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ON HILBERT’S INTEGRAL INEQUALITY AND ITS APPLICATIONS

PENG XIUYING AND GAO MINGZHE

(Communicated by J. Pecaric)

Abstract. In this paper it is shown that a new improvement on Hilbert’s integral inequality can

r‘\/;—#x) (with x > 0). As
applications, some refinements on Widder’s inequality and Hardy-Littlewood’s inequality are
given.

be established by introducing a weight function of the form (

1. Introduction and Lemmas

Let f(x), g(x) € L?*(0, + o). It is all known that the inequality of the form

12

o 12 ¢ o
f(x) 2 2
// dxdy O/f (x)dx O/g (x)dx . (L.1)

0

is called Hilbert’s integral inequality, where the coefficient 7 is the best possible.

In view of the importance of the Hilbert inequality in theory and applications (see
[1]-[2]), it has been absorbing much interest of analysts. Recently, various improve-
ments and extensions of (1.1) appear in a great deal of papers, such as Gao and Hsu
enumerated more than 40 research articles in the paper [3]. In particular, Hsu and Guo
introduced firstly the weight function to give an improvement of Hardy-Hilbert’s in-
equality (see [4]). Afterward, Gao and Yang et al applied the weight function method
to obtain a lot of graceful refinements of (1.1), such as [5]-[8] etc.

The aim of this paper is to apply weight function method and classical real analysis
to give a new improvement of (1.1), and to simplify the corresponding result of the
paper [8], and then to consider its some applications.

In order to prove our assertion, we need the following lemmas.

LEMMA 1.1. If c(x) = x € [0, + o), then

1
1+x°

/°° xt2 T
/ 1+r2 2(14_\/;)'
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LEMMA 1.2. Let (x,y) € (0,4 ) x (0,4-00), F(x,y) = 1 — 4 -,

Alzo/:/mfixj G)%F(x,y)dxdy and A2:7 [£0) (§>%F(x,y)dxdy (1.2)

00

AAy = 2 { (/oof2(x)dx>2 - (]ow(x)fz(x)dx)z} (1.3)
0 0

where the weight function (x)is defined by

1 1

(1)()6)2 m_l—ﬂ (14)

T
g
\
=
(¢}
-
o
—
~—
Il
-
.
Mm
—
(=)
—
=
(¢}
=

where (x)is a function defined by (1.4).
Similarly, we have

Ay = n{/f /w f2(x)dx}.
0

It follows that the equality (1.3) holds. [J
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LEMMA 1.3. Let H(x,y) = f(g'r’;(y) L F(x,y) =1—c(x)+c(y), where c(x) = 1.
Then

/ / H(x,y)dxdy = / / H(x,y)F (x,y)dxdy.
00 00
Proof. Tt is obvious that
//H x,Y)F (x,y)dxdy = //H()@y)dxdy—//H(x,y)c(x)dxdy
00 00 0
—|—//H (y)dxdy
00

We only need to show that [ [ H(x,y)c(x)dxdy = ffH(x7y)c<y>dxdy.
00 00

X+t

/OO/OOH(x,y)c(x)dxdyz/w(
00 0

Let ¢(x) = ({&dt Then

2. Main Results
In this section we shall prove our assertions with the help of the above lemmas.

THEOREM 2.1. Let f(x) be a real function. If 0 < [ f*(x)dx < + o, then
0

/w/wf(j: dxdy 2<n2{(7f2(x)dx>2—(/mw(x)fz(x)dx>2} (2.1)
00
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where the weight function ®(x)is defined by (1.4).

Proof. Let F(x,y) =1— 1—+x + 1+ It is obvious that F(x,y) > 0. By using
Lemma 1.3, and then we apply Hardy’s technique and Schwarz’s inequality to estimate

the left-hand side of (2.1) as follows:

(/w/wf dXdy 2: </w/w%f;y)F(x7y)dxdy>2
00 )

Since f(x) # 0, it is impossible to take equality in (2.2).
Based on (1.2) and (1.3) we obtain

(//f ddy < A,
00

By Lemma 1.2, the inequality (2.1) is valid. [

THEOREM 2.2. Let f(x) and g(x) be two real functions. If 0 < [ f2(x)dx < + o
0

and 0 < [ g*(x)dx < + oo, then
0

(/“‘/“‘f(; dxdy 4<n4 (/oofz(x)dx>2—(/oow(x)fz(x)dxy
00

where the weight function w(x) is defined by (1.4).
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Proof. By Schwarz’s inequality we have

(2.4)
2 2

Since f(x)g(x) # 0, it is impossible to take equality in (2.4). It follows from (2.1) and
(2.5) that the inequality (2.3) is valid. Theorem is proved. [

REMARK. The weight function w(x) defined by (1.4) can be properly chosen in
accordance with our requirement. If we select the function ¢(¢) = sin?\/7 (1 >0), then
F(x,y) = 1 —sin® \/x+sin?/y. It is easy to deduce that

l
dt—c (x) = n/sm VX —sin® \/x

14172
0 0
1
=5 (cos 24/x— e-zﬁ) .

Here we use the following integral (see [9], [10]):

oo

/ sm\/_t E(l—e_z\/;)

1+12 4
0

3. Applications

In this section we will give some refinements of Widder’s inequality and Hardy-
Littlewood’s inequality with the help of Theorem 2.1.

Let a, > 0(n=0,1,2,---.), Ax) = 3 ax", A*(x)= 3 2 If A(x) £0,
n=0 n=0
then

m<n/ ﬂA 3.1)
0

This is Widder’s inequality (see [11]).
We shall give a refinement of (3.1), below.
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THEOREM 3.1. With the assumptions as the above-mentioned, then

oo oo

1
(/Az(x)dx>2 <’ (/ (eﬂCA*()c)>2cZ)c>2 - (/a)(x) (ef"A*()c)>2d)c)2 (3.2)
0

0 0
where o (x) is defined by (1.4).

Proof. At first we have the following relation:

oo

4 7 ()" & apx”
/ A% /e Z n! di = Z n!
0 n=0

0 n=0

Let tx = 5. Then we have

[0

[\S]

oo 1 o

/eftA dx = / (/eiiA*(s)dbv)z)%dx
0
/w —A*( >2dy.
0

o
[

Let u=y—1. Then

/1A2(x)d)c=/w(/oo _S”_SA*(s)ds> d
0 0 0
:Z(Ze”f(s)ds)zdu
_ Z Z TOLO gsar (3.3)

where f(x) = e A*(x).
By Theorem 2.1, the inequality (3.2) follows from (3.3) at once.

Let f(x) € L2 (o, 1) and f(x) £0,

1
an:/x"f(x)dx, n=0,1,2,--
0

Hardy-Littlewood proved the following inequality (see [1]) of the form

1
D a < n/fz(x)dx (3.4)
n=0 0
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where 7 is the best constant that keeps (3.4) valid. In our previous paper [6], the
inequality (3.4) was extended and established the following inequality:

oo 1

/ FPx)dx<m / 2 (x)dx (3.5)
0 0
where f(x) = }txh(x)dx, x € [0, 4o0)

0
The inequality (3.5) is called the Hardy-Littlewood integral inequality.
Afterwards the inequality (3.5) was refined into the following form (see [7]):

=3

1
/ Pwdx<n / 1 W2(1)dr. (3.6)
0

0

We will further refine the inequality (3.6). O

THEOREM 3.2. Let h(t) € L*(0, 1), h(t) # 0. Define a function by
1
£ = [ £l dr(x > 0)
0

~+oo
IfO< [ f2(x)dx < oo, then
0

oo

1

(/f2(x)dx)4< e (7f2(x)dx>2— </°Ow(x)f2(x)dx>2 (/th2(t)dt>2. 3.7)
0 0

0 0
where the weight function ®(x) is defined by (1.4).
Proof. Let us write f2(x) in form:

1

) = / FOO ()| de.

0

Applying in turn Schwarz’s inequality and Theorem 2.1, we have

+oo o 1 2
([ reax) =< [ ([ sermolar)a
0 0 0

oo

1+
/ /f x l/2d 1/2|h(t)‘dt
0 0
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1

SOOI dxdy )i / £ 12(1)dt

8
+
3

</1<+oof(x)tx1/2dx>2dt/lth2(t)dt
0 0
1 oo +o0 1

= fx)r="ax fO)Vay)dr | 1 k2 (1)d
0/( ()t )(b/ y)t y)tb/t t)dt
1

/N
T O ——F O —F O

P

0 0
(TR N
(// o dxdy)/th (1)dt
0 0 0
1
oo oo 21
<nd ( / fz(x)dx>2—< / ©(x)/2(x)dx) / (R2(0)dr. (3.8)
0 0 0

where the weight function ®(x)is defined by (1.4).

Since h(t) #0, f(x) # 0. It is impossible to take equality in (3.8). It follows that

the inequality (3.7) is valid. [
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