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Abstract. We prove dynamic inequalities of majorisation type for functions on time scales. The
results are obtained using the notion of Riemann–Stieltjes delta integral and give a generalization
of [App. Math. Let., 22, 3 (2009), 416–421] to time scales.

1. Introduction

In the literature one can find many results known as Majorisation Theorems. In the
recent papers [3, 9] inequalities of majorisation type for convex functions and Stieltjes
integrals are given. The main goal of the present note is to unify and generalize such
discrete-time and continuous-time inequalities by means of the notion of Riemann–
Stieltjes integral on time scales [13, 14].

The theory and applications of delta derivatives and integrals on time scales is
a relatively new area that is receiving an increase of interest and attention [7]. The
concept of Riemann–Stieltjes integration on time scales was introduced in 1992 by
S. Sailer [14] in a thesis under the direction of one of the founders of time scales calcu-
lus, B. Aulbach. Since 1992, several other works on the subject appeared — see, e.g.,
[2, 12, 13].

One important and very active subject being developed within the theory of time
scales consists in the study of inequalities — see [1, 10, 11, 15, 16, 17] and references
therein. To the best of our knowledge all the integral inequalities available in the litera-
ture of time scales are, however, formulated using the Riemann integral on time scales.
Here we use the more general Riemann–Stieltjes integral on time scales [13, 14].

After some preliminaries on the Riemann–Stieltjes integral on time scales [13, 14]
(Section 2), where we recall the main definitions and results necessary in the sequel,
we begin by generalizing the notion of Riemann–Stieltjes delta integral for double in-
tegrals, proving its main properties (Section 3.1). The main contributions of the paper
are the new dynamic inequalities for Riemann–Stieltjes delta integrals obtained in Sec-
tion 3.2 that generalize the results of [3], and the two majorisation theorems of Sec-
tion 3.3 that extend the results of [9] to the context of time scales.

Mathematics subject classification (2010): 26D15, 26E70, 39A12.
Keywords and phrases: Time scales, Riemann–Stieltjes delta integrals, dynamic inequalities, inequal-

ities of majorisation type.

c© � � , Zagreb
Paper MIA-14-23

281



282 D. MOZYRSKA, E. PAWŁUSZEWICZ AND D. F. M. TORRES

We are not aware of any paper in the literature about majorisation inequalities for
Stieltjes integrals on time scales. Our results seem to be the first in this direction.

2. Preliminaries and Notation

Through the text T , T1 , and T2 denote time scales. Let a,b ∈ T and a < b .
We distinguish [a,b] as a real interval and we define [a,b]T := [a,b]∩T . In that sense
[a,b] = [a,b]R . Thus, [a,b]T is a nonempty and closed (bounded) set consisting of
points from T .

We recall the notion of Riemann–Stieltjes integral on a time scale. For more we
refer the reader to [13]. A partition of [a,b]T is any finite ordered subset

P = {t0, t1, . . . ,tn} ⊂ [a,b]T, where a = t0 < t1 < .. . < tn = b .

Each partition P = {t0,t1, . . . ,tn} of [a,b]T decomposes it into subintervals [ti−1,ti)T ,
i = 1,2, . . . ,n , such that for i �= k one has [ti−1,ti)T ∩ [tk−1,tk)T = /0 . Each such decom-
position of [a,b]T into subintervals is called a subdivision of [a,b]T . By Δti = ti − ti−1

we denote the length of the i th subinterval in the partition P . By P([a,b]T) we denote
the set of all partitions of [a,b]T . Let Pn , Pm ∈ P([a,b]T) . If Pn ⊂ Pm we call Pm a
refinement of Pn . If Pn,Pm are independently chosen, then the partition Pn ∪Pm is a
common refinement of Pn and Pm . This procedure is introduced in [7].

Let g be a real-valued non-decreasing function on [a,b]T . For the partition P we
define the set

g(P) = {g(a) = g(t0),g(t1), . . . ,g(tn−1),g(tn) = b} ⊂ g([a,b]T) .

Then, Δgi = g(ti)−g(ti−1) is non negative and
n
∑
i=1

Δgi = g(b)−g(a) . Note that g(P)

is a partition of [g(a),g(b)]R =
⋂{J : g(P) ⊂ J} . It is clear that even for the class of

rd-continuous functions defined on an arbitrary time scale, the image g([a,b]T) does
not need to be a real interval (indeed, our interval [a,b]T may contain scattered points).

We now recall the definitions of lower and upper sums and the notion of Darboux–
Stieltjes sum (for more details see [13]). Let f be a real-valued and a bounded function
on the interval [a,b]T . Let us take the partition P = {t0,t1, . . . ,tn} of [a,b]T . Let
mi = inft∈[ti−1,ti)T

f (t) and Mi = supt∈[ti−1,ti)T
f (t) , i = 1,2, . . . ,n . The upper Darboux–

Stieltjes sum of f with respect to the partition P , denoted by U(P, f ,g) , is defined by
U(P, f ,g) = ∑n

i=1 MiΔgi and the lower Darboux–Stieltjes sum of f with respect to the
partition P , denoted by L(P, f ,g) , is defined by L(P, f ,g) = ∑n

i=1 miΔgi .

DEFINITION 1. ([13]) The upper Darboux–Stieltjes Δ-integral from a to b with

respect to function g is defined by
∫ b
a f (t)Δg(t) = infP∈P([a,b]T)U(P, f ,g) . The lower

Darboux–Stieltjes Δ-integral from a to b with respect to function g is defined by∫ b
a f (t)Δg(t) = supP∈P([a,b]T) L(P, f ,g) . If

∫ b
a f (t)Δg(t) =

∫ b
a f (t)Δg(t) , then we say

that f is Δ-integrable with respect to g on [a,b]T , and the common value of the in-
tegrals is denoted by

∫ b
a f (t)Δg(t) =

∫ b
a fΔg and it is called the Riemann–Stieltjes (or

just Stieltjes) Δ-integral of f with respect to g on [a,b]T .
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From now on we assume that f and g are arbitrary real-valued bounded functions
on [a,b]T , where a,b∈T and g is non-decreasing on [a,b]T . Let us consider the parti-
tion P = {t0, t1, . . . ,tn} of [a,b]T and let X = {x1, . . . ,xn} denote an arbitrary selection
of points from [a,b]T with xi ∈ [ti−1,ti)T , i = 1,2, . . . ,n . We define

Sg( f ,P,X) =
n

∑
i=1

f (xi)(g(ti)−g(ti−1)) (1)

as a Riemann–Stieltjes Δ-sum for f with respect to g .

DEFINITION 2. We say that f is Riemann–Stieltjes Δ-integrable with respect to
g and write f ∈ S ([a,b]T,g) if and only if there exists a number I ∈ R such that for
every ε > 0 there is a partition P∗ for which |Sg( f ,P,X)−I | < ε for all refinements
P ⊃ P∗ and all possible selections of points X . If such a number exists, it is unique,
and we define

∫ b
a fΔg = I .

Note that if g is non-decreasing, then L(P, f ,g) � Sg( f ,P,X) � U(P, f ,g) for any
P and X . Let T1 , T be time scales and ψ : T1 →T be a rd-continuous non-decreasing
map such that for t1 ∈ [α,β ]T1 , a = ψ(α) , b = ψ(β ) . Then, because of the existing
bijection between partitions of intervals [a,b]T and [α,β ]T1 and between selections of
points from the respective intervals, the following holds:

∫ b

a
f (t)Δt =

∫ β

α
f (ψ(t1))Δ1g(ψ(t1)) .

The proof of Proposition 3 follows directly from (1) and Definition 2.

PROPOSITION 3. Let g be non-decreasing on [a,b]T and f be Riemann–Stieltjes
Δ-integrable with respect to g on [a,b)T . Then,

a)
∫ b
a Δg(t) = g(b)−g(a);

b)
∫ b
a f (t)Δg(t) = 0 for g constant;

c)
∫ σ(a)
a f (t)Δg(t) = f (a)(gσ (a)−g(a));

d)
∫ b
a α f (t)Δ(βg(t)) = αβ

∫ b
a f (t)Δg(t) , α , β ∈ R .

Note that if f is rd-continuous and g has its Δ-derivative also as a rd-continuous
function, then we can write the approximating sum (1) for f gΔ with respect to the
constant function of value 1 in the form S1( f gΔ,P,X) = ∑n

i=1 f (xi)gΔ(xi)Δti . Using
the mean value theorem [7], we conclude with the following result:

THEOREM 4. ([13]) Let a, b ∈ T . Suppose that g is a non-decreasing function
such that gΔ is continuous on [a,b)T and f is a real bounded function on [a,b]T . Then,
f ∈ S (g, [a,b]T) if and only if f gΔ ∈ S (g, [a,b]T) . Moreover,

∫ b

a
f (t)Δg(t) =

∫ b

a
f (t)gΔ(t)Δt .
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3. Main Results

In order to generalize the results of [3] to an arbitrary time scale, one needs first
to extend the Riemann–Stieltjes Δ-integral to functions of two-variables. Properties of
the double Riemann Δ-integral and for multiple Lebesgue integrals on time scales were
developed in [4, 5, 6].

3.1. The double Riemann–Stieltjes delta integral

Let a , b ∈ T1 , c , d ∈ T2 , where a < b , c < d , and R = [a,b)T1 × [c,d)T2 =
{(t,s) : t ∈ [a,b),s ∈ [c,d),t ∈ T1,s ∈ T2} . Let gi : Ti → R , i = 1,2, be two non-
decreasing functions on [a,b]T1 and [c,d]T2 , respectively. Let f : T1 ×T2 → R be
bounded on R . Let us consider two partitions P1 = {t0,t1, . . . ,tn} of [a,b]T1 and
P2 = {s0,s1, . . . ,sk} of [c,d]T2 and let X1 = {x1, . . . ,xn} denote an arbitrary selec-
tion of points from [a,b]T1 with xi ∈ [ti−1,ti)T1 , i = 1,2, . . . ,n . Similarly, let X2 =
{y1, . . . ,yk} denote an arbitrary selection of points from [c,d]T2 with y j ∈ [s j−1,s j)T2 ,
j = 1,2, . . . ,k . We define

Sg1,g2( f ,P1,P2,X1,X2) =
n

∑
i=1

k

∑
j=1

f (xi,y j)(g1(ti)−g1(ti−1))
(
g2(s j)−g2(s j−1)

)
(2)

as the Riemann–Stieltjes Δ-sum of f with respect to functions g1 and g2 and partitions
P1 ∈ P([a,b]T1) and P2 ∈ P([c,d]T2) .

DEFINITION 5. We say that f is Riemann–Stieltjes Δ-integrable with respect to
g1 and g2 over R if there exists a number I ∈ R such that for every ε > 0 there are
partitions P∗

1 and P∗
2 for which |Sg1,g2( f ,P1,P2,X1,X2)−I | < ε for all refinements

P1 ⊃ P∗
1 and P2 ⊃ P∗

2 and all possible selections of points X1 and X2 corresponding to
P1 and P2 , respectively. If such a number I exists, it is unique, and we define

∫∫
R

f (t,s)Δ1,2(g1×g2) = I .

We can extend the properties of Proposition 3 using non-decreasing functions g1

and g2 . The following proposition is obtained, mutatis mutandis, from the proofs of
similar properties of the Riemann–Stieltjes Δ-integral [13].

PROPOSITION 6. Let g1 and g2 be non-decreasing functions respectively on [a,b]T1

and [c,d]T2 , and let f be Riemann–Stieltjes Δ-integrable with respect to g1 and g2 on
R = [a,b)T1 × [c,d)T2 . Then,

a)
∫∫

R AΔ1,2 (g1×g2) = A(g1(b)−g1(a)) (g2(d)−g2(c)) , A a constant;

b)
∫∫

R f (t,s)Δ1,2 (g1×g2) = 0 when g1 or g2 are constant;

c) with b = σ1(a) and d = σ2(c) one has
∫∫

R
f (t,s)Δ1,2 (g1×g2) = f (a,c)(gσ1

1 (a)−g1(a))(gσ2
2 (c)−g2(c)) ;



INEQUALITIES AND MAJORISATIONS FOR THE RIEMANN-STIELTJES INTEGRAL 285

d)
∫∫

Rα f (t,s)Δ1,2[β (g1×g2)] = αβ
∫∫

R f (t,s)Δ1,2 (g1×g2) , α , β constants.

In the classical case, i.e., when T1 = T2 = R , the Fubini theorem is the funda-
mental theorem that relates double and iterated integrals (see, e.g., [8]). The rule of
iterated integration for double Riemann Δ-integrals on a rectangle was proved in [4,
Theorem 3.10]. We extend here [4, Theorem 3.10] to the double Riemann–Stieltjes
Δ-integral.

PROPOSITION 7. Let gi : Ti → R , i = 1,2 , be two non-decreasing functions on
[a,b]T1 and [c,d]T2 , respectively. Let us assume that function f : T1 ×T2 → R is
bounded on the set R = [a,b)T1 × [c,d)T2 . Then, the existence of the integral

∫∫
R
| f |Δ1,2(g1×g2)

implies the existence and the equality of the iterated integrals:

∫∫
R

fΔ1,2(g1×g2) =
∫ b

a

(∫ d

c
f (t,s)Δ2g2(s)

)
Δ1g1(t)

=
∫ d

c

(∫ b

a
f (t,s)Δ1g1(t)

)
Δ2g2(s) .

(3)

Proof. Let us begin noticing that if one of the functions g1 or g2 is constant,
then relation (3) gives the truism zero equals zero. Assume now that none of the
functions g1 and g2 is constant. As it is usually done in the classical double inte-
gral calculus, the evaluation of a double Stieltjes integral can be reduced to the suc-
cessive evaluation of two simple Stieltjes integrals. Let P1 ∈ P([a,b]T1) and P2 ∈
P([c,d]T2) where, as in the introduction to this section, we use P1 = {t0, t1, . . . ,tn} ,
P2 = {s0,s1, . . . ,sk} , X1 = {x1, . . . ,xn} , X2 = {y1, . . . ,yk} , with xi ∈ [ti−1, ti)T1 , i =
1,2, . . . ,n , and y j ∈ [s j−1,s j)T2 , j = 1,2, . . . ,k . We can assume that P1 is such that
∑n

i=1 (g1(ti)−g1(ti−1)) > 0, as g1 is not constant. According to definition (2) of
Riemann–Stieltjes Δ-sum we can write

Sg1,g2( f ,P1,P2,X1,X2) =
n

∑
i=1

(g1(ti)−g1(ti−1))
k

∑
j=1

f (xi,y j)
(
g2(s j)−g2(s j−1)

)
.

Let us now denote by Φ(xi−1) =
∫ d
c f (xi−1,s)Δ2g2(s) the simple Stieltjes integral of

the function f (xi−1, ·) with respect to g2 on the interval [c,d]T2 . Using Definition 2
we can write that for every

ε =
ε

2∑n
i=1 (g1(ti)−g1(ti−1))

> 0 ,

ε > 0, there is a partition P∗
2 such that for all refinement P2 ⊃ P∗

2 with a selection X2

we have that ∣∣Sg2( f (xi−1, ·),P2,X2)−Φ(xi−1)
∣∣ < ε .
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For any partition P1 of [a,b]T1 with some selection X1 the following holds:
∣∣∣∣∣Sg1,g2( f ,P1,P2,X1,X2)−

n

∑
i=1

(g1(ti)−g1(ti−1))Φ(xi−1)

∣∣∣∣∣ <
ε
2

.

It is easy to notice that the sum ∑n
i=1 (g1(ti)−g1(ti−1))Φ(xi−1) represents a Riemann–

Stieltjes Δ-sum for the integral
∫ b
a Φ(t)Δ1g1(t) . Let I =

∫∫
R fΔ1,2(g1 × g2) . Using

again the definition in [13] of the simple Stieltjes delta integral on [a,b]T1 , we see that
for all ε/2 > 0 there is a partition P∗

1 such that for all refinements P1 ⊃ P∗
1 together

with all possible selections X1 the following holds:

∣∣Sg1,g2( f ,P1,P2,X1,X2)−I
∣∣ <

ε
2

.

Hence, ∣∣∣∣∣I −
n

∑
i=1

(g1(ti)−g1(ti−1))Φ(xi−1)

∣∣∣∣∣ < ε

and
∫∫

R fΔ1,2(g1 × g2) =
∫ b
a

(∫ d
c f (t,s)Δ2g2(s)

)
Δ1g1(t) . Similarly, if we proceed in

the reverse order we get the analogous formula

∫∫
R

fΔ1,2(g1×g2) =
∫ d

c

(∫ b

a
f (t,s)Δ1g1(t)

)
Δ2g2(s). �

3.2. Inequalities for Riemann–Stieltjes delta integrals

In what follows g : T → R is a non-decreasing function on the interval [a,b]T .

PROPOSITION 8. Let f : T → R be Riemann–Stieltjes Δ-integrable on [a,b]T
with respect to a non-decreasing function g. If f is nonnegative on [a,b]T , then

∫ b

a
f (t)Δg(t) � 0 .

Proof. If f is a nonnegative function, then for any partition P ∈ P([a,b]T) we
have

∫ b
a f (t)Δg(t) � L(P, f ,g) � 0. �

COROLLARY 9. Let f1, f2 : T→R be Riemann–Stieltjes delta integrable on [a,b]T
with respect to a non-decreasing function g. Suppose that f1(t) � f2(t) for all t ∈
[a,b]T . Then, ∫ b

a
f1(t)Δg(t) �

∫ b

a
f2(t)Δg(t) .

Proof. The result follows immediately from Proposition 8 and the nonnegativity
of function f (t) = f1(t)− f2(t) . �

Similarly, we can also show the following:
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PROPOSITION 10. Let R = [a,b)T1 × [c,d)T2 and f , f1 , and f2 be bounded func-
tions on R satisfying the inequality f1(t,s) � f2(t,s) for all (t,s) ∈ R. Then,

∫∫
R

f1Δ1,2(g1 ×g2) �
∫∫

R
f2Δ1,2(g1×g2)

and ∣∣∣∣
∫∫

R
f (t,s)Δ1,2(g1×g2)

∣∣∣∣ �
∫∫

R
| f (t,s)|Δ1,2(g1 ×g2) .

PROPOSITION 11. Let f : T → R be Riemann–Stieltjes Δ-integrable on [a,b]T
with respect to a non-decreasing function g. If f is nonnegative on [a,b]T , then

F(t) =
∫ t

a
f (τ)Δg(τ)

is a non-decreasing function on [a,b]T .

Proof. If g is Δ-differentiable on [a,b)T , then Theorem 4 states that
∫ t

a
f (τ)Δg(τ) =

∫ t

a
f (τ)gΔ(τ)Δτ .

Thus, FΔ(t) = f (t)gΔ(t) � 0 and F is a non-decreasing function on [a,b)T . On the
other hand, we can use the property that

∫ σ(t)

a
fΔg =

∫ t

a
fΔg+ f (t)(gσ (t)−g(t)) .

This means that in the case when t is right-scattered then

FΔ(t) =
f (t)(gσ (t)−g(t))

μ(t)
� 0;

in the case when t is right-dense then FΔ(t) = lims→t

∣∣∣ ∫ t
s fΔg
t−s

∣∣∣ � 0. Hence, F is non-

decreasing. �
Let I be an interval of real numbers and F : I →R be a convex function on I . Then

F is continuous on int(I) (the interior of I ) and has finite left and right derivatives (F ′
+

and F ′− ) at each point of int(I) . For a convex function F : I → R the subdifferential
of F is defined as the set ∂F of all extended functions ϕ : I → R∪{±∞} such that
ϕ(int(I)) ⊂ R and

F(x) � F(y)+ (x− y)ϕ(y), for x,y ∈ I . (4)

When F is convex, then the set ∂F is nonempty because at least F ′
+ , F ′− ∈ ∂F .

Moreover, if ϕ ∈ ∂F then F ′−(x) � ϕ(x) � F ′
+(x) for x ∈ int(I) , and ϕ is a non-

decreasing function. If x : T → I ⊂R , then the composition F ◦x : T →R is a function
on T .

The following result is a generalization of [3, Theorem 5].
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THEOREM 12. Let T be a time scale with a,b ∈ T , F : I → R be a convex func-
tion on the real interval I , and x,y, p : [a,b]T → I with p(·) nonnegative on [a,b]T .
If ϕ ∈ ∂F and g : [a,b]T → I is a non-decreasing function on [a,ρ(b)]T , then the
inequality

∫ b

a
p(t)F(x(t))Δg(t)−

∫ b

a
p(t)F(y(t))Δg(t)

�
∫ b

a
p(t)x(t)ϕ(y(t))Δg(t)−

∫ b

a
p(t)y(t)ϕ(y(t))Δg(t) (5)

holds assuming that the Riemann–Stieltjes Δ-integrals in (5) exist.

Proof. For all t ∈ [a,b]T we have x(t) , y(t) ∈ I . From inequality (4) we conclude
that F(x(t))−F(y(t)) � (x(t)− y(t))ϕ(y(t)) . Multiplying by nonnegative values p(t)
and integrating with respect to the non-decreasing function g , we arrive to (5) with the
help of Corollary 9. �

We can use inequality (5) of Theorem 12 to prove a new Jensen’s type inequality
on time scales [15] for Riemann–Stieltjes integrals.

COROLLARY 13. Let T be a time scale with a,b ∈ T; F : I → R be a convex
function on I ; x, p : [a,b]T → I be rd-continuous with p(·) nonnegative on [a,b]T ; and
g : [a,b]T → I be non-decreasing on [a,ρ(b)]T . Define A :=

∫ b
a p(t)Δg(t) > 0 . Then,

1
A

∫ b

a
p(t)F(x(t))Δg(t) � F

(
1
A

∫ b

a
p(t)x(t)Δg(t)

)

provided both integrals exist.

Proof. It is enough to take the constant function y(s) ≡ 1
A

∫ b
a p(t)x(t)Δg(t) for

each s∈ [a,b]T , and see that y(s) ∈ I . We do the proof for I = [c,d] . For x : [a,b]T → I
we have cp(t) � p(t)x(t) � dp(t) . Integrating both sides with respect to the non-
decreasing function g we obtain: Ac �

∫ b
a p(t)x(t)Δg(t) � Ad . Hence, c � y(s) � d .

Taking into account inequality (5) of Theorem 12 we get:

1
A

∫ b

a
p(t)F(x(t))Δg(t) � F(y(s))+ϕ(y(s))

(
1
A

∫ b

a
p(t)x(t)Δg(t)− y(s)

)
,

where the right-hand side is equal to F(y(s)) . �
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Similarly, one can obtain a Riemann–Stieltjes Jensen’s reverse integral inequality
on time scales:

COROLLARY 14. Let T be a time scale with a,b ∈ T; F : I → R be a continu-
ous convex function on I ; x, p : [a,b]T → I be rd-continuous with p(·) nonnegative on
[a,b]T ; and g : [a,b]T → I be non-decreasing on [a,ρ(b)]T with A =

∫ b
a p(t)Δg(t) >

0 . If ϕ ∈ ∂F and the Riemann–Stieltjes Δ-integrals
∫ b
a p(t)y(t)ϕ(y(t))Δg(t) and∫ b

a p(t)ϕ(y(t))Δg(t) exist, then

0 � 1
A

∫ b

a
p(t)F(y(t))Δg(t)−F

(
1
A

∫ b

a
p(t)y(t)Δg(t)

)

� 1
A

(∫ b

a
p(t)y(t)ϕ(y(t))Δg(t)− 1

A

∫ b

a
p(t)y(t)Δg(t) ·

∫ b

a
p(t)ϕ(y(t))Δg(t)

)
.

REMARK 15. Corollary 14 coincides with [3, Corollary 2] in the particular case
when T = R .

Using the Riemann–Stieltjes double integral we can prove an inequality of Čebyšev’s
type on time scales. The inequality (7) of Proposition 17 is motivated by the Čebyšev’s
inequality on time scales proved in [17].

PROPOSITION 16. Suppose that p∈Crd ([a,b]T) with p(t) � 0 for all t ∈ [a,b]T ,
and let g : [a,b]T → R be non-decreasing on [a,ρ(b)]T . Let f1 , f2 ∈ Crd ([a,b]T) be
similarly (oppositely) ordered, that is, for all t,s ∈ [a,b]T

( f1(t)− f1(s)) ( f2(t)− f2(s)) � 0(� 0) .

Then,

∫ b

a

∫ b

a
p(t)p(s)( f1(t)− f1(s)) ( f2(t)− f2(s))Δg(t)Δg(s) � 0(� 0) . (6)

Proof. Follows from Proposition 8. �

PROPOSITION 17. Suppose that p∈Crd ([a,b]T) with p(t) � 0 for all t ∈ [a,b]T ,
and let g : [a,b]T → R be non-decreasing on [a,ρ(b)]T . Let f1 , f2 ∈ Crd ([a,b]T) be
similarly (oppositely) ordered. Then,

∫ b

a
p(t)Δg(t)

∫ b

a
p(t) f1(t) f2(t)Δg(t) � (�)

∫ b

a
p(t) f1(t)Δg(t)

∫ b

a
p(t) f2(t)Δg(t) .

(7)

Proof. We need to rewrite inequality (6) as (7). Because p is a rd-continuous func-
tion on the interval [a,b]T and g is non-decreasing on [a,ρ(b)]T (see [13]), function p
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is Riemann–Stiejtles Δ-integrable with respect to g . Then,

∫ b

a

∫ b

a
p(t)p(s)( f1(t)− f1(s)) ( f2(t)− f2(s))Δg(t)Δg(s)

=
∫ b

a
p(s)

∫ b

a
(p(t) f1(t) f2(t)− p(t) f1(t) f2(s)− p(t) f1(s) f2(t)

+p(t) f1(s) f2(s))Δg(t)Δg(s)

= 2

(∫ b

a
p(t)Δg(s)

∫ b

a
p(t) f1(t) f2(t)Δg(t)

−
∫ b

a
p(t) f1(t)Δg(s)

∫ b

a
p(t) f2(t)Δg(t)

)
� 0

and the result is proved. �
Corollary 18 gives a Winckler-type formula for the delta Riemann–Stieltjes inte-

gral on time scales. In the particular case g(t) = t one obtains the result in [17]; in
the case g(t) = t and T = N we can easily obtain the classical Winckler formula: if
a = (a1, . . . ,an) and b = (b1, . . . ,bn) are similarly (oppositely) ordered, then

n

∑
i=1

pi

n

∑
i=1

aibi � (�)
n

∑
i=1

piai

n

∑
i=1

pibi .

COROLLARY 18. Let p ∈ Crd ([a,b]T) with p(t) � 0 for all t ∈ [a,b]T and let
g : [a,b]T → R be non-decreasing on [a,ρ(b)]T . If f and 1/ f ∈Crd ([a,b]T) , then

(∫ b

a
p(t)Δg(t)

)2

�
∫ b

a
p(t) f (t)Δg(t)

∫ b

a

p(t)Δg(t)
f (t)

. (8)

Proof. It is enough to take f1 = f and f2 = ±1/ f in Proposition 17. Indeed,
from the assumption that f1 , f2 ∈Crd ([a,b]T) it follows that f1(t) f2(t) = ±1 for each
t ∈ [a,b]T . Since f1 and f2 are obviously similarly or oppositely ordered, we end up
with inequality (8). �

From Corollary 18 we can obtain other Winckler formulas by choosing different
time scales and different non-decreasing functions g on T :

EXAMPLE 19. Let T = qZ , q > 1, and g(t) = t2 . Choose a = 0 ∈ T and b =
1 ∈ T . We consider the integral

∫ 1
0 p(t) f1(t) f2(t)Δg(t) on this time scale. The q -scale

integral is in this case represented by an infinite series:

∫ 1

0
p(t)Δg(t) =

+∞

∑
k=1

p(q−k)q−k(q+1) .

Let us take p(t) = t and, analogously as in Corollary 18, consider similarly ordered

functions f1 and f2 on [0,1]T with f1(t) f2(t) = 1. It follows that
(∫ 1

0 p(t)Δg(t)
)2

=
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1
(q−1)2 while

∫ 1

0
p(t) f1(t)Δg(t)

∫ 1

0
p(t) f2(t)Δg(t) = (q+1)2

+∞

∑
k=1

q−2k f1(q−2k)
+∞

∑
k=1

q−2k f2(q−2k) .

Hence,
+∞

∑
k=1

q−2k f (q−2k)
+∞

∑
k=1

q−2k

f (q−2k)
� 1

(q2 −1)2 ,

where f = f1 .

3.3. Majorisation theorems

We now extend some majorisation type results from [3, 9].

THEOREM 20. Let T be a time scale with a,b ∈ T; functions x,y, p,g : [a,b]T →
I ⊂R be rd-continuous on [a,b]T with g non-decreasing and p bounded. Additionally,
let F : I → R be a continuous convex function on I . If y and x− y are both non-
decreasing or non-increasing and

∫ b

a
p(t)y(t)Δg(t) =

∫ b

a
p(t)x(t)Δg(t) , (9)

then ∫ b

a
p(t)F(y(t))Δg(t) �

∫ b

a
p(t)F(x(t))Δg(t) . (10)

Proof. The rd-continuity assumptions imply the existence of all integrals in (9)
and (10). Moreover, if ϕ ∈ ∂F , then both ϕ and ϕ ◦ y are non-decreasing on [a,b]T .
Since p(·) is bounded on [a,b]T , the rd-continuity of g implies the existence of the
Riemann–Stieltjes Δ-integral

∫ b
a p(t)[x(t)− y(t)]ϕ(y(t))Δg(t) . Since g is non-decrea-

sing on [a,b]T , then (5) implies that

∫ b

a
p(t)F(x(t))Δg(t)−

∫ b

a
p(t)F(y(t))Δg(t)�

∫ b

a
p(t)[x(t)−y(t)]ϕ(y(t))Δg(t) . (11)

Taking f1(t) = x(t)− y(t) and f2(t) = ϕ(y(t)) in inequality (7) and noting that f1 and
f2 are similarly ordered, we obtain:

∫ b

a
p(t)Δg(t)

∫ b

a
p(t)[x(t)− y(t)]ϕ(y(t))Δg(t)

�
∫ b

a
p(t)[x(t)− y(t)]Δg(t)

∫ b

a
p(t)ϕ(y(t))Δg(t) .

Equality (9) implies that p(t)[x(t)− y(t)] = 0, so

∫ b

a
p(t)Δg(t)

∫ b

a
p(t)[x(t)− y(t)]ϕ(y(t))Δg(t) � 0.
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From Proposition 8 it follows that
∫ b
a p(t)Δg(t) � 0. Thus,

∫ b

a
p(t)[x(t)− y(t)]ϕ(y(t))Δg(t) � 0 .

Inequality (10) follows from (11). �

THEOREM 21. Let T be a time scale with a,b ∈ T; functions x,y, p,g : [a,b]T →
I ⊂ R be rd-continuous on [a,b]T with g non-decreasing and p bounded and nonneg-
ative. Additionally, let F : I → R be a non-decreasing continuous and convex function
on I . If y and x− y are both non-decreasing or non-increasing and

∫ b

a
p(t)y(t)Δg(t) �

∫ b

a
p(t)x(t)Δg(t) , (12)

then (10) holds true.

Proof. The integrals
∫ b
a p(t)[x(t)− y(t)]Δg(t) and

∫ b
a p(t)ϕ(y(t))Δg(t) that ap-

pear in the proof of Theorem 20 are nonnegative because of (12) and the monotonicity
of F and nonnegativeness of p . Thus,

∫ b

a
p(t)[x(t)− y(t)]ϕ(y(t))Δg(t) � 0 . �
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