∫
RN

| fr|2dx � CN

(∫
RN

|F(r)| 2N
N−2 dx

)N−2
N

, (1.5)

where F(r) is the integral mean of f over the unit sphere S
N−1 , that is,

F(r) =
1

|SN−1|
∫

SN−1
f (rω)dω .

Here we use the polar co-ordinates x = rω . To this end we have:

THEOREM 1.1. The best constant CN in (1.5) satisfies CN = SN . The extreme
function is

Uλ (x) = c

(
λ

λ 2 + |x|2
)N−2

2

, c �= 0, λ > 0.

Furthermore, if Ω ⊂ R
N is a bounded domain containing the origin, then for all f ∈

C∞
0 (Ω) and N � 3 ,

∫
Ω
| fr|2dx � SN

(∫
Ω
|F(r)| 2N

N−2 dx

)N−2
N

(1.6)

and the constant in (1.6) is sharp.

We generalize Stubbe’s result to the radial derivative.
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THEOREM 1.2. Let f ∈C∞
0 (RN) and N � 3 . There holds, for 0 < δ < (N−2)2

4 ,

∫
RN

| fr|2dx− δ
∫

RN

f 2

|x|2 dx �
(

1− δ
(N−2)2

4

) N−1
N

SN

(∫
RN

|F(r)| 2N
N−2 dx

)N−2
N

(1.7)

and the constant in (1.7) is sharp.

The following corollary generalizes a result of A. Balinsky et al (cf. [3], inequality
(4.12)).

COROLLARY 1.3. Let f ∈C∞
0 (RN) and N � 3 . There holds, for (N −1) < δ <

N2

4 ,

∫
RN

|〈x,∇ f 〉|2dx− δ
∫

RN
f 2dx �

(
N2

4 − δ
)N−1

N

(
(N−2)2

4

) N−1
N

SN

(∫
RN

|rF(r)| 2N
N−2 dx

)N−2
N

(1.8)

and the constant in (1.8) is sharp.

Finally, we generalize Adimurthi et al’s result to the radial derivative.

THEOREM 1.4. Let f ∈C∞
0 (B1) and N � 3 . There holds, for all a > 0 ,

∫
B1

| fr|2dx− (N−2)2

4

∫
B1

f 2

|x|2 dx� (N−2)−
2(N−1)

N SN

(∫
B1

X
2(N−1)
N−2

1 (a, |x|)|F(r)| 2N
N−2 dx

)N−2
N

(1.9)
and the constant in (1.9) is sharp. Furthermore, if Ω ⊂ R

N is a bounded domain
containing the origin, then

∫
Ω
| fr|2dx−(N−2)2

4

∫
Ω

f 2

|x|2 dx � (N−2)−
2(N−1)

N SN

(∫
Ω

X
2(N−1)
N−2

1 (a,
|x|
D

)|F(r)| 2N
N−2 dx

)N−2
N

(1.10)
with D = supx∈Ω |x| and the constant in (1.10) is sharp.

COROLLARY 1.5. Let f ∈C∞
0 (Ω) and N � 3 . There holds, for all a > 0 ,

∫
Ω
|〈x,∇ f 〉|2dx−N2

4

∫
Ω

f 2dx� (N−2)−
2(N−1)

N SN

(∫
Ω

X
2(N−1)
N−2

1 (a,
|x|
D

)|rF(r)| 2N
N−2 dx

)N−2
N

(1.11)
and the constant in (1.11) is sharp.

REMARK 1.6. If f is supported in the annulus AR := {x ∈ R
N : R−1 < |x| < R} ,

then

X
2(N−1)
N−2

1

(
a,

|x|
D

)
=

(
1

a− ln |x|
R

) 2(N−1)
N−2

�
(

1
a+2lnR

) 2(N−1)
N−2

.
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By Theorem 1.4 and Corollary 1.5 and letting a → 0+ , we have

∫
AR

| fr|2dx− (N−2)2

4

∫
AR

f 2

|x|2 dx � [2(N−2) lnR]−
2(N−1)

N SN

(∫
AR

|F(r)| 2N
N−2 dx

)N−2
N

and

∫
AR

|〈x,∇ f 〉|2dx− N2

4

∫
AR

f 2dx � [2(N−2) lnR]−
2(N−1)

N SN

(∫
AR

|rF(r)| 2N
N−2 dx

)N−2
N

,

which generalize the results of Balinsky et al (cf. [3], Corollary 4.6, Corollary 4.7).

2. The proofs

To prove the main result, we first need the following useful lemma.

LEMMA 2.1. Let f ∈C∞
0 (RN) be real-valued and p > 1 . There holds

|F(r)|p =
∣∣∣∣ 1
|SN−1|

∫
SN−1

f (rω)dω
∣∣∣∣
p

� 1
|SN−1|

∫
SN−1

| f (rω)|pdω ; (2.1)

|F ′(r)|p =
∣∣∣∣ 1
|SN−1|

∫
SN−1

fr(rω)dω
∣∣∣∣
p

� 1
|SN−1|

∫
SN−1

| fr(rω)|pdω . (2.2)

Inequalities (2.1) and (2.2) becomes equalities if and only if f (x) is radial, i.e., f (rω)=
f (r) .

Proof. By Hölder’s inequality,

1
|SN−1|

∫
SN−1

| f (rω)|dω � 1
|SN−1|

(∫
SN−1

| f (rω)|pdω
) 1

p

·
(∫

SN−1
dω
) 1

p′

(
1
p

+
1
p′

= 1

)

=
1

|SN−1|1−
1
p′

(∫
SN−1

| f (rω)|pdω
) 1

p

=
1

|SN−1| 1
p

(∫
SN−1

| f (rω)|pdω
) 1

p

.

(2.3)

Inequalities (2.3) becomes equalities if and only if | f (rω)| is constant for all ω ∈ S
N−1 ,

i.e. f (rω) is constant for all ω ∈ S
N−1 since S

N−1 is a connected set. Therefore, we
obtain, by (2.3),

|F(r)|p �
(

1
|SN−1|

∫
SN−1

| f (rω)|dω
)p

� 1
|SN−1|

∫
SN−1

| f (rω)|pdω .
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Similarly, we have

|F ′(r)|p � 1
|SN−1|

∫
SN−1

| fr(rω)|pdω .

The inequality above becomes an equality if and only if f (x) is radial.
Using lemma 2.1 and polar co-ordinates on R

N , we have the following:

COROLLARY 2.2. Let f ∈C∞
0 (RN) and p > 1 . There holds, for α < N ,

∫
RN

| f (x)|p
|x|α dx �

∫
RN

|F(r)|p
|x|α dx;

∫
RN

| fr(x)|p
|x|α dx �

∫
RN

|F ′(r)|p
|x|α dx. (2.4)

Inequalities (2.4) becomes equalities if and only if f (x) is radial.

Proof of Theorem 1.1. By corollary 2.2,

∫
RN

| fr |2dx �
∫

RN
|F ′(r)|2dx =

∫
RN

|∇F(r)|2dx � SN

(∫
RN

|F(r)| 2N
N−2 dx

)N−2
N

. (2.5)

Inequalities (2.5) becomes equalities if and only if f (x) is radial and

F(r) = Uλ (x) = c

(
λ

λ 2 + |x|2
)N−2

2

for some c �= 0 and λ > 0 (cf. [2, 7]). To finish the proof of theorem 1.1, it is enough to
show the constant in (1.6) is sharp since f ∈ C∞

0 (Ω)⊂C∞
0 (RN). Consider the sequence

of functions
Vλ = Uλ ·φδ (|x|)

where φδ (t) is a C∞
0 cutoff function which is zero for t > δ and equal to one for

t < δ/2; δ is small enough so that Bδ := {x∈ R
N ||x|< δ} ⊂Ω . Then Vλ ∈C∞

0 (Bδ )⊂
C∞

0 (Ω) . It is well known that (cf. [5])

SN = lim
λ→0+

∫
Ω |∇Vλ |2dx(∫

Ω |Vλ |
2N

N−2 dx
)N−2

N

.

Thus, the constant in (1.6) is sharp and this completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. By corollary 2.2 we have, for 0 < α < (N−2)/2,

∫
RN

| fr(x)|2
|x|2α dx �

∫
RN

|F ′(r)|2
|x|2α dx = |SN−1|

∫ ∞

0
rN−1−2α |F ′(r)|2dr

�
(

1− α(N−2−α)
(N−2)2

4

) N−1
N

SN

(∫
RN

∣∣∣∣F(r)
|x|α

∣∣∣∣
2N

N−2

dx

) N−2
N (2.6)
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(cf. [4], the proof of theorem 2) and the constant

(
1− α(N−2−α)

(N−2)2
4

)N−1
N

SN is sharp. Set

g(x) = f (x)
|x|α and G(r) = F(r)

|x|α . Through integration by parts, we have, by (2.6),

∫
RN

|gr(x)|2dx−α(n−2−α)
∫

RN

g2(x)
|x|2 dx

=
∫

RN

| fr(x)|2
|x|2α dx

�
(

1− α(N−2−α)
(N−2)2

4

) N−1
N

SN

(∫
RN

∣∣∣∣F(r)
|x|α

∣∣∣∣
2N

N−2

dx

) N−2
N

=

(
1− α(N−2−α)

(N−2)2
4

) N−1
N

SN

(∫
RN

|G(r)| 2N
N−2 dx

)N−2
N

.

(2.7)

The desired result follows. �

Proof of Corollary 1.3. On substituting f (x) = |x|g(x) in Theorem 1.2, we have,
through integration by parts,

∫
RN

|〈x,∇g〉|2dx− δ
∫

RN
g2dx =

∫
RN

| fr|2dx− (δ −N +1)
∫

RN

f 2

|x|2 dx

�

(
N2

4 − δ
)N−1

N

(
(N−2)2

4

)N−1
N

SN

(∫
RN

|F(r)| 2N
N−2 dx

)N−2
N

=

(
N2

4 − δ
)N−1

N

(
(N−2)2

4

)N−1
N

SN

(∫
RN

|rG(r)| 2N
N−2 dx

)N−2
N

.

(2.8)

The desired result follows. �

Proof of Theorem 1.4. Using the change of variables f (x) = |x|− N−2
2 g(x) and

F(r) = |x|− N−2
2 G(r) inequality (1.9) is seen to be equivalent to

∫
B1

|x|−(N−2)|gr(x)|2dx � (N−2)−
2(N−1)

N SN

(∫
B1

|x|−nX
2(N−1)
N−2

1 (a, |x|)|G(r)| 2N
N−2 dx

)N−2
N

.

Set

CHS(a) = inf
g∈C∞

0 (B1)

∫
B1
|x|−(N−2)|gr(x)|2dx(∫

B1
|x|−nX

2(N−1)
N−2

1 (a, |x|)|G(r)| 2N
N−2 dx

)N−2
N

.
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Following ([1]), we change variables by

v(x) = y(τ,θ ), τ =
1

X1(a,r)
= a− lnr, θ =

x
|x| .

Then

CHS(a) = inf
y(a,θ)=0

∫ ∞
a

∫
SN−1 y2

τdωdτ(∫ ∞
a

∫
SN−1 τ−

2(N−1)
N−2 |Y (τ)| 2N

N−2 dωdτ
)N−2

N

(2.9)

with Y (τ) = G(τ) . By theorem 1.1, for any R > 0, we have

SN = inf
g∈C∞

0 (BR)

∫
BR

|gr|2dx

SN

(∫
BR

|G(r)| 2N
N−2 dx

)N−2
N

. (2.10)

Changing variables in (2.10) by

g(x) = z(t,θ ), t = |x|−(N−2), θ =
x
|x| ,

it follows that for all R > 0,

(N−2)−
2(N−1)

N SN = inf
z(R−(N−2),θ)=0

∫ ∞
R−(N−2)

∫
SN−1 z2

t dωdt(∫ ∞
R−(N−2)

∫
SN−1 t−

2(N−1)
N−2 |Z(t)| 2N

N−2 dωdt
)N−2

N

(2.11)

with Z(t) = G(t) . Combining this with (2.9) we conclude our claim (1.9).
We now prove inequality (1.10). The lower bound on the best constant follows

from (1.9) with a simple scaling argument. To establish the upper bound, we set, for
a > 0 and ρ > 0 small enough such that Bρ ⊂Ω,

DHS(a,ρ) = inf
f∈C∞

0 (Bρ )

∫
Bρ | fr|2dx− (N−2)2

4

∫
Bρ

f 2

|x|2 dx(∫
Bρ X

2(N−1)
N−2

1 (a, |x|)|F(r)| 2N
N−2 dx

)N−2
N

.

Through a scaling argument, we have

DHS(a,ρ) = inf
f∈C∞

0 (B1)

∫
B1
| fr|2dx− (N−2)2

4

∫
B1

f 2

|x|2 dx(∫
B1

X
2(N−1)
N−2

1 (a− lnρ , |x|)|F(r)| 2N
N−2 dx

)N−2
N

= CHS(a− lnρ).

By (1.9), we obtain

DHS(a,ρ) = (N−2)−
2(N−1)

N SN

and the upper bound follows. These complete the proof of Theorem 1.4. �
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Proof of Corollary 1.5. On substituting f (x) = |x|g(x) and F(r) = rG(r) in The-
orem 1.4, we have, through integration by parts,

∫
Ω
|〈x,∇g〉|2dx− N2

4

∫
Ω

g2dx =
∫
Ω
| fr|2dx− (N−2)2

4

∫
Ω

f 2

|x|2 dx

� (N−2)−
2(N−1)

N SN

(∫
Ω

X
2(N−1)
N−2

1 (a,
|x|
D

)|F(r)| 2N
N−2 dx

)N−2
N

= (N−2)−
2(N−1)

N SN

(∫
Ω

X
2(N−1)
N−2

1 (a,
|x|
D

)|rG(r)| 2N
N−2 dx

)N−2
N

.

(2.12)

The desired result follows. �
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