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VOLTERRA COMPOSITION OPERATORS FROM WEIGHTED–TYPE

SPACES TO BLOCH–TYPE SPACES AND MIXED NORM SPACES

XIANGLING ZHU

(Communicated by J. Pečarić)

Abstract. The boundedness and compactness of the Volterra composition operator from a class
of weighted-type spaces to Bloch-type spaces and mixed norm spaces on the unit ball are com-
pletely characterized in this paper.

1. Introduction

Let Bn be the unit ball of Cn and let S be its boundary of Bn . Let H(Bn) denote
the space of all holomorphic functions in Bn . Let H∞ = H∞(Bn) denote the space of
all bounded holomorphic functions on Bn . For f ∈ H(Bn) , let (see [34])

ℜ f (z) =
n

∑
j=1

z j
∂ f
∂ z j

(z)

stand for the radial derivative of f ∈ H(Bn) .
For a fixed k ∈ N , an f ∈ H(Bn) is said to belong to the weighted-type space,

denoted by Hlogk
= Hlogk

(Bn) , if (see [21])

‖ f‖Hlogk
= sup

z∈Bn

(1−|z|2)
( k

∏
j=1

ln[ j] e[k]

1−|z|2
)
| f (z)| < ∞,

where e[k] is defined inductively by e[1] = e, e[k] = ee[k−1]
and

ln[ j] z = ln · · · ln︸ ︷︷ ︸
j times

z .

Hlogk
is a Banach space with the norm ‖ · ‖Hlogk

. Here we naturally introduce the little
weighted-type space, denoted by Hlogk,0 , which is the subspace of Hlogk

consisting of
those f ∈ Hlogk

such that

lim
|z|→1

(1−|z|2)
( k

∏
j=1

ln[ j] e[k]

1−|z|2
)
| f (z)| = 0.
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Let φ be a positive continuous function on [0,1) . φ is called normal, if there
exist positive numbers s and t, 0 < s < t, and δ ∈ [0,1) such that (see, for example,
[23, 27])

φ(r)
(1− r)s is decreasing on [δ ,1) and lim

r→1

φ(r)
(1− r)s = 0;

φ(r)
(1− r)t

is increasing on [δ ,1) and lim
r→1

φ(r)
(1− r)t

= ∞.

Let μ be a normal function on [0,1) . An f ∈ H(Bn) is said to belong to the
Bloch-type space, denoted by Bμ = Bμ(Bn) , if

‖ f‖Bμ = | f (0)|+ sup
z∈Bn

μ(|z|)|ℜ f (z)| < ∞.

Under the above norm, Bμ becomes a Banach space. The little Bloch-type space,
denoted by Bμ,0 , is the space of all f ∈ H(Bn) such that

lim
|z|→1

μ(|z|)|ℜ f (z)| = 0.

Let φ be a normal function on [0,1) . For 0 < p,q < ∞ , the mixed norm space
H(p,q,φ) = H(p,q,φ)(Bn) consists of all f ∈ H(Bn) such that

‖ f‖H(p,q,φ) =
(∫ 1

0
Mp

q ( f ,r)
φ p(r)
1− r

dr

)1/p

< ∞, (1)

where

Mq( f ,r) =
(∫

S
| f (rζ )|qdσ(ζ )

)1/q

.

Let ϕ be a holomorphic self-map of Bn . The composition operator Cϕ is defined
by

(Cϕ f )(z) = ( f ◦ϕ)(z), f ∈ H(Bn).

The study of composition operators become fairly active since it provides connections
between operator theory and complex analysis and help us to gain deeper understanding
of both areas. A linear operator is said to be bounded if the image of a bounded set is
a bounded set, while a linear operator is compact if it takes bounded sets to sets with
compact closure. The book [3] contains plenty of information on this topic.

Suppose that ϕ is a holomorphic self-map of Bn and g∈H(Bn) . In this paper we
consider the operator Tg,ϕ , which is defined as follows

Tg,ϕ f (z) =
∫ 1

0
f (ϕ(tz))ℜg(tz)

dt
t

, f ∈ H(Bn), z ∈ Bn. (2)

The operator Tg,ϕ is called the Volterra composition operator, which is first defined
in [39] and studied in [35, 36]. See [25, 26, 27, 28, 29, 30] for the boundedness and
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compactness of a related operator on some holomorphic function spaces in the unit ball.
In the setting of the unit disk D , the Volterra composition operator Tg,ϕ was introduced
by S. Li and studied in [9].

In the setting of the unit ball, let ϕ(z) = z . We get Tg,z = Tg , i.e.

Tg f (z) =
∫ 1

0
f (tz)ℜg(tz)

dt
t

, f ∈ H(Bn), z ∈ Bn.

The operator Tg is called the Riemann-Stieltjes operator (or the extended Cesàro oper-
ator), which was introduced in [4] and studied in [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 24, 31, 32, 33, 36, 37, 38].

In this paper, we give some sufficient and necessary conditions for the bound-
edness and compactness of Volterra composition operators from Hlogk

to Bloch-type
spaces and mixed norm spaces.

Throughout the paper, constants are denoted by C , they are positive and may not
be the same in every occurrence. The notation A � B means that there is a positive
constant C such that B/C � A � CB .

2. Main results and proofs

In this section, we give our main results and their proofs. Before stating these
results, we need some auxiliary results, which are incorporated in the lemmas which
follow.

LEMMA 1. Assume that 0 < p,q <∞ , μ and φ are normal on [0,1) , g ∈ H(Bn)
and ϕ is a holomorphic self-map of Bn . Let Y = Bμ or H(p,q,φ) . Then Tg,ϕ :
Hlogk

→ Y is compact if and only if Tg,ϕ : Hlogk
→ Y is bounded and for any bounded

sequence ( fi)i∈N in Hlogk
which converges to zero uniformly on compact subsets of Bn

as i → ∞ , we have ‖Tg,ϕ fi‖Y → 0 as i → ∞.

Here we omit the proof of Lemma 1, since it follows by standard arguments of the
proof of Proposition 3.11 of [3], as well as the proof of the corresponding result in [10].

The following lemma can be found in [21].

LEMMA 2. There exists N = N(n) and functions f1, · · ·, fN ∈Hlogk
(Bn) such that

N

∑
m=1

| fm(z)| � C

(1−|z|2)∏k
j=1 ln[ j] e[k]

1−|z|2
, z ∈ Bn, (3)

for some positive constant C > 0 .

LEMMA 3. A closed set K in Bμ,0 is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

μ(|z|)| f (z)| = 0.
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The proof of Lemma 3 is similar to the proof of Lemma 1 in [22]. We omit the
details.

Now we are in a position to state and prove our main results.

THEOREM 1. Assume that μ is normal on [0,1) , g ∈ H(Bn) and ϕ is a holo-
morphic self-map of Bn . Then the following statements are equivalent.

(i) Tg,ϕ : Hlogk
→ Bμ is bounded;

(ii) Tg,ϕ : Hlogk,0 → Bμ is bounded;
(iii)

M := sup
z∈Bn

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
< ∞. (4)

Moreover, when Tg,ϕ : Hlogk
→ Bμ is bounded, it holds

‖Tg,ϕ‖ � sup
z∈Bn

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
. (5)

Proof. (iii) ⇒ (i) . Assume that (4) holds. Then, for any f ∈ Hlogk
, we have

‖Tg,ϕ f‖Bμ = |(Tg,ϕ f )(0)|+ sup
z∈Bn

μ(|z|)|ℜ(Tg,ϕ f )(z)|

= sup
z∈Bn

μ(|z|)|ℜg(z)|| f (ϕ(z))|

� ‖ f‖Hlogk
sup
z∈Bn

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
< ∞. (6)

Here we used the facts that (Tg,ϕ f )(0) = 0 and

ℜ(Tg,ϕ f )(z) = ℜg(z) f (ϕ(z)).

Therefore the operator Tg,ϕ : Hlogk
→ Bμ is bounded.

(i) ⇒ (ii) . This implication is obvious.
(ii) ⇒ (iii) . Assume that Tg,ϕ : Hlogk,0 → Bμ is bounded. For a ∈ Bn , set

fa(z) =
1

(1−〈z,a〉)
(
∏k

j=1 ln[ j] e[k]

1−|z|2
) . (7)

It is easy to see that fa ∈ Hlogk ,0 and supa∈Bn
‖ fa‖Hlogk

< ∞ . For any b ∈ Bn ,

∞ > ‖Tg,ϕ fϕ(b)‖Bμ = sup
z∈Bn

μ(|z|)|ℜ(Tg,ϕ fϕ(b))(z)|

� μ(|b|)|ℜg(b)|
(1−|ϕ(b)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(b)|2
, (8)

which implies (4). From the above proof, it is clear that (5) holds. The proof is com-
pleted. �
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THEOREM 2. Assume that μ is normal on [0,1) , g ∈ H(Bn) and ϕ is a holo-
morphic self-map of Bn . Then the following statements are equivalent.

(i) Tg,ϕ : Hlogk
→ Bμ is compact;

(ii) Tg,ϕ : Hlogk,0 → Bμ is compact;
(iii) g ∈ Bμ and

lim
|ϕ(z)|→1

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
= 0. (9)

Proof. (i) ⇒ (ii) . This implication is clear.
(ii) ⇒ (iii) . Assume that Tg,ϕ : Hlogk,0 → Bμ is compact. Then it is clear that

Tg,ϕ : Hlogk,0 → Bμ is bounded. Taking the function f (z) ≡ 1 ∈ Hlogk,0 , we get that
g ∈ Bμ . Let (ϕ(zi))i∈N be a sequence in Bn such that limi⇀∞ |ϕ(zi)| = 1. Set

fi(z) =
1−|ϕ(zi)|2

(1−〈z,ϕ(zi)〉)2∏k
j=1 ln[ j] e[k]

1−|z|2
, i ∈ N, z ∈ Bn. (10)

It is easy to see that
fi ∈ Hlogk,0 and sup

i∈N

‖ fi‖Hlogk
< ∞.

Moreover fi → 0 uniformly on compact subsets of Bn as i → ∞ . By Lemma 1,

lim
i→∞

‖Tg,ϕ fi‖Bμ = 0. (11)

In addition,

‖Tg,ϕ fi‖Bμ = sup
z∈Bn

μ(|z|)|ℜg(z) fi(ϕ(z))| � μ(|zi|)|ℜg(zi)|
(1−|ϕ(zi)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(zi)|2
, (12)

which together with (11) implies that

lim
i→∞

μ(|zi|)|ℜg(zi)|
(1−|ϕ(zi)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(zi)|2
= 0.

The last equality implies that (9) holds.
(iii) ⇒ (i) . Assume that g ∈ Bμ and (9) holds. From these it follows that (5)

holds. Hence Tg,ϕ : Hlogk
→ Bμ is bounded by Theorem 1. Let ( fi)i∈N be a bounded

sequence in Hlogk
such that fi → 0 uniformly on compact subsets of Bn as i → ∞. By

(9) we have that for any ε > 0, there is a constant δ ∈ (0,1) such that

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
< ε (13)
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whenever δ < |ϕ(z)| < 1. Let K = {w ∈ Bn : |w| � δ} . From (13) and g ∈ Bμ , we
obtain

‖Tg,ϕ fi‖Bμ �
(

sup
|ϕ(z)|�δ

+ sup
δ<|ϕ(z)|<1

)
μ(|z|)|ℜg(z)|| fi(ϕ(z))|

� ‖g‖Bμ sup
w∈K

| fi(w)|+ sup
δ<|ϕ(z)|<1

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
‖ fi‖Hlogk

� ‖g‖Bμ sup
w∈K

| fi(w)|+Cε.

Since K is a compact subset of Bn , we get limi→∞ supw∈K | fi(w)| = 0. Hence
limi→∞ ‖Tg,ϕ fi‖Bμ � Cε . Since ε is an arbitrary positive number we see that
limi→∞ ‖Tg,ϕ fi‖Bμ = 0. Therefore, Tg,ϕ : Hlogk

→ Bμ is compact. The proof is com-
pleted. �

THEOREM 3. Assume that μ is normal on [0,1) , g ∈ H(Bn) and ϕ is a holo-
morphic self-map of Bn . Then Tg,ϕ : Hlogk,0 → Bμ,0 is bounded if and only if Tg,ϕ :
Hlogk,0 → Bμ is bounded and g ∈ Bμ,0 .

Proof. Assume that Tg,ϕ : Hlogk,0 → Bμ,0 is bounded, then it is clear that Tg,ϕ :
Hlogk,0 → Bμ is bounded. In addition, taking f (z) = 1, we get that g ∈ Bμ,0 .

Conversely, suppose that Tg,ϕ : Hlogk,0 → Bμ is bounded and g ∈ Bμ,0 . For each
polynomial p(z) , we get

μ(|z|)|ℜ(Tg,ϕ p)(z)| = μ(|z|)|ℜg(z)|‖p‖H∞ ,

where ‖p‖H∞ := supz∈Bn
|p(z)|. Since ‖p‖H∞ <∞ , we obtain Tg,ϕ (p)∈Bμ,0. Thus for

every f ∈Hlogk ,0 , there is a sequence of polynomials (pi)i∈N such that ||pi− f ||Hlogk
→

0 as i → ∞ by the fact that the set of all polynomials is dense in Hlogk,0 . Since Tg,ϕ :
Hlogk,0 → Bμ is bounded, we have

||Tg,ϕ pi−Tg,ϕ f ||Bμ � ||Tg,ϕ ||Hlogk ,0→Bμ ||pi− f ||Hlogk
→ 0, as i → ∞.

Hence we obtain Tg,ϕ(Hlogk,0)⊆Bμ,0 by the fact that Bμ,0 is the closed subset of Bμ .
This completes the proof. �

THEOREM 4. Assume that μ is normal on [0,1) , g ∈ H(Bn) and ϕ is a holo-
morphic self-map of Bn . Then the following statements are equivalent.

(i) Tg,ϕ : Hlogk
→ Bμ,0 is bounded;

(ii) Tg,ϕ : Hlogk
→ Bμ,0 is compact;

(iii) Tg,ϕ : Hlogk,0 → Bμ,0 is compact;
(iv) g ∈ Bμ,0 and

lim
|ϕ(z)|→1

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
= 0; (14)
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(v)

lim
|z|→1

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
= 0. (15)

Proof. (ii) ⇒ (iii) . This implication is clear.
(iii) ⇒ (iv) . Assume that Tg,ϕ : Hlogk,0 → Bμ,0 is compact. Then it is clear that

Tg,ϕ : Hlogk,0 → Bμ is compact and hence (14) holds. In addition, taking f (z) = 1, we
get g ∈ Bμ,0 .

(iv) ⇒ (v) . Suppose that g ∈ Bμ,0 and (14) holds. From (14) it follows that for
every ε > 0, there exists a δ ∈ (0,1) , such that

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
< ε

when δ < |ϕ(z)| < 1. From the assumption g ∈ Bμ,0 , we have that for the above ε ,
there exists an r ∈ (0,1) , such that

μ(|z|)|ℜg(z)| < ε(1− δ 2)

when r < |z| < 1.
Therefore, if r < |z| < 1 and δ < |ϕ(z)| < 1, we obtain

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
< ε. (16)

If r < |z| < 1 and |ϕ(z)| � δ , we have that

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
� μ(|z|)|ℜg(z)|

(1−|ϕ(z)|2)∏k
j=1 ln[ j] e[k]

1

� μ(|z|)|ℜg(z)|
(1− δ 2)

< ε. (17)

Combing (16) with (17) we get (15).
(v) ⇒ (ii) . Suppose that (15) holds. From (1) we get

μ(|z|)|ℜ(Tg,ϕ f )(z)| � μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
‖ f‖Hlogk

. (18)

Taking the supremum in the above inequality over all f ∈ Hlogk
such that ‖ f‖Hlogk

� 1,

then letting |z| → 1, by (15) it follows that

lim
|z|→1

sup
‖ f‖Hlogk

�1
μ(|z|)|ℜ(Tg,ϕ ( f ))(z)| = 0.
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Employing Lemma 3, we see that Tg,ϕ : Hlogk
→ Bμ,0 is compact.

(ii) ⇒ (i) . This implication is obvious.
(i) ⇒ (v) . From Lemma 2, there exist functions f1, · · ·, fN ∈ Hlogk

, such that

N

∑
m=1

| fm(z)| � C

(1−|z|2)∏k
j=1 ln[ j] e[k]

1−|z|2
, z ∈ Bn. (19)

By the boundedness of Tg,ϕ : Hlogk
→ Bμ,0 , we have Tg,ϕ fi ∈ Bμ,0, i = 1, · · ·,N.

Therefore

0 = lim
|z|→1

N

∑
m=1

μ(|z|)|ℜg(z)|| fm(ϕ(z))|

� lim
|z|→1

μ(|z|)|ℜg(z)|
(1−|ϕ(z)|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(z)|2
, (20)

which implies (15). The proof is completed. �

Finally, we consider the Volterra composition operator Tg,ϕ from Hlogk
to mixed

norm spaces.

THEOREM 5. Assume that 0 < p,q < ∞ and φ is normal on [0,1) . Let ϕ be
a holomorphic self-map of Bn and g ∈ H(Bn) . Then the following statements are
equivalent:

(i) Tg,ϕ : Hlogk
→ H(p,q,φ) is a bounded operator;

(ii) Tg,ϕ : Hlogk
→ H(p,q,φ) is a compact operator;

(iii)∫ 1

0

(∫
S

|ℜg(rξ )|qdσ(ξ )

(1−|ϕ(rξ )|2)∏k
j=1 ln[ j] e[k]

1−|ϕ(rξ )|2

)p/q
φ p(r)(1− r)p−1dr < ∞; (21)

(iv)

lim
t→1

∫ 1

0

(∫
|ϕ(rξ )|>t

|ℜg(rξ )|qdσ(ξ )

(1−|ϕ(rξ )|2)∏k
j=1 ln[ j] e[k]

1−|ϕ(rξ )|2

)p/q
φ p(r)(1− r)p−1dr = 0.

(22)

Proof. (ii) ⇒ (i) . It is obvious.
(i) ⇒ (iii) . Suppose that Tg,ϕ : Hlogk

→ H(p,q,φ) is bounded. From Lemma 2,
we pick functions f1, · · ·, fN ∈ Hlogk

such that

N

∑
m=1

| fm(z)| � C

(1−|z|2)∏k
j=1 ln[ j] e[k]

1−|z|2
, z ∈ Bn. (23)

The assumption implies that∫ 1

0

(∫
S
|ℜg(rξ )|q|( fi◦ϕ)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1−r)p−1dr <∞, i = 1, · · · ,N.

(24)
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Here we used the following asymptotic formula (see, e.g. [4])∫ 1

0
Mp

q ( f ,r)
φ p(r)
1− r

dr � | f (0)|q +
∫ 1

0
Mp

q (ℜ f ,r)φ p(r)(1− r)p−1dr.

Using (23), (24) and the elementary inequality

(a+b)p �
{

ap +bp , p ∈ (0,1)
2p(ap +bp) , p � 1

, a > 0, b > 0,

we obtain∫ 1

0

(∫
S

C|ℜg(rξ )|q
(1−|ϕ(rξ )|2)∏k

j=1 ln[ j] e[k]

1−|ϕ(rξ )|2
dσ(ξ )

)p/q
φ p(r)(1− r)p−1dr

�
∫ 1

0

(∫
S
|ℜg(rξ )|q

(
| f1(ϕ(rξ ))|+ · · ·+ | fN(ϕ(rξ ))|

)q
dσ(ξ )

)p/q
φ p(r)(1− r)p−1dr

� C
∫ 1

0

(∫
S
|ℜg(rξ )|q|( f1 ◦ϕ)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1− r)p−1dr+ · · ·

+C
∫ 1

0

(∫
S
|ℜg(rξ )|q|( fN ◦ϕ)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1− r)p−1dr

� C
∫ 1

0

(∫
S
|ℜ(Tg,ϕ f1)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1− r)p−1dr+ · · ·

+C
∫ 1

0

(∫
S
|ℜ(Tg,ϕ fN)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1− r)p−1dr

< ∞, (25)

which implies that (21) holds.
(iii) ⇒ (iv) . This implication follows from the dominated convergence Theorem.
(iv) ⇒ (ii) . Assume that (22) holds. Let ( fi)i∈N be a bounded sequence in Hlogk

such that { fi} converges to zero uniformly on compact subset of Bn , we have∫ 1

0

(∫
|ϕ(rξ )|>t

|ℜg(rξ )|q|( fi ◦ϕ)(rξ )|qdσ(ξ )
)p/q

φ p(r)(1− r)p−1dr

� ‖ fi‖p
Hlogk

∫ 1

0

(∫
|ϕ(rξ )|>t

|ℜg(rξ )|qdσ(ξ )

(1−|ϕ(rξ )|2)∏k
j=1 ln[ j] e[k]

1−|ϕ(rξ )|2

)p/q
φ p(r)(1− r)p−1dr

� C
∫ 1

0

(∫
|ϕ(rξ )|>t

|ℜg(rξ )|qdσ(ξ )

(1−|ϕ(rξ )|2)∏k
j=1 ln[ j] e[k]

1−|ϕ(rξ )|2

)p/q
φ p(r)(1− r)p−1dr, (26)

for all i . Take ε > 0. (22) and (26) imply that there exists t0 ∈ (0,1) such that∫ 1

0

(∫
|ϕ(rξ )|>t0

|ℜg(rξ )|qF |( fi ◦ϕ)(rξ )|qdσ(ξ )
)p/q

φ p(r)(1− r)p−1dr < ε, (27)

for all i . For the above ε , since { fi} converges to 0 on any compact subset of Bn ,
there exists a i0 such that∫ 1

0

(∫
|ϕ(rξ )|�t0

|ℜg(rξ )|q|( fi ◦ϕ)(rξ )|qdσ(ξ )
)p/q

φ p(r)(1− r)p−1dr < ε, (28)
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for all i > i0 . Hence by (27) and (28) we have

‖Tg,ϕ fi‖H(p,q,φ) =
∫ 1

0

(∫
S
|ℜg(rξ )|q|( fi ◦ϕ)(rξ )|qdσ(ξ )

)p/q
φ p(r)(1− r)p−1dr

=
∫ 1

0

(∫
|ϕ(rξ )|>t0

|ℜg(rξ )|q|( fi ◦ϕ)(rξ )|qdσ(ξ )
)p/q

φ p(r)(1−r)p−1dr

+
∫ 1

0

(∫
|ϕ(rξ )|�t0

|ℜg(rξ )|q|( fi ◦ϕ)(rξ )|qdσ(ξ )
)p/q

φ p(r)(1−r)p−1dr

� 2ε, as i > i0,

from which we obtain
lim
i→∞

‖Tg,ϕ fi‖H(p,q,φ) = 0.

Thus Tg,ϕ : Hlogk
→ H(p,q,φ) is compact by Lemma 1. The proof of this theorem is

completed. �
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[14] S. LI AND S. STEVIĆ, Riemann-Stieltjes operators between mixed norm spaces, Indian J. Math., 50

(2008), 177–188.
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