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Abstract. Some new criteria for the oscillation of solutions of the second-order half-linear dy-
namic equation (

a
(
xΔ

)α)Δ
(t)+q(t)xα (t) = 0

are established when
∫ ∞ a−1/α (s)Δs = ∞ .

1. Introduction

This paper is concerned with the oscillation of solutions of the second-order half-
linear dynamic equation

(
a(xΔ)α

)Δ
(t)+q(t)xα(t) = 0, (1.1)

where a and q are real-valued positive rd-continuous functions on a time scale T ⊂ R

with supT = ∞ , and α is the ratio of two positive odd integers.
A time scale T is an arbitrary nonempty closed subset of the real numbers R , and

as oscillation of solutions is our main concern, we make the assumption that supT =∞ .
We assume throughout that T has the topology that it inherits from the standard topol-
ogy on real numbers R . The forward and backward jump operators σ ,ρ : T → T are
defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t},

where the supremum of the empty set is defined to be the infimum of T . A point t ∈ T

is said to be right-scattered if σ(t) > t and right-dense if σ(t) = t , and t ∈ T with
t > infT is said to be left-scattered if ρ(t) < t and left-dense if ρ(t) = t . A function
g : T → R is said to be rd-continuous provided g is continuous at right-dense points
and has finite left-hand limits at left-dense points in T . The graininess function μ for

Mathematics subject classification (2010): 34C10, 39A10, 34N05, 34C15, 34K11, 39A21.
Keywords and phrases: Dynamic equation; half-linear; oscillation; nonoscillation.
∗ Supported by NSF Grant #0624127.

c© � � , Zagreb
Paper MIA-14-18

211



212 S. R. GRACE, R. P. AGARWAL, M. BOHNER AND D. O’REGAN

a time scale T is defined by μ(t) = σ(t)− t , and for every function f : T → R , the
notation f σ means the composition f ◦σ .

We recall that a solution of equation (1.1) is said to be oscillatory on [t0,∞)T if
it is neither eventually positive nor eventually negative. Otherwise, the solution is said
to be nonoscillatory. Equation (1.1) is said to be oscillatory if all of its solutions are
oscillatory.

Recently much attention has focused on dynamic equations on time scales, and
we refer the reader to the landmark paper of Hilger [21] for a comprehensive treatment
of the subject. Since then, several authors have expounded on various aspects of this
new theory, see [5], the references cited therein, and the monographs [12, 13]. In recent
years there has been much research activity concerning the oscillation and nonoscilla-
tion of solutions of dynamic equations on time scales. We refer the reader to [2, 3, 5, 6,
11–19]. If T = R and α = 1, then equation (1.1) reduces to

(ax′)′(t)+q(t)x(t) = 0. (1.2)

For (1.2), numerous oscillation and nonoscillation criteria have been established, see
[1, 8–10, 22, 23]. It is known [22], when a(t) ≡ 1, the condition

limsup
t→∞

1
tm

∫ t

t0
(t− s)mq(s)ds = ∞, (1.3)

where m > 1 is an integer, plays an important rôle in the oscillation of all solutions of
(1.2). In recent years, improvements of condition (1.3) for the continuous case T = R

and the discrete case T = Z were obtained in [4, 7–10, 23]. The purpose of this paper
is to proceed further in this direction and establish some time scale analogues of the
results presented in [4, 7–10]. This paper supplements [3], where related oscillation
criteria for (1.1) recently have been established.

2. Preliminary Results

For a function f : T → R , the (delta) derivative f Δ(t) at t ∈ T is defined to be the
number (if it exists) such that for all ε > 0, there is a neighborhood U of t with

| f (σ(t))− f (s)− f Δ(t)(σ(t)− s)| < ε|σ(t)− s| for all s ∈ U .

If the (delta) derivative f Δ(t) exists for all t ∈ T , then we say that f is (delta) differ-
entiable on T .

We will make use of the following product and quotient rules [12, Theorem 1.20]
for the derivatives of the product f g and the quotient f/g (where ggσ 	= 0) of two
(delta) differentiable functions f and g ,

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ ,

(
f
g

)Δ
=

f Δg− f gΔ

ggσ
(2.1)
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as well as of the chain rule [12, Theorem 1.90] for the derivative of the composite
function f ◦g for a continuously differentiable function f : R → R and a (delta) differ-
entiable function g : T → R ,

( f ◦ g)Δ =
{∫ 1

0
f ′(g+hμgΔ)dh

}
gΔ. (2.2)

For b,c ∈ T and a differentiable function f , the Cauchy integral of f Δ is defined by

∫ c

b
f Δ(t)Δt = f (c)− f (b),

and infinite integrals are defined as

∫ ∞

b
f (t)Δt = lim

c→∞

∫ c

b
f (t)Δt.

An integration by parts formula reads

∫ c

b
f (t)gΔ(t)Δt = f (t)g(t)

∣∣∣∣
c

b
−

∫ c

b
f Δ(t)g(σ(t))Δt. (2.3)

Note that in the case T = R , we have

σ(t) = ρ(t) = t, μ(t) ≡ 0, f Δ(t) = f ′(t),
∫ c

b
f (t)Δt =

∫ c

b
f (t)dt,

and in the case T = Z , we have

σ(t) = t +1, ρ(t) = t−1, μ(t) ≡ 1, f Δ(t) = Δ f (t) := f (t +1)− f (t),

and (if b < c)
∫ c

b
f (t)Δt =

c−1

∑
t=b

f (t).

For more discussion on time scales, we refer the reader to [12, 13].
Finally, we recall the following lemma from [20] which will be needed for the

proof of Theorem 3.2 in the next section.

LEMMA 2.1. If X and Y are nonnegative and γ > 1 , then

X γ − γXY γ−1 +(γ−1)Y γ � 0,

where equality holds if and only if X = Y .
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3. Main Results

In this section, we shall give some new Philos and Kamenev type oscillation cri-
teria for the solutions of equation (1.1). To do so, we define D as follows: H ∈ D
provided H : [t0,∞)T × [t0,∞)T → R satisfies

H(t, t) � 0 for t � t0, H(t,s) > 0 for t > s � t0,

and H(t,s) is (delta) differentiable with respect to s .

THEOREM 3.1. Assume that
∫ ∞

t0
a−1/α(s)Δs = ∞, (3.1)

H ∈ D , and suppose that there exists a positive (delta) differentiable function ξ such
that, for t � s � t1 ∈ [t0,∞)T , with

h(t,s) := H(t,s)
ξΔ(s)
ξσ (s)

+HΔs(t,s),

we have
h(t,s) � 0 for t � s � t1 ∈ [t0,∞)T (3.2)

and

limsup
t→∞

1
H(t,t1)

∫ t

t1
[H(t,s)ξ (s)q(s)−h(t,s)(ξ (s)ηα(s))σ ]Δs = ∞, (3.3)

where η(t) =
(∫ t

t1
a−1/α(s)Δs

)−1
. Then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1) on [t0,∞)T , say (with-
out loss of generality), x(t) > 0 for t � t1 � t0 . We shall first show that

xΔ(t) > 0 for t � t1. (3.4)

From equation (1.1), we have

(
a(xΔ)α

)Δ
(t) = −q(t)xα(t) � 0 for t � t1.

Thus, if (3.4) does not hold, then it follows that

a(xΔ)α(t) � a(xΔ)α(t1) =: c < 0,

which implies

xΔ(t) �
(

c
a(t)

)1/α
for t � t1.
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Now an integration from t1 to t yields

x(t) � x(t1)+ c1/α
∫ t

t1
a−1/α(s)Δs →−∞ as t → ∞,

which contradicts the fact that x(t) > 0 for t � t1 . Thus, (3.4) is true. Define now

w := ξ
a(xΔ)α

xα
on [t1,∞)T.

Then, it follows that on [t1,∞)T we have

wΔ =
(
ξ
xα

)Δ(
a(xΔ)α

)σ
+

ξ
xα

(
a(xΔ)α

)Δ

= −ξq+
(
a(xΔ)α

)σ
[
ξΔxα − ξ (xα)Δ

xα(xσ )α

]

= −ξq+
ξΔ

ξσ
wσ − ξ

(xα )Δ

xα

(
a(xΔ)α

)σ
(xσ )α

(3.5)

� −ξq+
ξΔ

ξσ
wσ , (3.6)

where we have used that (xα)Δ � 0, which follows by an application of the chain rule
(2.2):

(xα)Δ = αxΔ
∫ 1

0
(x+ μhxΔ)α−1dh � αxΔ

∫ 1

0
xα−1dh = αxα−1xΔ. (3.7)

Next, we have for t � t1

x(t) = x(t1)+
∫ t

t1
xΔ(s)Δs

= x(t1)+
∫ t

t1
a−1/α(s)

(
a(s)(xΔ(s))α

)1/α
Δs

�
(∫ t

t1
a−1/α(s)Δs

)(
a(t)(xΔ(t))α

)1/α

so that

a(t)
(

xΔ(t)
x(t)

)α

�
(∫ t

t1
a−1/α(s)Δs

)−α
= ηα(t) for t � t1. (3.8)

From (3.6), it follows that
∫ t

t1
H(t,s)wΔ(s)Δs � −

∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1
H(t,s)

ξΔ(s)
ξσ (s)

wσ (s)Δs.

Using the integration by parts formula (2.3), we find

H(t,s)w(s)
∣∣∣∣
s=t

s=t1

� −
∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1

[
H(t,s)

ξΔ(s)
ξσ (s)

+HΔs(t,s)
]
wσ (s)Δs.

(3.9)
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Using (3.8) in (3.9), we have

−H(t, t1)w(t1) � −
∫ t

t1
H(t,s)ξ (s)q(s)Δs

+
∫ t

t1

[
H(t,s)

ξΔ(s)
ξσ (s)

+HΔs(t,s)
]
(ξ (s)ηα(s))σΔs,

and therefore

∞ > w(t1) � 1
H(t,t1)

∫ t

t1
[H(t,s)ξ (s)q(s)−h(t,s)(ξ (s)ηα(s))σ ]Δs.

Taking the limsup of both sides of the above inequality as t → ∞ , we obtain a contra-
diction to condition (3.3). This completes the proof.

Next, we establish the following result.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 hold and condition (3.3) be
replaced by

limsup
t→∞

1
H(t, t1)

∫ t

t1

[
H(t,s)ξ (s)q(s)− αα

(α +1)α+1

(h(t,s))α+1

(h∗(t,s))α

]
Δs = ∞, (3.10)

where h is as in Theorem 3.1, and for t > s � t1 ∈ [t0,∞)T ,

h∗(t,s) := αH(t,s)a−1/α(s)
ξ (s)

(ξσ (s))1+1/α .

Then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for t �
t1 � t0 . As in the proof of Theorem 3.1, we obtain (3.5). Now, note that we have on
[t1,∞)T

xΔ

x
= ξ−1/αa−1/αw1/α and wσ � ξσ

ξ
w. (3.11)

Using (3.7) and (3.11) in inequality (3.5), we get

wΔ � −ξq+
ξΔ

ξσ
wσ −αa−1/α ξ

(ξσ )1+1/α (wσ )1+1/α on [t1,∞)T. (3.12)

From (3.12), it follows that

∫ t

t1
H(t,s)wΔ(s)Δs � −

∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1
H(t,s)

ξΔ(s)
ξσ (s)

wσ (s)Δs

−
∫ t

t1
αH(t,s)a−1/α(s)

ξ (s)
(ξσ (s))1+1/α (wσ (s))1+1/αΔs,
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and thus, as in the proof of Theorem 3.1, we see that

−H(t, t1)w(t1) � −
∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1
h(t,s)wσ (s)Δs

−
∫ t

t1
h∗(t,s)(wσ (s))1+1/αΔs. (3.13)

Set

X = (h∗(t,s))α/(α+1)wσ (s) and Y =
(

α
α +1

h(t,s)
(h∗(t,s))α/(α+1)

)α

in Lemma 2.1 (with γ = (α +1)/α > 1) to conclude that

∫ t

t1

[
h(t,s)wσ (s)−h∗(t,s)(wσ (s))1+1/α

]
Δs � αα

(α +1)α+1

∫ t

t1

(h(t,s))α+1

(h∗(t,s))α
Δs. (3.14)

Using (3.14) in (3.13), we obtain

∞> w(t1) � 1
H(t,t1)

∫ t

t1

[
H(t,s)ξ (s)q(s)− αα

(α +1)α+1

(h(t,s))α+1

(h∗(t,s))α

]
Δs.

Taking the limsup of both sides of the above inequality as t → ∞ , we obtain a contra-
diction to condition (3.10). This completes the proof.

Finally, we shall establish the following result.

THEOREM 3.3. Let the hypotheses of Theorem 3.1 hold and conditions (3.2) and
(3.3) be replaced by

limsup
t→∞

1
H(t,t1)

∫ t

t1

[
H(t,s)ξ (s)q(s)− h2(t,s)

4h(t,s)

]
Δs =∞, (3.15)

where

h(t,s) := αH(t,s)a−1/α(s)
ξ (s)

(ξσ (s))2 (ησ (s))1−α , t > s � t1

and h and η are as in Theorem 3.1. Then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say, x(t) > 0 for t �
t1 � t0 . As in the proof of Theorem 3.2, we obtain (3.12), which can be rewritten as

wΔ � −ξq+
ξΔ

ξσ
wσ −αa−1/α ξ

(ξσ )1+1/α (wσ )1/α−1(wσ )2 on [t1,∞)T. (3.16)

Now, by (3.11),

w1/α−1 = a1/α−1ξ 1/α−1
( x

xΔ

)α−1
on [t1,∞)T. (3.17)
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Using (3.8) in (3.17), we get

w1/α−1 � ξ 1/α−1a1/α−1a(α−1)/αη1−α = ξ 1/α−1η1−α on [t1,∞)T. (3.18)

Employing (3.18) in (3.16), we find

wΔ � −ξq+
ξΔ

ξσ
wσ −αa−1/α ξ

(ξσ )2 (ησ )1−α(wσ )2 on [t1,∞)T. (3.19)

From (3.19), it follows that

∫ t

t1
H(t,s)wΔ(s)Δs � −

∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1
H(t,s)

ξΔ(s)
ξσ (s)

wσ (s)Δs

−
∫ t

t1
αH(t,s)a−1/α(s)

ξ (s)
(ξσ (s))2 (ησ (s))1−α(wσ (s))2Δs.

Now as in the proof of Theorem 3.1, we find that

−H(t, t1)w(t1) � −
∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1
h(t,s)wσ (s)Δs−

∫ t

t1
h(t,s)(wσ (s))2Δs

= −
∫ t

t1
H(t,s)ξ (s)q(s)Δs+

∫ t

t1

h2(t,s)
4h(t,s)

Δs

−
∫ t

t1

⎛
⎝√

h(t,s)wσ (s)− h(t,s)

2
√

h(t,s)

⎞
⎠

2

Δs

and thus

∞ > w(t1) � 1
H(t,t1)

∫ t

t1

[
H(t,s)ξ (s)q(s)− h2(t,s)

h(t,s)

]
Δs.

Taking the limsup of both sides of the above inequality as t → ∞ , we obtain a contra-
diction to (3.15). This completes the proof.

4. Remarks and Examples

REMARK 4.1. Oscillation criteria similar to those established in Section 3 can
also be obtained by replacing H(t,s) with (t− s)m , m ∈ N . Then we have

HΔs(t,s) =
m−1

∑
ν=0

(t−σ(s))ν(t − s)m−ν−1.

Now, Theorem 3.1 can be reformulated as in the following corollary. Other criteria can
be obtained similarly. We omit the details here.
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COROLLARY 4.2. Let condition (3.1) hold and assume that there exists a positive
(delta) differentiable function ξ such that, for t � s � t1 ∈ [t0,∞)T , with

h(t,s) := (t− s)m ξΔ(s)
ξσ (s)

+
m−1

∑
ν=0

(t−σ(s))ν (t− s)m−ν−1,

we have
h(t,s) � 0 for t � s � t1 ∈ [t0,∞)T

and

limsup
t→∞

1
tm

∫ t

t1
[(t− s)mξ (s)q(s)−h(t,s)(ξ (s)ηα(s))σ ]Δs = ∞,

where m ∈ N and η is as in Theorem 3.1. Then equation (1.1) is oscillatory.

The following result is an immediate consequence of Theorem 3.1.

COROLLARY 4.3. Let condition (3.1) hold, H ∈ D , and suppose that there exists
a positive (delta) differentiable function ξ such that for t � s � t1 ∈ [t0,∞)T , condition
(3.2) holds. If

limsup
t→∞

1
H(t,t1)

∫ t

t1
H(t,s)ξ (s)q(s)Δs = ∞

and

lim
t→∞

1
H(t,t1)

∫ t

t1
h(t,s)(ξ (s)ηα(s))σΔs < ∞,

where η is as in Theorem 3.1, then equation (1.1) is oscillatory.

Similar corollaries can be drawn from Theorems 3.2 and 3.3. The details are left
to the reader.

EXAMPLE 4.4. From the above results, we can derive some new oscillation crite-
ria for equation (1.1) on different types of time scales.

1. If T = R , then σ(t) = t , μ(t) = 0, ξΔ = ξ ′ , and HΔs(t,s) = ∂H(t,s)/∂ s . As
an example, condition (3.10) becomes

limsup
t→∞

1
H(t, t1)

∫ t

t1

[
H(t,s)ξ (s)q(s)− αα

(α +1)α+1

(h(t,s))α+1

(h∗(t,s))α

]
ds = ∞, (4.1)

where

h(t,s) =
∂
∂ s

H(t,s)+
ξ ′(s)
ξ (s)

H(t,s)

and

h∗(t,s) = αH(t,s)a−1/α(s)
ξ (s)

(ξσ (s))1+1/α

for t � s � t1 � t0 .
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Note that when ξ (t) ≡ 1, a(t) ≡ 1, and α = 1, then condition (4.1) reduces to
the results of Philos [23]. If in addition, H(t,s) = (t − s)m , m ∈ N and m > 1, then
condition (4.1) reduces to the results of Kamenev [22].

2. If T = Z , then ξΔ(n)=Δξ (n)= ξ (n+1)−ξ (n) and HΔs(m,n)=Δ2H(m,n) :=
H(m,n+1)−H(m,n) . In this discrete case, as an example, condition (3.15) takes the
form

limsup
m→∞

1
H(m,n0)

m−1

∑
n=n0

[
H(m,n)ξ (n)q(n)− h2(m,n)

4h(m,n)

]
= ∞, (4.2)

where

h(m,n) = Δ2H(m,n)+
Δξ (n)
ξ (n+1)

H(m,n)

and

h(m,n) = αH(m,n)a−1/α(n)
ξ (n)

(ξ (n+1))2 (η(n+1))1−α

for m � n � n0 .
Note that condition (4.2) is new for the oscillation of equation (1.1) with T = Z

and is also new for the special cases when a(t) ≡ 1, or a(t) ≡ 1 and ξ (t) ≡ 1.

3. If T = θZ , with θ > 0, then σ(t) = t + θ , μ(t) = θ , ξΔ(t) = Δθξ (t) :=
[ξ (t + θ )− ξ (t)]/θ , and HΔs(t,s) = Δθ2H(t,s) := [H(t,s + θ )−H(t,s)]/θ . In this
case, condition (3.3) becomes for t,s ∈ θZ ,

limsup
n→∞

1
H(θn,θn1)

n−1

∑
k=n1�n0

[
H(θn,θk)ξ (θk)q(θk)

−h(θn,θk)(ξ ((k+1)θ )ηα((k+1)θ ))
]
= ∞,

where

h(t,s) = Δθ2H(t,s)+
Δθξ (s)
ξ (s+θ )

H(t,s).

4. We can employ other types of time scales, e.g., T = qN0 with q > 1, T = N
2
0 ,

etc., see [12, 13]. The details are left to the reader.

REMARK 4.5. We note that the results of this paper are presented in a form which
is essentially new and of high degree of generality. Some of the obtained results im-
prove, unify and contain well-known results which appeared in the literature particu-
larly for the cases T = R or T = Z , see [4, 7–10].

REMARK 4.6. The results of this paper can be extended to more general dynamic
equations with deviating arguments of the form

(
a(xΔ)α

)Δ
(t)+q(t)xβ [τ(t)] = 0,

where β is the ratio of positive odd integers and τ : T → T satisfies limt→∞ τ(t) = ∞ .
The details are left to the reader.
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Boston, 2003.

[14] M. BOHNER AND S. H. SAKER, Oscillation criteria for perturbed nonlinear dynamic equations,
Math. Comput. Modelling, 40 (3-4) (2004), 249–260.

[15] M. BOHNER AND S. H. SAKER, Oscillation of second order nonlinear dynamic equations on time
scales, Rocky Mountain J. Math., 34 (4) (2004), 1239–1254.

[16] M. BOHNER AND H. WARTH, A Philos criterion for second-order dynamic equations, Selçuk J. Appl.
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