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Abstract. The Hermite-Hadamard inequality is used to develop an approximation to the loga-
rithm of the gamma function which is more accurate than the Stirling approximation and easier
to derive. Then the concavity of the logarithm of gamma of logarithm is proved and applied to
the Jensen inequality. Finally, the Wallis ratio is used to obtain the additional term in Stirling’s
approximation formula.

1. Introduction

Stirling’s formula is one of the most interesting and intriguing formulas with theo-
retical and practical use in various applications. Its simplest and the best known version
is the following:

n! ≈
√

2πn

(
n
e

)n

. (1)

The quality of the approximation can be seen from the following improvement (see
[11, 22]):

√
2πn

(
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)n

e
1

12n+1 < n! <
√

2πn

(
n
e

)n

e
1

12n . (2)

These inequalities are connected with properties of the gamma function and can be
deduced from the following asymptotic expansion (see [1]):

logΓ(x) ≈
(
x− 1

2

)
logx− x+ log

√
2π+

1
12x

− 1
360x3 . (3)

Since

lim
x→∞

(
x− 1

2

)(
logx− log(x− 1

2
)
)

=
1
2
,

it is clear that

logΓ(x) ≈
(
x− 1

2

)
log

(
x− 1

2

)
− x+

1
2

+ log
√

2π (4)
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gives another approximation of Stirling’s type, see Burnside’s result [9]:

n! ≈
√

2π
(

n+ 1
2

e

)n+ 1
2

. (5)

It gives a better result than (1). Another term can be added to obtain an “n and a half”
formula:

n! ≈
√

2π
(

n+ 1
2

e

)n+ 1
2

e
− 1

24(n+ 1
2 ) . (6)

The quality of this approximation is slightly better than the formula (2).
There is a lot of literature about gamma function approximations, let us mention

for example [1, 2] as the best known, and some recent results [3, 4, 5, 18, 19]. But, we
cannot find formula (6) in published papers or books, although it must be known. The
closest link is a text on web page [16] which refers to an unpublished paper of W. Smith
[23], but there is no explicit mention of formula (6) therein.

In this paper we want to establish connection between formulas (5), (6) and some
classical and new inequalities.

Using Hermite-Hadamard inequality, the following theorem will be proved.

THEOREM 1. For every x > 1 the following inequalities hold true:

(
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2

)[
log
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+ log
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� logΓ(x)
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]
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√
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√
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2 )
. (7)

From this result, the following bound in the improvement of the formula (6) is
easy to derive:

COROLLARY 1.
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n+ 1
2

e
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2

e
− 1

24(n+1+ 1
8n )

Using asymptotic expansion of Wallis ratio, we are able to derive a better approx-
imation.

2. Hermite-Hadamard inequality and application to gamma function

There are several approximations of the logarithm of gamma function, various
approaches lead to similar formulas. We are interested only in the simplest formulas
and error terms are studied only to guarantee the accuracy of the formulas in question.

The use of Hermite-Hadamard inequality yields an approximation more accurate
than the Stirling formula (1) and the derivation is very simple.
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THEOREM 2. (Hermite, Hadamard) Let a function f (x) be convex on a finite
[a,b] . Then

(b−a) f (
a+b

2
) �

∫ b

a
f (x)dx � (b−a)

f (a)+ f (b)
2

.

The proof can be found in [21].

The left hand side inequality is the only inequality we will need. Thus the next
step is to show how to get error bounds for this inequality.

THEOREM 3. Let f (x) be convex and twice differentiable on [a,b]. Let m and M
be constants for which m � f ′′(x) � M for all x ∈ [a,b]. Then

m
(b−a)3

24
�

∫ b

a
f (x)dx− (b−a) f (

a+b
2

) � M
(b−a)3

24
.

The proof can be found in [21].

Recall that the logarithmic derivative of the gamma function

ψ(x) = [logΓ(x)]′

is called the psi or digamma function. In [10] the following lemma was proved:

LEMMA 1. Let s,t > 0 and β0 be defined by

β0 = −1
2

+

√
st +

1
4

(8)

Then we have
1

x+ r1
<

ψ(x+ t)−ψ(x+ s)
t− s

<
1

x+ r2
(9)

where

r1 := max

{
s+ t−1

2
,β0

}
, r2 := min

{
s+ t−1

2
,β0

}
. (10)

The inequality
s+ t−1

2
� −1

2
+

√
st +

1
4

is equivalent to |t − s| < 1. Therefore, when t approaches s we obtain the following
result which we shall use in the sequel:

COROLLARY 2. Let s > 0 . Then

1

x− 1
2 +

√
s2 + 1

4

< ψ ′(x+ s) <
1

x+ s− 1
2

. (11)
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The right bound does not depend on the way the argument of the digamma function
ψ is divided between x and s , but the left bound does. The best bound will be obtained
by taking x = 0.

COROLLARY 3. Let x > 0 . Then

1√
x2 + 1

4 − 1
2

< ψ ′(x) <
1

x− 1
2

. (12)

LEMMA 2. On the interval [a,a+1] the following bounds for the second deriva-
tive of logΓ(x) are valid:

1√
(a+1)2 + 1

4 − 1
2

� ψ ′(x) � 1

a− 1
2

, a � x � a+1. (13)

Proof. Trigama function ψ ′(x) is decreasing. Therefore, on [a,a+ 1] its maxi-
mum is attained at x = a and by (12) it is less than 1/(a− 1/2) . The minimum on
[a,a+1] of the second derivative is attained at a+1.

LEMMA 3. (Raabe integral) The following formula is valid

∫ a+1

a
logΓ(x)dx = a(loga−1)+ log

√
2π. (14)

The calculation of this integral is available in Nilsen (1906), Bateman (1953), and
Whittaker (1927) presents it as an exercise. The clearest exposition is in the monumetal
textbook Fichtengolc [12], originally in Russion, or Fichtenholz in German [13].

Proof of Theorem 1. We apply the Hermite-Hadamard inequality to logΓ(a) to
see that

a(loga−1)+ log
√

2π � logΓ(a+
1
2
)

By Theorem 3 and Lemma 3, the error of the approximation is bounded by

1

24(
√

(a+1)2 + 1
4 − 1

2 )

from below and by
1

24(a− 1
2)

from above. As a result we can write

a(loga−1)+ log
√

2π � a(loga−1)+ log
√

2π− 1

24(
√

(a+1)2 + 1
4 − 1

2)
� logΓ(a+

1
2
)
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and

logΓ(a+
1
2
) � a(loga−1)+ log

√
2π− 1

24(a− 1
2)

.

To get bounds for logΓ(x) we substitute a = x− 1
2(

x− 1
2

)[
log

(
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2

)
−1

]
+ log

√
2π− 1

24(
√

x2 + x+ 1
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� logΓ(x) �
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2
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log

(
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2
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+ log

√
2π− 1
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The theorem is proved. �

Now, comparing with (3) it is clear that the approximation

logΓ(x) ≈ (x− 1
2
)(log(x− 1

2
)−1)+ log

√
2π

is more accurate than the Stirling formula. While (x− 1
2 ) logx− x+ log

√
2π approxi-

mates logΓ(x) from below, this approximation is from above.

Proof of Corollary 1. The right bound follows from this inequality:√
(n+1)2 +n+1+

1
2
− 1

2
< n+1+

1
8n

.

3. Application of Jensen inequality

In the sequel we shall show connection of Stirling’s formula and another classical
inequality.

THEOREM 4. (Jensen) Let f (x) be concave on [A,B] , and let φ maps the interval
[a,b] in [A,B] continuously. Then

f

(
1

b−a

∫ b

a
φ(x)dx

)
� 1

b−a

∫ b

a
f (φ(x))dx.

The proof can be found in [21].

We shall aply this theorem to the function f (x) = logΓ(logx) .

THEOREM 5. There exists an x0 such that f (x) = logΓ(logx) is concave for x >
x0.

Proof. From the second derivative

f ′′(x) =
(Γ′′(logx)−Γ′(logx))Γ(logx)− (Γ′(logx))2

(xΓ(log(x)))2
,

using substitution z = log(x) we have
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f ′′(x) =
(Γ′′(z)−Γ′(z))Γ(z)− (Γ′(z))2

(ezΓ(z))2 .

Since the denominator is always positive, we are only interested in the sign of

(Γ′′(z)−Γ′(z))Γ(z)− (Γ′(z))2.

It can be written as
Γ(z)2[ψ ′(z)−ψ(z)].

We shall use the following inequality ([10, Corollary 2]):

ψ ′(x) < e−ψ(x), x > 0, (15)

to estimate upper bound of x0 . For second derivative of f (x) to be negative, it is
sufficient that the following holds true

e−ψ(z) < ψ(z).

The approximative solution of the equation e−t = t is t ≈ 0.567. Numerical solution
of ψ(z) = 0.567 is z = 2.240. Hence, from logx0 = 2.240 we obtain x0 = 9.393 and
this is the upper bound for x0 .

Now we can apply Jensen inequality. Let f (x) = logΓ(logx) , b = a+1, φ(x) =
exp(x) . Then, since f (x) is concave for large x , we have

logΓ
(

log
∫ a+1

a
exdx

)
�

∫ a+1

a
logΓ(logex)dx =

∫ a+1

a
logΓ(x)dx.

The last integral is the Raabe integral (Lemma 3) so we get

a loga−a+ log
√

2π � logΓ(log(ea+1− ea)) = logΓ(a+ log(e−1)).

By substitution a = x− log(e−1) it follows

logΓ(x) � (x− log(e−1)) log(x− log(e−1))− (x− log(e−1))+ log
√

2π. (16)

REMARK 1. Function

h(x,a) = (x+a)[log(x+a)−1)]+ log
√

2π

is increasing in a . From (7) and (16) it holds

h(x,− log(e−1)) < logΓ(x) < h(x,−1/2)

at least for x > x0 . It is open question to find continued fraction expansion of a , as a
function of x , such that

logΓ(x) = h(x,a(x))

holds, or to find asymptotic expansion of a such that we have

logΓ(x) ∼ h(x,a(x)), as x → ∞.
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4. Wallis ratio

The Wallis quotient and corresponding inequalities have been investigated in var-
ious papers, see [10, 14, 15, 20] and the literature cited therein.

In a recent paper [20], Mortici studied classical Wallis ratio and obtained the fol-
lowing approximation:

Γ(n+1)
Γ(n+ 1

2 )
≈

√
n+

1
4

+
1

32n
− 1

128n2 −
5

2048n3 −
23

8192n3 .

We shall use his idea to obtain a similar approximation in a general case. The method
of calculation is covered by the following lemma, see [17]:

LEMMA 4. If (ωn) is convergent to zero and there exists the limit

lim
n→∞

nk(ωn −ωn+1) = p ∈ R,

with k > 1 , then there exists the limit:

lim
n→∞

nk−1ωn =
p

k−1
.

THEOREM 6. It holds

(
Γ(x+ t)
Γ(x+ s)

) 1
t−s ≈ x+α+

β
x

+
γ
x2 +

δ
x3 +

ε
x4 , (17)

where

α =
1
2
[s+ t−1], (18)

β =
1
24

[1− (t− s)2], (19)

γ = −αβ , (20)

δ =
β
10

(
10α2−13β −1

)
, (21)

ε = −αβ
10

(
10α2−39β −3

)
. (22)

Proof. We shall use the method from Lemma 4. Let us denote

w(x) = logΓ(x+ t)− logΓ(x+ s)− (t− s) log

(
x+α+

β
x

+
γ
x2 +

δ
x3 +

ε
x4

)
.

Then, expanding the difference w(x)−w(x + 1) into an asymptotic series, we can
choose the coefficients α , β , γ , δ , ε in such a way that the first five terms of the
series vanish.
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Let us write a few steps of the calculation. We restrict overselves to writing the
first four terms and give only a result for the next one. It holds

logΓ(x+1+ t) = log(x+ t)Γ(x+ t) = log(x+ t)+ logΓ(x+ t).

Therefore, we have, keeping the expansions to the few necessary terms,

w(x)−w(x+1)≈ log(x+ s)− log(x+ t)

− (t− s) log

(
x+α+

β
x

+
γ
x2 +

δ
x3

)

+(t− s) log

[
x+1+α+β

(
1
x
− 1

x2 +
1
x3 − 1

x4

)

+ γ
(

1
x2 −

2
x3 +

3
x4

)
+ δ

(
1
x3 − 3

x4

)]

≈ log

(
1+

s
x

)
− log

(
1+

t
x

)

− (t− s) log

(
1+

α
x

+
β
x2 +

γ
x3 +

δ
x4

)

+(t− s) log

(
1+

1+α
x

+
β
x2 +

γ−β
x3 +

β −2γ+ δ
x4 +

−β +3γ−3δ
x5

)

After expanding these functions, we obtain

w(x)−w(x+1)≈ s
x
− s2

2x2 +
s3

3x3 −
s4

4x4 +
s5

4x5

− t
x

+
t2

2x2 −
t3

3x3 +
t4

4x4 −
t5

4x5

− (t− s)
[(

α
x

+
β
x2 +

γ
x3 +

δ
x4

)

− 1
2

(
α
x

+
β
x2 +

γ
x3 +

δ
x4

)2

+
1
3

(
α
x

+
β
x2 +

γ
x3

)3

− 1
4

(
α
x

+
β
x2

)4

+
1
5

(
α
x

)5]

+(t− s)
[(

1+α
x

+
β
x2 +

γ−β
x3 +

β −2γ+ δ
x4 +

3γ−β −3δ
x5

)

− 1
2

(
1+α

x
+

β
x2 +

γ−β
x3 +

β −2γ+ δ
x4

)2

+
1
3

(
1+α

x
+

β
x2 +

γ−β
x3

)3

− 1
4

(
1+α

x
+

β
x2

)4

+
1
5

(
1+α

x

)5]
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It is easy to see that the coefficient with x−1 is equal to zero. After some computing
one can find that the next four coefficients vanish if we choose α , β , γ , δ as stated in
the theorem. Adding another term, the value of the coefficient ε can be calculated.

REMARK 2. The choice t = 1, s = 1
2 gives α = 1

4 , β = 1
32 , γ = − 1

128 , δ =
− 5

2048 , ε = − 23
8192 , as stated in the Mortici result, [20].

If t− s = 1 or t− s = −1, the whole expansion collapses to the term x+ s , which
indicates that β is a factor in each of the following terms.

In the computation of the classical Wallis ratio when t − s = 1
2 , it seems that the

best choice is t = 3
4 , s = 1

4 . In this case we have α = 0, β = 1
32 , γ = 0, δ = − 9

2048 ,
ε = 0. Therefore one obtains the following “n and a quarter” formula

Γ(n+1)
Γ(n+ 1

2 )
≈

√(
n+

1
4

)
+

1

32(n+ 1
4)

− 9

2048(n+ 1
4 )3

.

Finally, we shall use (17) to obtain improved Stirling’s formula. Let us denote
again

1
t − s

log
Γ(x+ t)
Γ(x+ s)

≈ log

(
x+α+

β
x

+
γ
x2 +

δ
x4 +

ε
x5

)

≈ logx+
α
x

+
β −α2/2

x2 +
γ−αβ +α3/3

x3 +
δ −αγ−β 2/2+α2β −α4/4

x4

+
ε−αδ −βγ+α2γ+αβ 2 +α5/5

x5

Since it holds

lim
t→s

1
t− s

log
Γ(x+ t)
Γ(x+ s)

= ψ(x+ s),

we have

logΓ(x+ s) =
∫
ψ(x+ s)dx ≈ x logx− x+α logx

− β −α2/2
x

− γ−αβ +α3/3
2x2 − δ −αγ−β 2/2+α2β −α4/4

3x3

− ε−αδ −βγ+α2γ +αβ 2 +α5/5
4x4 +C.

We can now take s = 1
2 . The coefficients calculated in Theorem 6 for t = s = 1

2
are equal to

α = 0, β =
1
24

, γ = 0, δ = − 37
5760

, ε = 0.

Hence

logΓ(x+
1
2
) = x logx− x+ log

√
2π− 1

24x
+

7
2880x3 ,
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the additive constant is chosen according to the asymptotic expansion (4).
The fact that the coefficient with x−4 is equal to zero implies a very good quality

of this approximation. Replacing x+ 1
2 by x , we obtain the final formula:

logΓ(x) =
(
x− 1

2

)
log

(
x− 1

2

)
− x+

1
2

+ log
√

2π− 1

24(x− 1
2 )

+
7

2880(x− 1
2 )3

(23)

which improve formula (6).

Acknowledgement. The authors are grateful to the referee for his helpful sugges-
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Added in proofs. In the meantime, a new method for calculating asymptotic expan-
sion of the gamma and Wallis function have been found by Burić and Elezović [6, 7, 8].
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