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Abstract. Relations between the norms of an operator and its complexification as a mapping
from Lp to Lq has been recognized as a serious problem in analysis after the publication of
Marcel Riesz’s work on convexity and bilinear forms in 1926. We summarize here what it is
known about these relations in the case of normed Legesgue spaces and investigate the quasi-
normed case, i. e. we consider all 0 < p,q � ∞ . In particular, in the lower triangle, that is, for
0 < p � q �∞ these norms are the same. In the upper triangle and the normed case, that is, when
1 � q < p � ∞ the norm of the complexification of a real operator is obviously not bigger than 2
times its real norm. In 1977 Krivine proved that the constant 2 can be replaced by

√
2 . On the

other hand, it was suspected that in the case of quasi-normed Lebesgue spaces (0 < q < p � ∞ )
the corresponding constant could be arbitrarily large, but as we will see this is not the case. More
precisely, we prove that this constant for quasi-normed Lebesgue spaces is between 1 and 2 .
Some additional properties and estimates of this constant with some results about the relation
between complex and real norms of operators, including those between two-dimensional Orlicz
spaces are presented in the first four chapters. Finally, in Chapter 5, we use the results on the
estimates of the norms in the proof of the real Riesz-Thorin interpolation theorem valid in the
first quadrant.

1. On the norm of operator between real and complex Lebesgue spaces

Any bounded linear operator T : Lp(μ) → Lq(ν) between real (quasi-)normed
Lebesgue spaces (that is, when 0 < p,q � ∞) has its natural extension to the complex-
valued functions (also called complexification) TC : Lp

C
(μ) → Lq

C
(ν) given by

TC( f + ig) = T ( f )+ iT (g).

Operator TC is linear and bounded. Moreover,

‖TC( f + ig)‖q = ‖ |T f + iTg|‖q = ‖
√

(T f )2 +(Tg)2 ‖q

� ‖|T f |+ |Tg|‖q � max{1,21/q−1} [‖T f‖q +‖Tg‖q]

� max{1,21/q−1}‖T‖Lp→Lq [‖ f‖p +‖g‖p]

� max{2,21/q}‖T‖Lp→Lq‖
√

f 2 +g2‖p

= max{2,21/q}‖T‖Lp→Lq‖ | f + ig|‖p

= max{2,21/q}‖T‖Lp→Lq‖ f + ig‖p,
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that is,
‖TC‖Lp

C
→Lq

C

� Cp,q‖T‖Lp→Lq , where Cp,q � max{2,21/q}. (1)

Using these estimates we can see that the constant Cp,q is the best constant in the
inequality

‖
√

(T f )2 +(Tg)2‖q � Cp,q‖T‖Lp→Lq‖
√

f 2 +g2‖p (2)

for all f ,g∈Lp(μ). In the case of normed Lebesgue spaces (that is, when 1 � p,q �∞)
we immediately obtain from the relation (1) that Cp,q � 2 and an even more precise
estimate Cp,q � C∞,1 =

√
2 was provided by Krivine in his remarkable paper [20]. On

the other hand, relying on (1), it seems reasonable to suggest, that the constant Cp,q can
be very large when q is small, i.e. when 0 < q < 1. However, it is not the case and we
present here a simple proof of the statement (see Theorem 1)

1 � Cp,q � 2 for all p,q ∈ (0,∞]. (3)

To obtain the upper estimate in (3) we need the following lemma, the first part of which
was already mentioned in the classical book of Zygmund [44, p. 181].

LEMMA 1. (a) Let 0 < p � ∞ . Then, for all a,b ∈ R(∫ 1

0
|acos2πt +bsin2πt|p dt

)1/p

= dp(a2 +b2)1/2, (4)

where dp =
(∫ 1

0 |cos2πt|p dt
)1/p

.

(b) The function d : (0,∞]→ (0,∞) given by d(p) := dp is strictly increasing and
d1 = 2

π ,d2 = 1√
2
,d∞ = 1 . Moreover, d0 := limp→0+ dp = 1

2 and so d((0,∞]) = ( 1
2 ,1] .

Proof. If we divide both sides of the equality (4) by (a2 +b2)1/2 (we can assume
that a2 +b2 > 0, since otherwise the equality obviously takes place) and note that

a

(a2 +b2)
1
2

cos2πt +
b

(a2 +b2)
1
2

sin2πt = cosθ cos2πt± sinθ sin2πt

= cos(2πt∓θ ),

then by 2π -periodicity of cosine we obtain∫ 1

0
|cos(2πt∓θ )|p dt =

∫ 2π∓θ

∓θ
|coss|p ds

2π

=
∫ 2π

0
|coss|p ds

2π
=

∫ 1

0
|cos2πt|p dt,

that gives the required equality. Note that the constant dp can be written in terms of

gamma function as follows dp =
(∫ 1

0 |cos2πt|p dt
)1/p

=
(

Γ( p+1
2 )√

πΓ( p+2
2 )

)1/p

.



REAL AND COMPLEX OPERATOR NORMS BETWEEN QUASI-BANACH Lp −Lq SPACES 249

(b) The property that d(p) is increasing in p can be easily obtained by the Hölder-
Rogers inequality and since the equality in the Hölder-Rogers inequality applied to our
case does not hold for any p �= q we have even that d(p) is strictly increasing.

The values of d(p) at 1,2 and infinity can be straightforwardly calculated and it
only remains to show the equality d0 = 1/2.

By the F. Riesz lemma ([29]; see also Rudin [32, p. 71]) we have

d0 = lim
p→0+

(∫ 1

0
|cos2πt|p dt

)1/p

= exp

(∫ 1

0
ln |cos2πt| dt

)
.

Since
∫ 1
0 ln |cos2πt|dt = 4

∫ 1/4
0 ln(cos2πt) dt , then denoting I1 :=

∫ 1/4
0 ln(cos2πt) dt

we obtain

I1 =
∫ 1/4

0
ln
[
cos

(π
2
−2πt

)]
dt =

∫ 1/4

0
ln(sin2πt) dt

and so

2I1 =
∫ 1/4

0
ln(sin2πt cos2πt) dt =

∫ 1/4

0
ln

sin4πt
2

dt

=
∫ 1/4

0
ln(sin4πt) dt− 1

4
ln2 =

1
2

∫ 1/2

0
ln(sin2πt) dt− 1

4
ln2

= I1− 1
4

ln2.

Thus, I1 = − 1
4 ln2 and d0 = exp(4I1) = exp(− ln2) = 1

2 .

Note, that I1 = 1
2π

∫ π/2
0 lncost dt = 1

2π (− π
2 ln2) = − 1

4 ln2 can also be proved by
applying Taylor series expansion of the logarithmic function (see Russell [33]). �

Using Lemma 1 we now obtain the early mentioned statement about the constant
Cp,q for 0 < p,q � ∞ or what is the same statement, Theorem 1, on the operator es-
timate. Note, Lemma 1 as the key ingredient in the proof of this theorem for values
p = q � 1 was firstly used by Zygmund [44] and for 1 � p,q �∞ by Verbickiı̆-Sereda
[41], Verbickiı̆ [40]. Instead of using Lemma 1 Marcinkiewicz-Zygmund in an ear-
lier paper from 1939 [25] based their proof of the restricted statement on the operator
estimate for 0 < p � q � ∞ on utilizing Gaussian variables.

THEOREM 1. Let T : Lp(μ) → Lq(ν) be an arbitrary bounded linear operator
between real Lebesgue spaces, where μ and ν are arbitrary positive σ -finite mea-
sures.

If 0 < p � q � ∞, then
‖TC‖p,q = ‖T‖p,q . (5)

If 0 < q � p � ∞ , then

‖TC‖p,q � dp

dq
‖T‖p,q . (6)
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In particular, in the relation ‖TC‖p,q � Cp,q‖T‖p,q we always have 1 � Cp,q � 2 , and
if, in addition, 0 < p � q � ∞ , then Cp,q = 1 .

Proof. First, we show that for all f ,g ∈ Lp(μ) and 0 < p,q � ∞ we have(∫ 1

0
‖ f cos2πt +gsin2πt‖q

p dt

)1/q

� max{dp,dq}‖ f + ig‖p. (7)

If 0 < p � q < ∞ , then from the integral Minkowski inequality for ‖ · ‖Lq/p[0,1]
(here we use the assumption that q/p � 1) and Lemma 1 it follows∫ 1

0
‖ f cos2πt +gsin2πt‖q

p dt

=
∫ 1

0

(∫
Ω
| f (x)cos2πt +g(x)sin2πt|p dμ(x)

)q/p

dt

=
∥∥∥∥∫Ω | f (x)cos2πt +g(x)sin2πt|p dμ(x)

∥∥∥∥q/p

Lq/p[0,1]

�
(∫

Ω
‖| f (x)cos2πt +g(x)sin2πt|p‖Lq/p[0,1] dμ(x)

)q/p

=

(∫
Ω

(∫ 1

0
| f (x)cos2πt +g(x)sin2πt|q dt

)p/q

dμ(x)

)q/p

= dq
q

(∫
Ω
| f (x)+ ig(x)|p dμ(x)

)q/p

= dq
q ‖ f + ig‖q

p .

Note, that for p = q the equality holds in each step of this derivation. A simple modi-
fication of this proof justifies the same statement for q = ∞ (recall d∞ = 1).

If 0 < q � p � ∞ , then making use of the Hölder-Rogers inequality with p/q � 1
and just proved relation we obtain(∫ 1

0
‖ f cos2πt +gsin2πt‖q

p dt

)1/q

�
(∫ 1

0
‖ f cos2πt +gsin2πt‖p

p dt

)1/p

= dp‖ f + ig‖p .

Now, from Lemma 1 and the estimate (7), it follows that

‖TC( f + ig)‖q =
∥∥∥∥√(T f )2 +(Tg)2

∥∥∥∥
q

=
1
dq

(∫ 1

0
‖T ( f cos2πt +gsin2πt)‖q

q dt

)1/q

�
‖T‖p,q

dq

(∫ 1

0
‖ f cos2πt +gsin2πt‖q

p dt

)1/q

� max{dp

dq
,
dq

dq
}‖T‖p,q ‖ f + ig‖p .
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Thus, if 0 < p � q � ∞ , then ‖TC‖p,q � ‖T‖p,q and since the reverse inequality ob-
viously holds, then ‖TC‖p,q = ‖T‖p,q for all such p and q . On the other hand, if

0 < q � p � ∞ , then ‖TC‖p,q � dp
dq
‖T‖p,q . In particular, from Lemma 1(b) it follows

that

Cp,q � max

{
1,

dp

dq

}
� d∞

limp→0+ dp
=

d∞
d0

= 2. � (8)

Using Theorem 1, Lemma 1(b) and Krivine theorem we can now easily write the
following estimates of the constant Cp,q , which is dependent on the points (1/p,1/q)
as the elements of some regions in the first quadrant Q++ = [0,∞)× [0,∞) (see Fig. 1):

A : If 0 < p � q � ∞, then Cp,q = 1.

B : If 1 � q < p � ∞, then Cp,q � C∞,1 =
√

2 (Krivine [20])
C : If 0 < q < p < 1, then Cp,q � dp/dq � d1/d0 = 4/π .

D : If 0 < q � 1 < p � 2, then Cp,q � dp/dq � d2/d0 =
√

2.

E : If 0 < q < 1, 2 � p � ∞, then Cp,q � dp/dq � d∞/d0 = 2.

1
q

1
p

1

11
2

0

� 2 �
√

2 � 4
π

1�
√

2

Fig. 1. The estimates of the constant Cp,q

Let us mention that for the case 1 � p � q < ∞ and n -dimensional spaces, i. e.,
for T : l p

n → lqn the result that Cp,q(dimn) = 1 was already obtained by Taylor [37] in
1958 by using differential calculus. He showed that the norm of T is attained on the
real vector both in the real and in the complex case for q � p � 1.

In the case of operators between two-dimensional Banach spaces T : l p
2 → lq2 the

constant Cp,q(dim2) = 1 if and only if either 1 � p � 2 or 2 � q � ∞ (see Verbickiı̆-
Sereda [41, Th. 2]). These conditions are equivalent to three cases, namely either
1 � p � q � ∞ or 1 � q � p � 2 or 2 � q � p �∞ . Thus Cp,q(dim2) > 1 if and only
if 1 � q < 2 < p � ∞ . On the other hand, if at least one of the spaces is quasi-Banach,
namely, when 0 < q � p � 2 we have Cp,q(dim2) = 1 (see Sabourova [34, Prop. 11]).
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For three dimensional spaces already M. Riesz, in his paper on convexity and
bilinear forms [30], found an operator with different real and complex norms (detailed
proof of the Riesz example can be found in Gasch-Maligranda [16, pp. 112–113] and
Vogt [42, pp. 6–8]). More precisely, if p > q � 1 then there exist ε = εp,q > 0 such

that Tε : l p
3 → lq3 satisfies ‖Tε‖p,q < ‖(Tε)C‖p,q , where Tε = I− ε

(
1 1 1
1 1 1
1 1 1

)
. The same

operator is working even for p > q > 0.

1
q

1
p

1
2

1
2

1

10

1

1

1
1

1
q

1
p

1
2

1
2

1

1

10

> 1

> 1

(a) C(l p2 , lq2) (b) C(l p3 , lq3)

Fig. 2. Constant Cp,q for two and three dimensional spaces

2. On the norm of operator between some two-dimensional Orlicz spaces in the
real and in the complex case

Having the equality ‖TC‖Lp→Lp = ‖T‖Lp→Lp for all 0 < p �∞ it is an interesting
question whether similar equality is always preserved for the operators between the
same spaces but different from Lp . We give a negative answer to this question by
showing the existence of operators between two-dimensional symmetric spaces and
two-dimensional Orlicz spaces with different real and complex norms. The following
example of such operator between two-dimensional symmetric spaces for p = 1 was
firstly given by Sokolovski [35, Th. 1] and Gasch-Maligranda [16, Ex. 7].

EXAMPLE 1. For 1 � p < 2 let us consider real two-dimensional symmetric spaces
Xp = (R2,‖ · ‖1

p) equipped with the norms

‖x‖1
p =

(|x1|p + |x2|p)1/p +2
1
2p max{|x1|, |x2|}

1+2
1
2p

, x = (x1,x2) ∈ R
2. (9)

For the operator T : Xp → Xp given by the formula T(x,y) = (x+ y,x− y) we have

‖TC‖ > ‖T‖ = 21− 1
2p .
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In fact, using the generalized real Clarkson inequality twice (cf. [24], Th. 2.1), we
find the real norm of this operator:

‖T (x1,x2)‖1
p =

(|x1 + x2|p + |x1− x2|p)1/p +2
1
2p max{|x1 + x2|, |x1 − x2|}

1+2
1
2p

� 2max{|x1|, |x2|}+2
1
2p 21− 1

p (|x1|p + |x2|p)1/p

1+2
1
2p

= 21− 1
2p

(|x1|p + |x2|p)1/p +2
1
2p max{|x1|, |x2|}

1+2
1
2p

= 21− 1
2p ‖(x1,x2)‖1

p .

The equality holds for x1 = x2 = 1 and therefore ‖T‖ = 21− 1
2p . To show that the com-

plex norm of this operator is strictly bigger than 21− 1
2p we consider two cases. Firstly,

if p = 1, then taking z1 = 1, z2 = 1√
2
+ 1√

2
i we obtain

‖TC (z1,z2)‖1
1

‖(z1,z2)‖1
1

=
(1+

√
2)(2+

√
2)1/2 +(2−√

2)1/2

2+
√

2
>
√

2 = ‖T‖.

Secondly, in the case when 1 < p < 2 we consider the function

ψ(θ ) =

∥∥TC(1,eiθ )
∥∥1

p

‖(1,eiθ )‖1
p

=

(
(2+2cosθ )

p
2 +(2−2cosθ )

p
2

) 1
p +2

1
2p max

{
(2±2cosθ )

1
2

}
2

1
p +2

1
2p

=
√

2

2
1
p +2

1
2p

ϕ(θ ),ϕ(θ )=
(
(1+cosθ )

p
2 +(1−cosθ )

p
2

) 1
p +2

1
2p max

{
(1± cosθ )

1
2

}
.

For 0 < θ � π/2 we have

ϕ ′(θ ) = − sinθ
2

[(1+ cosθ )
p
2 +(1− cosθ )

p
2 ]

1
p−1[(1+ cosθ )

p
2−1− (1− cosθ )

p
2−1]

−2
1
2p

sinθ
2

(1+ cosθ )−1/2 ,

where

ϕ ′(0+) = lim
θ→0+

sinθ
2

21/2−p/2

(1− cosθ )1−p/2
=

1√
2

lim
θ→0+

sinp−1 θ
2

cos
θ
2

= 0.

Moreover,

ϕ ′′(0+) = − 1

2
√

2
−2

1
2p− 3

2 +
1

2
p+1
2

lim
θ→0+

1− (2− p)cos2 θ
2

(1− cosθ )1− p
2

= +∞.
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Therefore there exists θ0 ∈ (0, π2 ) such that ϕ(θ0) > ϕ(0) =
√

2+ 2
1
2 + 1

2p and conse-
quently

ψ(θ0) > ψ(0) =
√

2

2
1
p +2

1
2p

(√
2+2

1
2 + 1

2p

)
= 21− 1

2p .

Thus, we showed that ‖TC‖ > ‖T‖ in both cases.

EXAMPLE 2. For 1 � p < 2 let us consider the p-convexification X (p) of the
space X = X1 given by the norm of x = (x1,x2) ∈ R2

‖x‖X(p) = ‖|x|p‖1/p
X =

(
|x1|p + |x2|p +

√
2max{|x1|, |x2|}p

1+
√

2

)1/p

.

For the operator T =
(

1 1
1 −1

)
we can prove similarly as in Example 1 that

‖T‖X(p)→X(p) = 21− 1
2p and ‖TC‖ > 21− 1

2p .

THEOREM 2. There exists a real two-dimensional Orlicz space lϕ2 such that for
the linear operator T : lϕ2 → lϕ2 given by T (x,y) = (x + y,x− y) we have ‖TC‖ >
‖T‖ , where lϕ2 is equipped with the Luxemburg-Nakano norm. Moreover, for the same

operator T : lϕ
∗

2 → lϕ
∗

2 , where ϕ∗ is a complementary function to ϕ and the Orlicz

space lϕ
∗

2 is equipped with the Orlicz norm we have ‖TC‖ > ‖T‖ .

Proof. Let us consider two-dimensional space X = X1 from Example 1. Clearly,
the unit ball defined by the norm (9) is a compact symmetric convex non-empty subset
of R2 . Using the result of Grza̧ślewicz (cf. [17]) saying that every compact symmetric
convex subset of R2 with non-empty interior is a unit ball of some Orlicz space lϕ2 we
can construct a two-dimensional Orlicz space isometric to X .

Let us take real two-dimensional Orlicz space lϕ2 , generated by the convex Orlicz
function on [0,∞) given by

ϕ(u) =

{
u√
2
, if 0 � u � 1√

2
,

u(1+ 1√
2
)− 1√

2
, if u � 1√

2
.

(10)

It is simple to check that the Luxemburg-Nakano norm on lϕ2 which is given by

‖(x1,x2)‖ϕ = inf{k > 0 : ϕ
(∣∣∣x1

k

∣∣∣)+ϕ
(∣∣∣x2

k

∣∣∣) � 1} (11)

coincides with the original norm (9) on X1 . Indeed, without loss of generality, let
us fix 0 � x1 � x2 . Then, ‖(x1,x2)‖1

1 = x2 + x1
1+

√
2
. To calculate (11) we consider

the following three cases obtained naturally from the representation of ϕ , namely
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‖(x1,x2)‖ϕ = min{infA, infB, infC} , where

A =
{

k > 0 : k �
√

2x1 and ϕ
(x1

k

)
+ϕ

(x2

k

)
=
(

x1 + x2

k

)(
1+

1√
2

)
−
√

2 � 1

}
,

B =

{
k > 0 :

√
2x1 � k �

√
2x2 and ϕ

(x1

k

)
+ϕ

(x2

k

)
=

x1√
2k

+
x2

k
1+

√
2√

2
− 1√

2
� 1

}
,

C =
{

k > 0 : k �
√

2x2 and ϕ
(x1

k

)
+ϕ

(x2

k

)
=

x1 + x2

k
√

2
� 1

}
.

The set A consists only of
√

2x1 since x1+x2
k � 1+

√
2

1+1/
√

2
=

√
2 and to satisfy

x1+x2√
2

� k �
√

2x1 � x1+x2√
2

we should have x1 = x2 and therefore k =
√

2x1 . Since

infC �
√

2x2 and in the set B we have
√

2x1 � k �
√

2x2 and k � x2 + x1
1+

√
2
, and also

since
√

2x1 � x2 + x1
1+

√
2

�
√

2x2 and x1 + x1
1+

√
2

=
√

2x1 it follows that ‖(x1,x2)‖ϕ =

infB = x2 + x1
1+

√
2
, and the equality ‖(x1,x2)‖ϕ = ‖(x1,x2)‖1

1 is proved.

From Example 1 we have that ‖TC‖> ‖T‖ for the Orlicz space with the Luxemburg-
Nakano norm. To show that the same is true for the Orlicz norm we need some duality
results which we present below. �

From the theory of Orlicz spaces it is well-known that the dual norm to the Lu-
xemburg-Nakano ‖ · ‖ϕ is an Orlicz norm ‖ · ‖o

ϕ (cf. Maligranda [23]). Let us then
calculate it.

PROPOSITION 1. The dual space X∗ = (X∗,‖ · ‖∗) to X = X1 has the norm

‖y‖∗ = sup
x�=0

|x1y1 + x2y2|
‖x‖ = max

( |y1|+ |y2|√
2

, |y1|, |y2|
)

.

Proof. Without loss of generality we can assume that 0 � y2 � y1 . Then

‖y‖∗ = sup
x1�x2�0

x1y1 + x2y2

x1+x2+
√

2x1
1+

√
2

= sup
0�x�1

y1 + xy2

1+ x
1+

√
2

= max

(
y1 + y2√

2
,y1

)
.

We can also calculate this dual norm in another way using the theory of Orlicz spaces
(cf. Maligranda [23]). The complementary function ϕ∗ to ϕ is

ϕ∗(v) = sup
u>0

[uv−ϕ(u)]

= max

[
sup

0<u�1/
√

2

(
uv−u/

√
2
)

, sup
u�1/

√
2

(
uv−u(1+1/

√
2)+1/

√
2
)]

,

and so

ϕ∗(v) =

⎧⎪⎨⎪⎩
0, if 0 � v � 1√

2
,

v√
2
− 1

2 , if 1√
2

� v � 1+ 1√
2
,

∞, if v � 1+ 1√
2
,

(12)



256 LECH MALIGRANDA AND NATALIA SABOUROVA

The dual norm to the Luxemburg-Nakanonorm is the Orlicz norm, which can be written
in the Amemiya form as follows

‖y‖∗ϕ = ‖y‖OA
ϕ∗ = inf

k>0

1+ϕ∗(k|y1|)+ϕ∗(k|y2|)
k

:= N.

Assume that |y1| � |y2| and consider three cases. If kmax(|y1|, |y2|) � 1/
√

2, then

N = inf
k>0

1
k

=
√

2max(|y1|, |y2|).

If 1/
√

2 � k|y1| � 1+1/
√

2 and k|y2| � 1/
√

2, then

N = inf
k>0

1+ k|y1|/
√

2−1/2
k

= inf
k>0

(
1
2k

+
|y1|√

2

)
= max

( |y1|
2(1+1/

√
2)

+
|y1|√

2
,
|y2|√

2
+

|y1|√
2

)
= max

(
|y1|, |y1|+ |y2|√

2

)
.

If 1/
√

2 � k|y1| � 1+1/
√

2 and 1/
√

2 � k|y2| � 1+1/
√

2, then

N = inf
k>0

1+ k|y1|/
√

2−1/2+ k|y2|/
√

2−1/2
k

=
|y1|+ |y2|√

2
.

Finally,

N = min

[√
2max(|y1|, |y2|),max

(
|y1|, |y1|+ |y2|√

2

)]
= max

(
|y1|, |y1|+ |y2|√

2

)
. �

To finish the proof of Theorem 2 note that the operator T =
(

1 1
1 −1

)
in the dual

space has the norm ‖T‖ =
√

2 that can be obtained similarly as in Example 1 (with
p = 1) or it follows from the fact that T is self-adjoint, that is, T ∗ = T . Moreover,

‖TC‖X∗→X∗ = ‖TC‖X→X > ‖T‖X→X = ‖T‖X∗→X∗ .

Therefore, for the operator T between two-dimensional Orlicz space lϕ
∗

2 with the
Orlicz-Amemiya norm we also have ‖TC‖ > ‖T‖ .

REMARK 1. In Theorem 2 we showed one example of Orlicz function (Orlicz
space), but we can also construct a number of examples of two-dimensional Orlicz
spaces having the same property as those in Theorem 2 by considering family of Or-
licz functions ϕp given by ϕp(u) = ϕ(up) with ϕ from (10) and 1 � p < 2. The
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two-dimensional real Orlicz spaces l
ϕp
2 with the Luxemburg-Nakano norms are p -

convexifications of lϕ2 and for 1 � p < 2 the operator T =
(

1 1
1 −1

)
gives ‖TC‖ > ‖T‖

by Example 2. The dual space
(
l
ϕp
2 ,‖ · ‖ϕp

)∗
=
(
l
ϕ∗

p
2 ,‖ · ‖o

ϕ∗
p

)
, where

ϕ∗
p(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vp′
p′ (

√
2

p )
1

p−1 , if 0 � v � p

2
1− 1

2p
,

v

2
1
2p

− 1
2 , if p

2
1− 1

2p
� v � p(1+

√
2)

2
1− 1

2p
,

vp′
p′
( √

2
p(1+

√
2)

) 1
p−1 + 1√

2
, if v � p(1+

√
2)

2
1− 1

2p
,

and

‖y‖0
ϕ∗

p
= max

{
|y1|+ |y2|

2
1
2p

,
(
|y1|p′ + |y2|p′(1+

√
2)

1
p−1

) 1
p′
}

.

3. Vector-valued constants and the monotonicity property

More general estimates than those given by the inequality (2) are called vector-
valued estimates or Marcinkiewicz-Zygmund estimates and they are defined as follows:

for 0 < p,q,r � ∞ and natural number n � 2 let K(n)
p,q(r) be the best constant C � 1 in

the inequality

‖(
n

∑
k=1

|T fk|r)1/r‖q � C‖T‖Lp→Lq‖(
n

∑
k=1

| fk|r)1/r‖p (13)

for all f1, f2, . . . , fn ∈ Lp(μ) and any bounded linear operator T : Lp(μ) → Lq(ν) be-
tween real (quasi-) normed Lebesgue spaces with arbitrary σ -finite measures μ and

ν . Of course, K(2)
p,q(2) =Cp,q .

Properties of the constants K(n)
p,q(r) and Kp,q(r) = sup

n�2
K(n)

p,q(r) for 1 � p,q,r �

∞ were investigated by Marcinkiewicz-Zygmund [25], Herz [18], Krivine [21], [22],
Gasch-Maligranda [16], Defant-Floret [12], Vogt [42] and Defant-Junge [13].

The assertions that Kp,p(2) = 1 and Kp,p(r) = 1, where 0 < p < r � 2, were
proved by Marcinkiewicz-Zygmund with the help of Gaussian and r -stable Gaussian
variables [25, Thm 1 and Thm 2] (see also Edwards-Gaudry [14, pp. 203–204] and
Andersen [1]). Some similar results on the tensor products of operators from Lp to
Lq , from which one can obtain the equality Kp,q(2) = 1 for 1 � p � q � ∞ , were
established by Beckner [2], Figiel-Iwaniec-Pełczyński [15] and Rosenthal-Szarek [31]
(cf. also Defant-Floret [12, p. 87], Reinov [28]).

Besides obvious fact that the constant K(n)
p,q(r) is increasing in n it is also in-

creasing in p and decreasing in q . These properties of K(n)
p,q(r) for 1 � p,q,r � ∞

follow directly, for example, from their tensor product description (see Krivine [21],
[22] for r = 2 and Gasch-Maligranda [16] for 1 � r � ∞). However, for the values
0 < p,q,r � ∞ it is a problem if such a description is possible and therefore another

method of the proof of the monotonicity of K(n)
p,q(r) is needed. One such simple proof
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for the case when 1 � p,q � ∞ and r = 2 was obtained by Vogt in [42, Thm 1.9]. It

turned out that this proof also provides the monotonicity property of K(n)
p,q(r) for p,q

in the entire first quadrant and 0 < r � ∞ . It is a weighty reason to present it here. The
idea of the proof is based on the generalized Hölder-Rogers inequality and the equality
case in this inequality.

THEOREM 3. Let 0 < r �∞ . If 0 < p � s �∞ and 0 < t � q �∞ , then K(n)
p,q(r) �

K(n)
s,t (r) .

Proof. To prove the statement of this theorem is equivalent to prove that for T ∈
L (Lp(μ),Lq(ν)) and f1, ..., fn ∈ Lp(μ)

‖(
n

∑
k=1

|T fk|r)1/r‖q � K(n)
s,t (r)‖T‖‖(

n

∑
k=1

| fk|r)1/r‖p.

Let us denote F := (∑n
k=1 | fk|r)1/r ∈ Lp(μ) and G := (∑n

k=1 |T fk|r)1/r ∈ Lq(ν) .
If q < ∞ , then from the equality in the generalized Hölder-Rogers inequality it

follows that for any G ∈ Lq(ν) there exists ψ ∈ Lα(ν) , where 1
t = 1

q + 1
α , such that

‖ψ‖α = 1 and ‖ψG‖t = ‖G‖q . We can take, for example, ψ :=
( |G|
‖G‖q

)q/α
.

If q = ∞ (and α = t ), then for any G ∈ L∞(ν) and any ε > 0 there exists ψ ∈
Lα(ν) such that ‖ψ‖α = 1 and ‖ψG‖t � (1− ε)‖G‖∞ . In fact, let A = {x ∈ Ω2 :
|G(x)| > ‖G‖∞(1− ε)} . Then ν(A) > 0 and therefore since a σ -finite measure ν
has the finite subset property it follows that there exists a set B ⊂ A,B ∈ Σ2 such that
0 < ν(B) <∞ . If we take ψ := χB

ν(B)1/α , then ‖ψ‖α = 1 and

‖ψG‖t = ‖ψG‖α =
1

ν(B)1/α

(∫
B
|G(x)|α dν

)1/α
� (1− ε)‖G‖∞.

Moreover, from the generalized Hölder-Rogers inequality, in both above cases, it fol-
lows that the norm of the multiplication linear operator Mψ : Lq(ν)→ Lt(ν) is ‖Mψ‖q→t

� ‖ψ‖α = 1.
At the same time, for any F ∈ Lp(μ),0 < p < ∞ there exists ϕ ∈ Lβ (μ) , where

1
p = 1

s + 1
β , such that ‖F

ϕ ‖s = ‖F‖p and ‖ϕ‖β = 1. We can take, for example, ϕ :=( |F |
‖F‖p

)1−p/s
. By the generalized Hölder-Rogers inequality we have that the norm of

the multiplication operator Mϕ : Ls(μ) → Lp(μ) is ‖Mϕ‖s→p � ‖ϕ‖β = 1.

Now, let consider the factorization of operator T̃ : Ls(μ) → Lt(ν) in the form
T̃ = Mψ ◦T ◦Mϕ as it is shown on Fig. 3. Set gk := 1

ϕ fk . By convention 0
0 = 0 and if

ϕ(x) = 0, then F(x) = 0 and therefore each fk(x) = 0. Thus, clearly Mϕgk = fk and
consequently (

n

∑
k=1

|T̃ gk|r
)1/r

=

(
n

∑
k=1

|ψT fk|r
)1/r

= |ψ |G
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� Lq(ν) � G

�
Lt(ν) � ψG

�

�

F ∈ Lp(μ)

F
ϕ ∈ Ls(μ)

T

T̃

Mϕ Mψ

Fig. 3. Operator diagram

and (∑n
k=1 |gk|r)1/r = 1

|ϕ|F . Putting all together, in the case when 0 < q <∞ , we obtain

‖G‖q = ‖ψG‖t = ‖(
n

∑
k=1

|T̃ gk|r)1/r‖t

� K(n)
s,t (r)‖T̃‖s→t ‖(

n

∑
k=1

|gk|r)1/r‖s

� K(n)
s,t (r)‖Mψ‖q→t ‖T‖p→q ‖Mϕ‖s→p‖ 1

ϕ
F‖s

� K(n)
s,t (r)‖T‖p→q‖ 1

ϕ
F‖s = K(n)

s,t (r)‖T‖p→q ‖F‖p,

whence K(n)
p,q(r) � K(n)

s,t (r) . If q = ∞ , then we similarly can obtain that

(1− ε)‖G‖∞ � K(n)
s,t (r)‖T‖p→∞ ‖F‖p,

and so (1−ε)K(n)
p,∞(r) � K(n)

s,t (r) . Since ε > 0 was taken arbitrary we have the required

estimate K(n)
p,∞(r) � K(n)

s,t (r) and the proof is complete. �

REMARK 2. Theorem 3 together with the fact that Cp,p = K(2)
p,p(2) = 1 which

simply follows from the Fubini theorem and Lemma 1 also shows that Cp,q = K(2)
p,q(2) =

1 for 1 � p � q � ∞ (cf. Theorem 1 and also Verbickiı̆-Sereda [41], Verbickiı̆ [40]).

Moreover, the same Theorem 3 and the equality K(n)
p,p(2) = 1, which can be easily

obtained by using the relation for the spherical coordinates (see Stechkin [36]) and the

Fubini theorem, proves the more general equality K(n)
p,q(2) = 1 for 0 < p � q � ∞ .

REMARK 3. For any natural n � 2 we have K(n)
p,q(r) = 1 if either r = 2 and 0 <

p � q < ∞ or 0 < p < r < 2 and 0 < p � q < ∞ or 1 < p � q < ∞ and min(p,2) �
r � max(p,2) .

In fact, by Theorem 3, Marcinkiewicz-Zygmund and Herz results we obtain

K(n)
p,q(r) � K(n)

p,p(r) � Kp,p(r) = 1.
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The last equality we are getting from the Marcinkiewicz-Zygmund result, which tells
us that Kp,p(r) = 1 if either r = 2 and 0 < p < ∞ or 0 < p < r < 2 (cf. [25] or [16]).
The case when 1 < p <∞ and min(p,2) � r � max(p,2) , which gives that Kp,p(r) = 1
was proved by Hertz (cf. [18] or [16]). There are some more cases where we can have
the equality Kp,p(r) = 1 and this was investigated by Gasch-Maligranda [16, Th. 2],
but this is not our main here therefore we don’t describe all of them.

REMARK 4. We can see from the proof that the monotonicity property, as in The-

orem 3, will also work for constant K(n)
p,q(r,μ ,ν) with two fixed σ -finite measures μ

and ν .

4. On one exact description in the upper triangle

We have discussed so far the exact description of the constant K(n)
p,q(r) for 0 <

p,q,r � ∞ only in the lower triangle. In regard to such a description in the upper
triangle Verbickiı̆ [40, Th. 3] proved that C2,q = d2

dq
for 1 � q < 2 and later on Defant

[11] obtained the equality Cp,q = dp
dq

for 1 � q � p � 2. Of course, from this description

and the duality principle we have Cp,q = Cq′,p′ =
dq′
dp′

for 2 < q � p � ∞ . Note, that in

the latter case
dq′
dp′

<
dp
dq

(see Verbickiı̆ [40, Remark I]).

In this chapter we extend the result of Defant [11] obtained for 1 � q � p � 2 to
the larger set in the first quadrant. In fact, the proof of Defant is also working in the
case 0 < q � p � 2 but it is necessary to control carefully each step of the proof. It
is interesting to note that the method of the proof establishes the connection between

the constant K(n)
p,q(r) and the theories of p -summing operators, (p,q)-mixing operators

and the probability theory in Banach spaces.

THEOREM 4. If 0 < q � p � 2 , then Cp,q = dp
dq

.

Proof. The proof is based on the following arguments. First is the Maurey theory
of (p,q)-mixing operators [26] (see also [27, Chapter 20] and [10]). More precisely,
on the estimating of q -summing norm via a quotient space. Secondly, on the Lévy
theorem that states the fundamental stability property of r -stable random variables.
At last, on the expression of p -summing norm of the identity map on l2n in terms of
Gaussian measures and on Theorem 1. All these statements can equally well be applied
even when some of the positive indices p and q is less than one and their proofs can
be found in the books of Pietsch [27] and Defant-Floret [12] (see also Carl-Defant [10]
and Maurey [26]).

In what follows assume that E is a Banach space, BE is its unit ball and E∗ is its
dual space. We use the standard notations from [27] and [12]. By definition, a bounded
linear operator T : E → F is absolutely p-summing (0 < p < ∞,F Banach space) if
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1
q

1
p

1
2

1
2

1

10

dp
dq

dp
dq

dq′
dp′

1

√
2

Fig. 4. The best constant in the upper triangle

there exists a constant C > 0 such that for all x1, ...,xn ∈ E and n = 1,2, ... we have

(
n

∑
i=1

‖T (xi)‖p
F)1/p � Cωp(xi),

where ωp(xi) = sup{(∑n
i=1 |〈xi,a〉|p)

1
p : a ∈ BE∗} . The infimum over all possible C

is denoted by πp(T ) . Also, a bounded linear operator T : E → F is (p,q)-mixing
(0 < q � p < ∞ , F Banach space) if there exists C > 0 such that for all x1, ...,xn ∈ E
and the functionals b1, ..,bm ∈ F∗ , m,n = 1,2, ... we have⎛⎝ n

∑
i=1

(
m

∑
k=1

|〈Txi,bk〉|p
) q

p
⎞⎠

1
q

� Cωq(xi)lp(bk),

where lp(bk) = (∑m
k=1 ‖bk‖p)1/p. The infimum over all possible C is the norm of the

operator T which is denoted by μp,q(T ) . By [27, Sec. 20.2.1], for 0 < q � p � ∞ the
product S ◦T of an absolutely p -summing operator S and the (p,q)-mixing operator
T is an absolutely q -summing operator, moreover,

πq(S ◦T ) � μp,q(T )πp(S).

The Lévy theorem states: for 0 < q < p � 2 there is a constant ap,q such that for every
n ∈ N there is a probability measure μn

p on Rn satisfying

1
ap,q

(∫
Rn

|〈x,ω〉|qμn
p(dω)

)1/q

= ‖x‖p

for all x∈ Rn or in other words if {ωk} is an p -stable sequence for any finite sequence
of real numbers {xk} , then ∑n

k=1 xkωk has the same distribution as (∑n
k=1 |xk|p)1/pω1 .

Using the Gauss-Khinchine equality and the Grothendieck-Pietsch domination theorem
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the p -summing norm of the identity map on l2n can be calculated (Gordon result – see,
for example, Pietsch [27, p. 300] for 0 < p < ∞ and Defant-Floret [12, p. 137] for
1 � p < ∞):

πp(idRn
2
) = c(n)

2,p/c(1)
2,p,

where c(n)
2,p =

(∫
Kn ‖ω‖p

2γn(dω)
)1/p

and c(n)
2,p,R =

√
2

(
Γ( p+n

2 )
Γ( n

2 )

)1/p

. Thus, taking the

expression for dp from Lemma 1 we have

πp(idR2
2
) =

⎛⎝√
π Γ

(
p+2
2

)
Γ
(

p+1
2

)
⎞⎠1/p

= 1/dp.

Now, clearly
dp

dq
=

πq(idR2
2
)

πp(idR2
2
)

� μp,q(idR2
2
). (14)

To show that μp,q(idR2
2
) � K(2)

p,q(2) , let us consider the operator Fn : l p
n ↪→ Lq(μn

p) given

by the formula Fn(x) = 1
ap,q

〈·,x〉 . Then, for x1, ...,xn ∈ R2 and b1, ..,bm ∈ R2

⎛⎝ n

∑
i=1

(
m

∑
k=1

|〈bk,xi〉|p
)q/p

⎞⎠1/q

=
1

ap,q

(
n

∑
i=1

∫
Rn

|
m

∑
k=1

ωk〈bk,xi〉|qμn
p(dω)

)1/q

=
1

ap,q

(∫
Rn

n

∑
i=1

|〈
m

∑
k=1

ωkbk,xi〉|qμn
p(dω)

)1/q

=
1

ap,q

(∫
Rn

‖
m

∑
k=1

ωkbk‖q
2

n

∑
i=1

|〈‖
m

∑
k=1

ωkbk‖−q
2

m

∑
k=1

ωkbk,xi〉|qμn
p(dω)

)1/q

� 1
ap,q

(∫
Rn

‖
m

∑
k=1

ωkbk‖q
2μ

n
p(dω)

)1/q(
sup

‖y‖2�1

n

∑
i=1

|〈y,xi〉|q
)1/q

� ‖Fn
C‖

(
m

∑
k=1

‖bk‖p
2

)1/p(
sup

‖y‖2�1

n

∑
i=1

|〈y,xi〉|q
)1/q

� K(n)
p,q(2)‖Fn‖

(
m

∑
k=1

‖bk‖p
2

)1/p(
sup

‖y‖2�1

n

∑
i=1

|〈y,xi〉|q
)1/q

.

Taking into account that Fn is an isometry, that is ‖Fn‖ = 1 and by the definition

of (p,q)-mixing norm we get μp,q(idR2
2
) � K(2)

p,q(2) . Putting this inequality together
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with the relation (14) we conclude that K(2)
p,q(2) � dp/dq . Since K(2)

p,q(2) � dp/dq for

0 < q � p � 2 holds by Theorem 1 we obtain equality K(2)
p,q(2) = dp/dq . By the same

proof we even get that K(n)
p,q(2) = d(n)

p /d(n)
q , where d(n)

p =
(

Γ( p+1
2 )Γ( n

2 )√
πΓ( p+n

2 )

)1/p

. �

Observe that K(2)
p,q(2) = dp/dq > 1 for 0 < q < p � 2 (and K(2)

p,q(2) = dq′/dp′ > 1
for 2 � q < p � ∞ , cf. Defant [11]) and because of the strictly increasing property

of the constant dp and the monotonicity property of K(2)
p,q(2) established in Theorem

3 we obtain a strong inequality Cp,q = K(2)
p,q(2) = dp/dq > 1 for the extended region

0 < q < p � ∞.

In the following two examples we make use of the Fourier transform and first
produce a simpler, in comparison with the construction used in Theorem 4, operator for

which K(2)
2,q (2) = d2/dq , where 0 < q � 2. Secondly, we show that there exists a couple

of p and q connected by 0 < q < p � ∞ and p � 1 such that K(2)
p,q(2) � π

2 >
√

2.

EXAMPLE 3. Let 0 < q � 2 . Consider an operator T : l22 → Lq[0,1] that maps
the basis vectors e1 and e2 into values T (ei) =αi, where α1(t) = cos2πt and α2(t) =
sin2πt. Then,

‖T‖l22→Lq[0,1] = dq and ‖TC‖l22→Lq[0,1] = d2. (15)

Thus, K(2)
2,q (2) � ‖TC‖/‖T‖= d2/dq . On the other hand, Theorem 1 gives for 0 < q � 2

the upper bound K(2)
2,q (2) � d2/dq and hence

K(2)
2,q (2) =

d2

dq
. (16)

Proof. To show (15) we note, that for arbitrary f ∈ l22 there exist c1,c2 ∈ R such
that f = c1e1 + c2e2. Then, by Lemma 1 we have

‖T f‖q = ‖c1Te1 + c2Te2‖q = ‖c1 cos2πt + c2 sin2πt‖q

= dq
(
c2
1 + c2

2

)1/2
= dq‖ f‖2 .

Hence, ‖T‖l22→Lq[0,1] = dq. Let show that ‖TC‖l22→Lq[0,1] = d2. For this purpose let us

take arbitrary f ,g ∈ l22 , where f = a1e1 +a2e2 and g = b1e1 +b2e2 . Using the Hölder-
Rogers inequality with 2/q � 1 we obtain

‖T ( f + ig)‖q = (
1
∫
0
[(a1 cos2πt +a2 sin2πt)2 +(b1 cos2πt +b2 sin2πt)2]q/2dt)1/q

� (
1
∫
0
(a1 cos2πt +a2 sin2πt)2 +(b1 cos2πt +b2 sin2πt)2dt)1/2

=
(
d2

2(a
2
1 +a2

2)+d2
2(b

2
1 +b2

2)
)1/2

= d2
[
(a2

1 +b2
1)+ (a2

2 +b2
2)
]1/2

= d2‖ f + ig‖2
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and therefore ‖T ( f + ig)‖q � d2‖ f + ig‖2 . The equality holds when f = e1 and g = e2

since in this case ‖ f + ig‖2 =
√

2, d2 = 1/
√

2 and ‖T ( f + ig)‖q = 1. �
If, in the above example, we took the Rademacher functions instead of sin and

cos, then the relation between complex and real operator norms would be equal to one
(the proof is by the Riesz-Thorin interpolation theorem). In other words, the operator
which maps an element from l22 into the linear combination of Rademacher functions

is not enough to attain the best constant K(2)
2,q (2) , for this purpose we need, for example,

the orthogonal set of trigonometric functions.

EXAMPLE 4. If 0 < q < p � ∞ and p � 1 , then there exists an operator F ∈
L (Lp(0,1),Lq(0,1)) such as

‖FC‖p,q � d2
2

dp′dq
‖F‖p,q.

For p = ∞ and q → 0+ by continuity we get ‖FC‖p,q/‖F‖p,q → π/2 >
√

2.

Proof. The idea of this proof is due to Verbickiı̆ [40] but we extend it to the case
when 0 < q < 1. Consider the operator F : Lp(0,1) → Lq(0,1) defined by

F f (x) = a( f )cos2πx+b( f )sin2πx, (17)

with a( f ) = 2
∫ 1

0
f (t)cos2πt dt, b( f ) = 2

∫ 1

0
f (t)sin2πt dt and f ∈ Lp(0,1).

Applying Lemma 1 twice we get

‖F f‖q = dq
(
a2( f )+b2( f )

)1/2
=

dq

d2
‖F f‖2.

Consequently,

‖F‖p,q =
dq

d2
‖F‖p,2. (18)

To find ‖F‖p,2 we note that by duality ‖F‖p,2 = ‖F∗‖2,p′ and F∗ is defined by

F∗ϕ(x) = a(ϕ)cos2πx+b(ϕ)sin2πx,

where as before a(ϕ) = 2
∫ 1
0 ϕ(t)cos2πt dt and b(ϕ) = 2

∫ 1
0 ϕ(t)sin2πt dt. Applying

Lemma 1 it yields
‖F∗ϕ‖p′ = dp′ [a2(ϕ)+b2(ϕ)]1/2.

By the Parseval identity the norm ‖F‖p′,2 is attained on the function having form
ϕ(x) = a(ϕ)cos2πx+b(ϕ)sin2πx. This function is in L2(0,1) and has the norm that
can be derived by using Lemma 1 again

‖ϕ‖2 =
(∫ 1

0
|a(ϕ)cos2πt +b(ϕ)sin2πt|2dt

)1/2

= d2
[
a2(ϕ)+b2(ϕ)

]1/2
.
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Then,
‖F‖p,2 = ‖F∗‖2,p′ = ‖F∗ϕ‖p′/‖ϕ‖2 = dp′/d2.

Substituting this expression into the equality (18) we obtain

‖F‖p,q =
dp′dq

d2
2

. (19)

Let FC be the natural complexification of the operator F , then by (17) we find

FC(e2π ix) = F(cos2πx)+ iF(sin2πx) = cos2πx+ isin2πx = e2π ix,

that implies

‖FC‖p,q � ‖FC(e2π ix)‖q

‖e2π ix‖p
=

‖e2π ix‖q

‖e2π ix‖p
= 1.

Therefore,

‖FC‖p,q � d2
2

dp′dq
‖F‖p,q.

If we take p = ∞ and q → 0+ , then for the operator F given by (17) we have

‖FC‖p,q

‖F‖p,q
→ π

2
>
√

2. �

PROBLEM 1. Is it true that Cp,q � π
2 for 0 < p,q � ∞?

5. The complex and the real Riesz-Thorin interpolation theorem in the first
quadrant

Let 0 < p,q � ∞ . A linear operator T defined for all simple complex-valued
functions f on (Ω1,μ) is of strong type (p,q) if T f is ν -measurable and

‖T f‖q � M‖ f‖p

with constant M > 0 independent of f . The smallest constant M , called the norm of
T , we denote by ‖T‖p,q .

The complex Riesz-Thorin interpolation theorem, proved by Marcel Riesz in 1926
and Thorin in 1939, holds with constant 1 (cf. [30], [38], [39] and also [5]): let (Ω1,μ)
and (Ω2,ν) be two measure spaces with σ -finite measures and T be a linear operator
defined for all simple complex-valued functions f on (Ω1,μ) . Let 1 � p0, p1,q0,q1 �
∞ , 0 � θ � 1 and (

1
p
,
1
q

)
= (1−θ )

(
1
p0

,
1
q0

)
+θ

(
1
p1

,
1
q1

)
If T is simultaneously of strong types (p0,q0) and (p1,q1) , then T is also of strong
type (p,q) and its norm satisfies

‖T‖p,q � ‖T‖1−θ
p0,q0

‖T‖θp1,q1
.
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Geometrically we can say that the set of points{(
1
p
,
1
q

)
∈ [0,1]× [0,1] : T is of strong type (p,q)

}
is a convex subset of [0,1]× [0,1] .

In 1950 Calderón-Zygmund [8, Th. E] (cf. also [9, Th. A1 ]) extended the complex
Riesz-Thorin convexity theorem to the strip [0,1]× [0,∞) and their proof works equally
well for the entire first quadrant [0,∞)× [0,∞) . This result seems to be a complete
version of the complex Riesz-Thorin interpolation theorem.

THEOREM 5. (Complex Riesz-Thorin interpolation theorem in the first quadrant).
Let (Ω1,μ) and (Ω2,ν) be two measure spaces with σ -finite measures and T be a
linear operator defined for all simple complex-valued functions f on (Ω1,μ) . Let
0 < p0, p1,q0,q1 � ∞ , 0 < θ < 1 and(

1
p
,
1
q

)
= (1−θ )

(
1
p0

,
1
q0

)
+θ

(
1
p1

,
1
q1

)
(20)

If T is simultaneously of strong types (p0,q0) and (p1,q1) , then T is also of strong
type (p,q) and its strong type norm satisfies

‖T‖p,q � ‖T‖1−θ
p0,q0

‖T‖θp1,q1
. (21)

Note that in the case of quasi-normed Lebesgue spaces, that is, when 0 < p,q � ∞
it can happen that the operators T ∈ L (Lp(μ),Lq(ν)) can be only trivial ones. For
example, if T : Lp(μ) → Lq(ν) is a bounded linear operator, where μ is a non-atomic
measure and 0 < p < min{1,q} , then T = 0 (see e.g. Brudnyı̆-Krugljak [6, p. 89] and
Maligranda [23, p. 150]). Of course, if the measure μ is atomic Theorem 5 is no longer
trivial (cf. Bennett [3], [4]).

In the real case, as it was already noticed by Riesz [30], the estimate (21) can be
not true in the upper triangle (cf. Riesz [30, pp. 493–494] and [6, pp. 16–17]). For the
operator T =

(
1 1
1 −1

)
we have ‖T‖∞,1 = 2,‖T‖2,2 =

√
2 and ‖T‖4,4/3 =

√
3. Taking

θ = 1/2 in (20) we obtain ( 1
4 , 3

4 ) = (1− 1
2) (0,1)+ 1

2 ( 1
2 , 1

2 ) and

‖T‖4, 4
3

=
√

3 > ‖T‖1/2
∞,1‖T‖1/2

2,2 = 21/2(
√

2)1/2 = 23/4.

Using the relation between the norms of an operator and its complexification, that
were considered in the previous chapters of this paper, we obtain the real case of the
Riesz-Thorin theorem from its complex version with, in general, some additional con-
stant on the right hand side of the estimate (21), that is,

‖T‖p,q � C‖T‖1−θ
p0,q0

‖T‖θp1,q1
. (22)

The real Riesz-Thorin theorem for the normed Lebesgue spaces has, obviously,
constant 2 in the estimate (22) but, as it follows from the Krivine result this estimate
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is even true with constant
√

2. More precisely, in the real case we have two different
cases:

(a) If we are in the lower triangle of the square [0,1]× [0,1] , that is 1 � pi � qi �
∞, i = 0,1 , then estimate (22) holds with constant C = 1 .

(b) If we are in the upper triangle of the square [0,1]× [0,1] , that is 1 � qi < pi �
∞, i = 0,1 , then estimate (22) holds with constant C � C1−θ

p0,q0
Cθ

p1,q1
� C∞,1 =

√
2 .

Brudnyı̆-Krugljak [6, p. 87] asked the question if in the real case we still have con-
stant 1 in the estimate (22), if the conditions 1 � pi � qi �∞, i = 0,1 will be replaced
by the weaker one 1 � p � q � ∞ . The answer is “NO” and the counterexample was
given by Vogt [43]: for the operator T =

(
1 1.1
1 −1

)
we have ‖T‖∞,1 = 2.1, ‖T‖3/2,3 =

3
√

7/3 and ‖T‖2,2 = 1.5. If we take θ = 3/4, then (1− 3
4 ) (0,1)+ 3

4 ( 2
3 , 1

3 ) = ( 1
2 , 1

2 )
and

‖T‖2,2 = 1.5 > 2.11/4 3
√

7/3
3/4

= ‖T‖1−3/4
∞,1 ‖T‖3/4

3/2,3.

In the real case for the quasi-normed Lebesgue spaces, that is, when 0 < pi,qi �∞, i =
0,1 Krasnosel’skiı̆-Zabreı̆ko-Pustyl’nik-Sobolevskiı̆ [19, Th. 2.4] just mentioned about
some constant C =C(q0,q1,θ ) in (22), but gave no information about it. Burenkov [7,
pp. 76–77] was more precise (using the relation (1) between real norm and its complex-
ification) and obtained that

C � (max{2,21/q0})1−θ (max{2,21/q1})θ = 2
(1−θ)max{1, 1

q0
}+θ max{1, 1

q1
}

in the estimate (22).

The last estimate suggests that the constant can be large, but this is not the case.
Using our Theorem 1 for any bounded linear operator between quasi-normed Lebesgue
spaces and taking a “good” estimate of the complex norm of this operator by the norm
of its real part we obtain the following result:

THEOREM 6. The real Riesz-Thorin interpolation theorem in the entire first quad-
rant holds with the estimate (22), where the constant C � C1−θ

p0,q0
Cθ

p1,q1
and more pre-

cisely:

A : C = 1 if 0 < pi � qi � ∞, i = 0,1.

B : C � C∞,1 =
√

2 if 1 � qi < pi � ∞, i = 0,1.

C : C � C1,0+ � 4/π if 0 < qi < pi < 1, i = 0,1.

D : C � C2,0+ =
√

2 if 0 < qi � 1 < pi � 2, i = 0,1.

E : C � C∞,0+ � 2 if 0 < qi < 1, 2 � pi � ∞, i = 0,1.

F : If one point

(
1
p0

,
1
q0

)
is in one of the above regions and the other

one

(
1
p1

,
1
q1

)
is in the second one, then the constant C is estimated

by the larger of the corresponding estimates.
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1
q

1
p

1

A

11
2

0

E D C

B

Fig. 5. The areas in Theorem 6

From the above discussion we have that in the complex Riesz-Thorin interpolation
theorem the estimate (22) holds with constant C = 1 in the entire first quadrant Q++ =
[0,∞)× [0,∞) while in the real case the estimate (22) holds with constant C = 1 only
in the lower triangle of the square Q++ , i.e., for 0 < pi � qi � ∞, i = 0,1. In the upper
triangle of the square Q++ the estimate (22) holds with constant 2.
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[6] YU. A. BRUDNYĬ AND N. YA. KRUGLJAK, Interpolation Functors and Interpolation Spaces I, North-
Holland, Amsterdam 1991.

[7] V. I. BURENKOV, Functional Spaces. Basic integral inequalities connected with Lp -spaces, Izd. Univ.
Druzhby Narodov, Moscow 1989 (in Russian).
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