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Abstract. Inequalities relating three coefficients of the even or odd part of a Hurwitz-stable poly-
nomial have been established recently via the Newton-MacLaurin inequalities, and via optimiza-
tion techniques for multivariate functions on the positive orthant. From the theory of quadratic
forms we derive a family of strict inequalities which includes and generalizes the known inequal-
ities. For polynomials of higher degree quantifiable improvements are obtained. Benefit of these
inequalities is low-cost instability testing for polynomials with varying coefficients.

1. Introduction

Borobia and Dormido [1] established recently an inequality relating three coeffi-
cients of the even part of a Hurwitz-stable polynomial. This was generalized by Yang
[7, 8]. We repeat Yang’s statement [8], but call the reader’s attention to a necessary
correction of the case n = 2N , see Corollary 1 below.

Yang’s inequalities: Let P(x) = anxn +an−1xn−1+ . . .+a1x+a0 be Hurwitz-stable
with positive coefficients. Designate by N the integer �n/2� . For 1 � r , and 2r+3 � n
it is claimed that (

a2r+1(N
r

)
)2

� a2r−1( N
r−1

) a2r+3( N
r+1

) ;
for 1 � r , and 2r+2 � n it is claimed that(

a2r(N
r

)
)2

� a2r−2( N
r−1

) a2r+2( N
r+1

) .
Borobia and Dormido [1] derived their result for coefficients of even indices from

discussion of a multivariate function on the positive orthant (as later Yang in [7]), while
Yang proceeded in [8] via the Newton-MacLaurin inequalities for the real roots of the
odd/even part. In this note we derive two series of inequalities connecting 3,4,5, . . .
coefficients which generalize the estimates by Borobia, Dormido and Yang. We obtain
definite improvements on the latter estimates if more than 3 coefficients are involved.
Combining both sets of the new inequalities the improvement can be quantified.
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2. Hurwitz-stability, Quadratic forms and Cauchy Indices

A polynomial is Hurwitz-stable iff all its roots lie in the open half-plane ℜz < 0.
This implies that all coefficients of a real Hurwitz-stable polynomial have the same
definite sign. Hurwitz-stability of a real polynomial P(x) = h(x2)+ xg(x2) = ∑aixi is
equivalent by the Hermite-Biehler theorem to the strict interlacing of the roots of h and
g on the half-ray of negative reals (cf., e.g., [6, 2, 4]). A coefficient characterisation of
this interlacing can be found in Hurwitz’ conditions [3] (if a0 > 0)

a1 > 0,

∣∣∣∣a1 a0

a3 a2

∣∣∣∣> 0,

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣> 0, . . . . (1)

Suppose that N = degh � degg , and expand g(z)/h(z) in a Laurent series at In-
finity as

g(z)/h(z) = s0 +
s1

z
+

s2

z2 +
s3

z3 + . . . . (2)

If the zeros of h and g lie exclusively on the real axis, and strictly interlace, we observe
an alternating asymptotic behaviour at the pole places of g/h . Thus, the sign change at
poles may be used to count zeros.

DEFINITION 1. The Cauchy index Ib
aR of a real rational function R with respect

to an interval [a,b] is the difference N+ −N− , where N+ is the number of transitions
from −∞ to +∞ at a pole of R(x) , and N− is the number of transitions from +∞ to
−∞ at a pole, where x steadily increases from a to b .

To compute the Cauchy index, Hurwitz [3] constructed a quadratic form using h
and g . Quadratic forms have been considered by Jacobi, Hermite, Sylvester, Hurwitz
as well as others in the course of studying root-distribution problems. (A good source
for results and proofs as well as pointers to the literature is [2]; see also the research
survey [4].)

With the si in (2) we construct the matrix S = (σi, j)N−1
0 with entries: σi, j :=

si+ j+1, i � j;σi, j := si+ j+1, i > j . The matrix S is Hermitian, and if g and h are real
it is a Hankel matrix. In the real case, the quadratic form ∑N−1

0 si+ j+1xix j is usually
called the associated quadratic form of g/h .

The Cauchy index of a proper rational function can be computed as the signature
of the associated bezoutiants as was noted in the earliest works on quadratic forms by
Sylvester and Hermite (see, e.g., [2], Ch.16.11, Satz 9, p. 560 or [4], Sec. 2.2, Th.X
(and its footnote), p. 280). This result was extended by Hurwitz (cf. the last section of
Hurwitz’ work [3] or, e.g., [4], Sec. 3.2, pp. 292/293) who used it to derive a special
characterisation for root-location inside the left half-plane.

THEOREM 1. (Hurwitz) Consider real polynomials g,h such that degg � degh =
N with positive coefficients and associated quadratic form determined by the matrix
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S = (si+ j+1)N−1
i, j=0 . The polynomials have only simple, strictly interlacing roots on the

negative real axis if and only if

I+∞
−∞g/h = signature(

N−1

∑
i, j=0

si+ j+1xix j) = N,

I+∞
−∞ zg(z)/h(z) = signature(

N−1

∑
i, j=0

si+ j+2xix j) = −N.

A result by Jacobi and Frobenius (cf., e.g. [4], Sec. 1.1, pp. 267/268, or, [2], Chap.
10.3, Satz 2, eq. (33), p. 313) allows to compute the signature via the sign variation of
the consecutive principal minors. We may re-formulate Hurwitz’ result as follows.

THEOREM 2. Consider two real polynomials h and g (degh � degg) with posi-
tive coefficients and the expansion at Infinity

g(z)/h(z) = s0 +
s1

z
+

s2

z2 +
s3

z3 + . . . .

The roots of the polynomials g and h are all real, simple, and strictly interlace each
other on the negative real axis if and only if the determinants

H(0)
k := |si+ j+1|, (3)

H(1)
k := (−1)k+1|si+ j+2|, 0 � i, j � k.

are positive for all k � degh−1.

Positivity of the determinants in (3) is a natural source of coefficient inequalities
as detailed in the next section.

3. Necessary conditions for stable polynomials

We make use of two operations on the class of Hurwitz-stable polynomials: i)
differentiation (which yields a Hurwitz-stable polynomial by the Gauss-Lucas theorem
[5]), ii) taking of reciprocals. The reciprocal polynomial P∗ of a real polynomial P is
defined by P∗(x) := xdegPP(1/x) , and has as its roots the reciprocals of the roots of P .
Using these two operations we reduce to low-degree Hurwitz-stable polynomials.

Let us consider the real Hurwitz-stable polynomial

P(x) =
n

∑
i=0

aix
i = h(x2)+ xg(x2)

of degree n with positive coefficients. Put N := �n/2� . To treat coefficient criteria for
even and odd coefficients simultaneously we employ the index shift τ ∈ {0,1} . An
even-degree polynomial, n = 2N , has N odd coefficients and N +1 even coefficients.
To index the coefficients a2k+τ via k we use μ := N − τ · ( 2N +1−n) , and count
from 0 to μ . For even n and τ = 1 we have μ = N − 1, whereas in all other cases
μ = N .
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THEOREM 3. Let P(x) = anxn + an−1xn−1 + . . . + a1x + a0 = h(x2)+ xg(x2) be
Hurwitz-stable with positive coefficients. Designate by N the integer �n/2� . Fix τ ∈
{0,1} , and put μ := N − τ · (2N + 1− n) . We set r(x) := (1− τ) · h(x) + τ · g(x) .
With a(x) := r(k)(x) , b(x) := xμ−ka(1/x) we define c(x) := b(μ−k−l)(x) and R(x) :=
c′(x)/c(x) with expansion at Infinity

R(z) =
∞

∑
i=1

si

zi .

If k+ l +2 � μ , we have the inequalities

H(0)
k := |si+ j+1| > 0, (4)

H(1)
k := (−1)k+1|si+ j+2| > 0, 0 � i, j � k.

Proof. The polynomial r has negative, simple roots by the Hermite-Biehler theo-
rem. Thus, by Rolle’s theorem, the derivative a and its reciprocal b share this property.
The same holds true for the derivative c of b . Thus, Hurwitz’ result as captured in
Theorem 2 yields positivity of the determinants. �

What practical consequences may we draw from the preceding theorem? A large
number of coefficients is best dealt with using some machine support, but for a small
number of coefficients we may explicitly write out the inequalities. It turns out that we
obtain Yang’s inequalities as well as improvements thereof. We start with Yang’s in-
equalities (rectified for the odd coefficients of an even-degree polynomials as necessary
in view of Yang’s proof [8]).

COROLLARY 1. Let P(x) = anxn + an−1xn−1 + . . .+ a1x + a0 be Hurwitz-stable
with positive coefficients. Designate by N the integer �n/2� , fix τ ∈ {0,1} , and set
μ := N− τ · (2N +1−n) � 2. For 0 � k, 2k+4+ τ � n it holds true that

a2
2(k+1)+τ >

k+2
k+1

· μ− k
μ− k−1

a2k+τa2(k+2)+τ . (5)

Proof. For fixed τ ∈ {0,1} , and P(x) = h(x2) + xg(x2) , we set r(x) := (1−
τ)h(x)+ τg(x) . The polynomial r is of degree μ = N− τ · (2N +1−n) � 2, and has
the explicit representation

r(x) =
μ

∑
j=0

a2 j+τx
j,

from which we compute the k -th derivative

a(x) := r(k)(x) = k!a2k+τ +(k+1)!a2(k+1)+τx+
(k+2)!

2!
a2(k+2)+τx

2 + · · · .

Differentiating the reciprocal b(x) := a∗(x) = xμ−ka(1/x) , we obtain the (μ−k−
2)-nd derivative, denoted by c(x) , as

c(x) := a2k+τ
γμk
2

x2 +a2(k+1)+τγ
μ
k+1x+a2(k+2)+τ

γμk+2

2
,
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where γμk := (μ− k)!k!. When we consider the expansion near Infinity

R(z) = c′(z)/c(z) =
∞

∑
i=1

si

zi , (6)

we obtain the first three coefficients in (6) as

s1 = 2, s2 =
−2a2k+2+τ

a2k+τ

γμk+1

γμk
, s3 =

4a2
2k+2+τ(γ

μ
k+1)

2 −2a2k+4+τγ
μ
k+2a2k+τγ

μ
k

(a2k+τγ
μ
k )2

.

As μ � 2, we obtain from Theorem 3 positivity of the Hankel determinant H(0)
1

of order 2, i.e. the inequality s1 · s3 − s2
2 > 0. Substituting the above formulas, and

multiplying by the positive term (a0γ
μ
k )2 we obtain

4a2
2k+2+τ(γ

μ
k+1)

2−4a2k+4+τγ
μ
k+2a2k+τγ

μ
k > 0.

This yields the inequalities (5). �

Thus, we have obtained Yang’s inequality (rectified, as necessary, in the case of the
odd part of an even-degree polynomial) in strict form. If we abbreviate the numerical
factor using σk+1 :=

√
[(k+2)/(k+1)] · [(μ− k)/(μ− k−1)] , we may write these

inequalities as

a2
2(k+1)+τ > σ2

k+1a2k+τa2(k+2)+τ . (7)

We will use the double series of inequalities from Theorem 2 connecting four
coefficients to reduce to a three-term inequality improving (7).

THEOREM 4. Let P(x) = anxn +an−1xn−1 + . . .+a1x+a0 be Hurwitz-stable with
positive coefficients. Designate by N the integer �n/2� . Fix τ ∈ {0,1} , and put μ :=
N− τ · (2N +1−n) .

For k with 0 � k < μ−1 , we define

σk+1 :=
√

[(k+2)/(k+1)] · [(μ− k)/(μ− k−1)].

Suppose that 0 � k � μ−3 , then a2k+τ and a2(k+1)+τ may be estimated as follows:
1.)

a2k+τ <
3

σ2
k+1

a2(k+2)+τa
2
2(k+1)+τ

4a2
2(k+2)+τ −σ2

k+2a2(k+3)+τa2(k+1)+τ
(8)

<
a2

2(k+1)+τ

σ2
k+1a2(k+2)+τ

. (9)

2.) Let

f1 :=
a3/2

2(k+2)+τ

σk+1(σk+2)2√a2k+τa2(k+3)+τ
.
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Then

a2
2(k+1)+τ > L( f1)σ2

k+1a2k+τa2(k+2)+τ , (10)

where L( f1) > 1 is the smallest positive root of

x2−2
(9 f 2

1 −1+10 f1)
12 f1

x+2 f1 = 0.

Proof. Take the even or odd part (of degree μ ) of the polynomial P , reduce it via
differentiation as above, to the four term polynomial

c(x) :=
γμk
3!

a2k+τ +
γμk+1

2!
a2k+2+τx+

γμk+2

2!
a2k+4+τx

2 +
γμk+3

3!
·a2k+6+τx

3

with derivative

c′(x) :=
γμk+1

2
a2k+2+τ + γμk+2a2k+4+τx+

γμk+3

2
a2k+6+τx

2,

where 0 � k � μ − 3, and γμk := (μ − k)!k! . Both functions have only negative real
roots according to the assumption.

Define the polynomials h(z) := c(z) and gε(z) := (z+ ε) ·c′(z) with small ε > 0,
take the reciprocal polynomials g∗ε(z) := zngε(1/z) and h∗(z) := znh(1/z) resp., and
consider the expansion at Infinity

g∗ε(z)/h∗(z) = s̃0 +
s̃1

z
+ . . . .

Application of Theorem 2 to g∗ε/h∗ for every ε > 0 smaller than the smallest modulus
of the roots in c(z) yields a sequence of inequalities which holds for ε → 0, and by
continuity also for ε = 0. To compute with these inequalities we have to write down
the coefficients explicitly.

We use auxillary terms qi

q0 :=
(k+1)a2(k+1)+τ

(μ− k)a2k+τ
,

q1 :=
(k+2)(k+1)a2(k+2)+τ

(μ− k)(μ− k−1)a2k+τ
,

q2 :=
(k+3)(k+2)(k+1)a2k+6+τ

(μ− k)(μ− k−1)(μ− k−2)a2k+τ
,

to express the first four coefficients si of the expansion R(z) = g∗0(z)/h∗(z) =∑∞
i=1 si/zi

as

s1 := 12 ·q0,s2 := 24 ·q1−36q2
0,

s3 := 12q2−108q0q1 +108q3
0,

s4 := −324q4
0−72q2

1 +432q2
0q1−48q2q0.
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From Theorem 2 applied to g∗ε/h∗ we obtain in the limit the non-strict inequality

H(0)
1 = s1 · s3− s2

2 � 0.

This yields an expression involving a2k+τ , . . . ,a2(k+3)+τ . Multiplying it by 1
72a3

2k+τ(μ−
k)3(μ− k−1)2(μ− k−2)/((k+1)2(k+2)) we obtain the inequality

−4(μ− k)(μ− k−2)(k+2)a2k+τa
2
2(k+2)+τ

+3(μ− k−1)(μ− k−2)(k+1)a2
2(k+1)+τa2(k+2)+τ

+(μ− k)(μ−1− k)(k+3)a2k+τa2(k+1)+τa2(k+3)+τ � 0

which yields the estimate (8) of Theorem 4 in non-strict form. By continuity of the
roots, the set of real Hurwitz-stable polynomials is open; hence we may perturb a2k+τ
and thus obtain (8) in strict form. The inequality (8) implies the weaker consequence
(9) by (7).

Exploiting the second set of inequalities in Th.2 for gε/h , and passing to the limit
we obtain the inequality

H(1)
1 = s2 · s4− s2

1 � 0. (11)

The Corollary yields strict lower bounds for a2· j+τ of the form (7) for indices j = k+1
and j = k+2 resp. if k < μ−2. After multiplication of these lower bounds we obtain
the estimate

a2k+2+τa2k+4+τ > (σk+1 ·σk+2)2a2k+τa2k+6+τ . (12)

With φ :=
a2(k+2)+τ

(σk+1 ·σk+2)2a2k+τa2(k+3)+τ
we have as consequence of (7) for k and k+1

the inequalities

f1 =
a3/2

2(k+2)+τ

σk+1(σk+2)2√a2k+τa2(k+3)+τ
� φa2(k+1)+τ � f 2

1 .

We may express (12) as an equality using a suitable multiplier f � 1 for the right-
hand side of (12), and may re-order to obtain

1
f

k+1
k+3

μ− (k+2)
μ− k

a2(k+1)+τa2(k+2)+τ

a2k+τ
= a2(k+3)+τ . (13)

u
We note here that a2(k+1)+τ · φ = f . We obtain a three coefficient expression

involving just a2k+τ ,a2k+2+τ and a2k+4+τ from substitution of (13) into (11). This
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leads to the non-negative expression (where 0 � k � μ−3)

Q(a2(k+1)+τ) := −216
f

(k+2)(k+1)5a2(k+2)+τ

(μ− k−1)(μ− k)5a5
2k+τ

·a4
2(k+1)+τ

+(324+
360
f

− 36
f 2 )

(k+2)2(k+1)4a2
2(k+2)+τa

2
2(k+1)+τ

(μ− k−1)2(μ− k)4a4
2k+τ

−
432(k+2)3(k+1)3a3

2(k+2)+τ

(μ− k)3(μ− k−1)3a3
2k+τ

.

Equate the expression to zero, solve for a2(k+1)+τ , and obtain the positive lower bound

a2(k+1)+τ �
√

L( f )σk+1
√

a2k+τa2(k+2)+τ ,

where L( f ) is

(9 f 2 −1+10 f − ((9 f 2−1+10)2−288 f )0.5)/12 f .

It is easily verified that f = 1 yields L( f ) = 1, and that the quartic Q becomes
negative if a2(k+1)+τ → +∞ . Using the estimates f1 < f = a2(k+1)+τφ < f 2

1 in place
of the unknown f > 1, we obtain L( f ) > L( f1). Hence, as claimed in (10), we have

a2
2(k+1)+τ > L( f1) ·σ2

k+1a2k+τa2(k+2)+τ . �

Theorem 4 gives improved bounds compared to (5).

EXAMPLE. Consider a real, stable interval polynomial

P(x) =
6

∑
i=0

aix
i with positive coefficients.

Yang’s inequalities (5) with N := �n/2�= 3 for the four coefficients of even index yield

a2 �
√

2N
N−1

√
a0a4, and a4 �

√
3
2

N−1
N−2

√
a2a6.

Suppose that a2 and a0 are allowed to vary in some finite interval. Let a4 = 1600 and
a6 = 1. If a2 � 6500, Yang’s inequalities yield the estimate a0 � 8802.08. The new
estimate (8) of Th. 4 yields

a0 � 6614.15,

while the true value is slightly smaller than 6609.968.
If the admissible lower bound for a2 is unknown, and a0 � 5000, then Yang’s

inequalities yield a2 � 4898.97. The term f1 used in Theorem 4 is approx. f1 =
174.186, the new inequality yields

a2 � 5653.24.
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This is close to the lowest possible value of approx. 5653.726. Hence, before any test
of Hurwitz-stability of an interval family

P(x) = x6 +a5x
5 +1600x4 +a3x

3 +[5000,6500]x2+a1x
1 +[5000,8000]

we may exclude certain coefficient values, and limit the test to

P(x) = x6 +a5x
5 +1600x4 +a3x

3 +[5653,6500]x2+a1x
1 +[5000,6615].
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