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INEQUALITIES VIA QUADRATIC FORMS
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Abstract. Inequalities relating three coefficients of the even or odd part of a Hurwitz-stable poly-
nomial have been established recently via the Newton-MacLaurin inequalities, and via optimiza-
tion techniques for multivariate functions on the positive orthant. From the theory of quadratic
forms we derive a family of strict inequalities which includes and generalizes the known inequal-
ities. For polynomials of higher degree quantifiable improvements are obtained. Benefit of these
inequalities is low-cost instability testing for polynomials with varying coefficients.

1. Introduction

Borobia and Dormido [1] established recently an inequality relating three coeffi-
cients of the even part of a Hurwitz-stable polynomial. This was generalized by Yang
[7, 8]. We repeat Yang’s statement [8], but call the reader’s attention to a necessary
correction of the case n = 2N, see Corollary 1 below.

Yang'’s inequalities: Let P(x) = a,x" +a,_1x"~' +...+a1x+ay be Hurwitz-stable
with positive coefficients. Designate by N the integer |n/2|. For 1 <r,and 2r+3 <n
it is claimed that

2
Art1 azr—1 A2r+3

) )R

for 1 <r, and 2r+2 < n it is claimed that

2
ay > agr—2 A2r42

> .
/)~ (5

Borobia and Dormido [1] derived their result for coefficients of even indices from

discussion of a multivariate function on the positive orthant (as later Yang in [7]), while

Yang proceeded in [8] via the Newton-MacLaurin inequalities for the real roots of the

odd/even part. In this note we derive two series of inequalities connecting 3,4,5, ...

coefficients which generalize the estimates by Borobia, Dormido and Yang. We obtain

definite improvements on the latter estimates if more than 3 coefficients are involved.
Combining both sets of the new inequalities the improvement can be quantified.
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2. Hurwitz-stability, Quadratic forms and Cauchy Indices

A polynomial is Hurwitz-stable iff all its roots lie in the open half-plane Rz < 0.
This implies that all coefficients of a real Hurwitz-stable polynomial have the same
definite sign. Hurwitz-stability of a real polynomial P(x) = h(x?) +xg(x?) = Yax' is
equivalent by the Hermite-Biehler theorem to the strict interlacing of the roots of & and
g on the half-ray of negative reals (cf., e.g., [6, 2, 4]). A coefficient characterisation of
this interlacing can be found in Hurwitz’ conditions [3] (if ap > 0)

aa ayap 0
a; >0, Lo >0, |azaxa;|>0, .... ()
a3 & ds d4 az

Suppose that N = degh > degg, and expand g(z)/h(z) in a Laurent series at In-
finity as

g(z)/h(z)=s0+%+i—§+i—g+.... )

If the zeros of & and g lie exclusively on the real axis, and strictly interlace, we observe
an alternating asymptotic behaviour at the pole places of g/h. Thus, the sign change at
poles may be used to count zeros.

DEFINITION 1. The Cauchy index I2R of a real rational function R with respect
to an interval [a,b] is the difference N* —N~, where N* is the number of transitions
from —eo to +eo at a pole of R(x), and N~ is the number of transitions from e to
—oo at a pole, where x steadily increases from a to b.

To compute the Cauchy index, Hurwitz [3] constructed a quadratic form using &
and g. Quadratic forms have been considered by Jacobi, Hermite, Sylvester, Hurwitz
as well as others in the course of studying root-distribution problems. (A good source
for results and proofs as well as pointers to the literature is [2]; see also the research
survey [4].)

With the s; in (2) we construct the matrix S = (o, j){)v ~1 with entries: 0ij =
Sitj+1,1 < Ji0;j *=Siyj+1,i > j. The matrix S is Hermitian, and if g and % are real
it is a Hankel matrix. In the real case, the quadratic form Zg’ -1 Sit j+1Xixj is usually
called the associated quadratic form of g/h.

The Cauchy index of a proper rational function can be computed as the signature
of the associated bezoutiants as was noted in the earliest works on quadratic forms by
Sylvester and Hermite (see, e.g., [2], Ch.16.11, Satz 9, p. 560 or [4], Sec. 2.2, Th.X
(and its footnote), p. 280). This result was extended by Hurwitz (cf. the last section of
Hurwitz’ work [3] or, e.g., [4], Sec. 3.2, pp. 292/293) who used it to derive a special
characterisation for root-location inside the left half-plane.

THEOREM 1. (Hurwitz) Consider real polynomials g,h such that degg < degh =
N with positive coefficients and associated quadratic form determined by the matrix
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S = (Sivjt 1)5\/ j;lo- The polynomials have only simple, strictly interlacing roots on the
negative real axis if and only if

N-1
I12g/h = signature( 2 Siyj+1%iXj) =N,
i,j=0
N-1
1"328(2) /h(z) = signature( Y. sitji2xix;) = —N.
i,j=0
A result by Jacobi and Frobenius (cf., e.g. [4], Sec. 1.1, pp. 267/268, or, [2], Chap.
10.3, Satz 2, eq. (33), p. 313) allows to compute the signature via the sign variation of
the consecutive principal minors. We may re-formulate Hurwitz’ result as follows.

THEOREM 2. Consider two real polynomials h and g (degh > degg) with posi-
tive coefficients and the expansion at Infinity

51 52 53
h(z)=so+—+S+=+....
8Q)/hE) =50+ 2+ 5+ 3

The roots of the polynomials g and h are all real, simple, and strictly interlace each
other on the negative real axis if and only if the determinants

H;EO) = [Sivjr1), (3)

1 .
HY = (=) sy 1o, 0<ij <k
are positive for all k < degh — 1.

Positivity of the determinants in (3) is a natural source of coefficient inequalities
as detailed in the next section.

3. Necessary conditions for stable polynomials

We make use of two operations on the class of Hurwitz-stable polynomials: 1)
differentiation (which yields a Hurwitz-stable polynomial by the Gauss-Lucas theorem
[5]), ii) taking of reciprocals. The reciprocal polynomial P* of a real polynomial P is
defined by P*(x) := x%€PP(1/x), and has as its roots the reciprocals of the roots of P.
Using these two operations we reduce to low-degree Hurwitz-stable polynomials.

Let us consider the real Hurwitz-stable polynomial

P(x) = Za,-xi = h(x?) +xg(x?)

of degree n with positive coefficients. Put N := |n/2]. To treat coefficient criteria for
even and odd coefficients simultaneously we employ the index shift 7 € {0,1}. An
even-degree polynomial, n = 2N, has N odd coefficients and N + 1 even coefficients.
To index the coefficients as;y; via k weuse 4 := N — t© - (2N+1—n), and count
from O to u. For even n and 7 =1 we have u = N — 1, whereas in all other cases
u=N.
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THEOREM 3. Let P(x) = apx" +ap_1X" ' +... + aix +ag = h(x*) +xg(x*) be
Hurwitz-stable with positive coefficients. Designate by N the integer |n/2]. Fix T €
{0,1}, and pur u:==N—1-(2N+1—n). We set r(x) :=(1—1)-h(x)+7-g(x).
With a(x) == r®(x), b(x) :== x* *a(1/x) we define c(x) :== b**(x) and R(x) :=
c(x)/c(x) with expansion at Infinity

If k4142 < u, we have the inequalities
0
HIE ) = ‘Si+./+1| >0, (4)
HY = (=1 sy 1] >0, 0<i,j <k

Proof. The polynomial r has negative, simple roots by the Hermite-Biehler theo-
rem. Thus, by Rolle’s theorem, the derivative a and its reciprocal b share this property.
The same holds true for the derivative ¢ of b. Thus, Hurwitz’ result as captured in
Theorem 2 yields positivity of the determinants. [

What practical consequences may we draw from the preceding theorem? A large
number of coefficients is best dealt with using some machine support, but for a small
number of coefficients we may explicitly write out the inequalities. It turns out that we
obtain Yang’s inequalities as well as improvements thereof. We start with Yang’s in-
equalities (rectified for the odd coefficients of an even-degree polynomials as necessary
in view of Yang’s proof [8]).

COROLLARY 1. Let P(x) = a,x" + a,_1x" ' + ...+ ajx + ay be Hurwitz-stable
with positive coefficients. Designate by N the integer |n/2], fix T € {0,1}, and set
Ui=N—-7-2N+1—n)>=2. For 0< k,2k+4+ 7 < n it holds true that

k+2  u—k
a%(k+l)+r e 1 — k12T (%)

Proof. For fixed T € {0,1}, and P(x) = h(x?) +xg(x?), we set r(x) := (1 —
T)h(x) + 1g(x). The polynomial r is of degree 4 =N —7-(2N+1—n) > 2, and has
the explicit representation

1 .
) = X @i,
j=0

from which we compute the k-th derivative

k+2)!
a(x) == r® (x) = Klag . + (k+ D!y 1yex + (27,)a2(k+2)+rx2 +---.
Differentiating the reciprocal b(x) := a*(x) = x*%a(1/x), we obtain the (1 —k —
2)-nd derivative, denoted by c¢(x), as
u

Y Vir2
c(x) == asyr %xz + @i 1)+ eVes X T a2(k+2)+rT+a
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where y,f := (U — k)!k!. When we consider the expansion near Infinity

=3

Si

R(z) = (2)/c(2) = X, =, (6)
=17
we obtain the first three coefficients in (6) as
H 2 HoN\2 M u
S =2, sy 2k 241 Vi1 53 = Aa5p 10 (Yiy1)” — 20001412V 0@kt Y,
- & - ) - .
D+t Y;g (a2k+r)/15 )2

As u > 2, we obtain from Theorem 3 positivity of the Hankel determinant H 1(0)

of order 2, i.e. the inequality s - 53 — s% > 0. Substituting the above formulas, and
multiplying by the positive term (apy; )*> we obtain

4a%k+2+r(1’;¢l+ 1)2 - 4a2k+4+ﬂ’15+2“2k+7:y15 > 0.
This yields the inequalities (5). O
Thus, we have obtained Yang’s inequality (rectified, as necessary, in the case of the
odd part of an even-degree polynomial) in strict form. If we abbreviate the numerical

factor using opy1 := /[(k+2)/(k+1)]-[(u —k)/(u—k—1)], we may write these
inequalities as

2 2
(k1) +7 > Okp192%k+192(k+2) 1 (N

We will use the double series of inequalities from Theorem 2 connecting four
coefficients to reduce to a three-term inequality improving (7).

THEOREM 4. Let P(x) = ayX" +a,_1X" ' +...+ajx+ay be Hurwitz-stable with
positive coefficients. Designate by N the integer |n/2|. Fix T € {0,1}, and put u :=
N—1-(2N+1—n).

For k with 0 < k< u—1, we define

Ot = V[(k+2)/(k+ D] [(u —k)/(— k= 1)].

Suppose that 0 < k < WU — 3, then ayir and ay (1), may be estimated as follows:
1.)

2
3 D(k+2)+1% (k1) +7
Qoptr < 2 4 2 2 ( ) (8)
Okct1 “k+2)+1 — Oip2%2(k+3)+7%2(k+1)+7
2

Dlk+1)+1 ©
0?2, ,a '

k+192(k+2)+7

2.) Let
3/2
D (k+2)+1

fi:

 0k1(Ok42) /@2 @ (s 3) 1
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Then

a%(k+l)+r > L(f1)01<2+1a2k+ra2(k+2)+7:a (10)
where L(f1) > 1 is the smallest positive root of
(9fF —1+10£)

12f1

Proof. Take the even or odd part (of degree u ) of the polynomial P, reduce it via
differentiation as above, to the four term polynomial

=2 x+2f =0.

1 1 u 1

Vi Vi Vi3 3
c(x) == Skttt K ga e+ —,a2k+4+rx + —, Wk+6+7X
3! 2! 2! 3!
with derivative
u u
rey . kel n k+3 2
c'(x):= T Gkttt + Vi 2Q2k+447X + T Bkt6iTX

where 0 < k< u—3, and y,ﬁ‘ := (u — k)!k!. Both functions have only negative real
roots according to the assumption.

Define the polynomials 4(z) := c(z) and g.(z) := (z+€) - ¢/(z) with small € >0,
take the reciprocal polynomials g5(z) := 2"g¢(1/z) and h*(z) :=z"h(1/z) resp., and
consider the expansion at Infinity

g:(2)/h"(2) =S~o+%+....

Application of Theorem 2 to g /h* for every € > 0 smaller than the smallest modulus
of the roots in ¢(z) yields a sequence of inequalities which holds for € — 0, and by
continuity also for € = 0. To compute with these inequalities we have to write down
the coefficients explicitly.

We use auxillary terms g;

(k+ 1)“2(k+1)+r

= (U —k)azys+
L (k+2)(k+ 1)“2(k+2)+r
R TR TE S D
g = (k+3)(k+2)(k+1)arki6+z

(=B (k=) (1 —k—Darc’
to express the first four coefficients s; of the expansion R(z) = g§(z)/h* (z) = T 5:/7
as

s1:=12-q0,52:=24-q1 — 36‘](2)’

s3 1= 12, — 108qoq1 + 1086](3)7

54 1= =324} — 724} + 4324391 — 4842q0.
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From Theorem 2 applied to g;/h* we obtain in the limit the non-strict inequality
HI(O) =5 -S3—s% >0.

This yields an expression involving @z, - . ., aa(ky3)4 - Multiplyingit by %a%kﬂ(u —
k)3 (p—k—1)>(u—k—2)/((k+1)%(k+2)) we obtain the inequality

_4(“ - k) (U —k— 2)(k + 2)a2k+ra§(k+2)+f
3 — k= 1)(t =k = 2)(k+ 1)a5 4 1)1 @2k42) 4
+(u—k)(u = 1= k)(k+3)akr2@(kr1) 4 102(k+3)+7 2 0

which yields the estimate (8) of Theorem 4 in non-strict form. By continuity of the
roots, the set of real Hurwitz-stable polynomials is open; hence we may perturb ay; ¢
and thus obtain (8) in strict form. The inequality (8) implies the weaker consequence
(9) by (D).

Exploiting the second set of inequalities in Th.2 for g¢/h, and passing to the limit
we obtain the inequality

HY =554 —53 >0, (11)

The Corollary yields strict lower bounds for as. ;. of the form (7) for indices j=k+1
and j =k+2 resp. if k < u—2. After multiplication of these lower bounds we obtain
the estimate

2
2421702+ 447 > (Okt1 " Okt2) Aok 1702k 1647 (12)

A (k+2)+7

(Ok41- 0k+2)2azk+raz(k+3>+r
the inequalities

With ¢ ==

we have as consequence of (7) for k and k+ 1

3/2
2(k+2)+7

Oy (0k+2)2\/azk+raz(k+3)+r

a

fi

2
< ¢a2(k+1)+r < Si-

We may express (12) as an equality using a suitable multiplier f > 1 for the right-
hand side of (12), and may re-order to obtain

l k+1u—(k+2) a(k1)+192(k+2)+1
fk+3 u—k Wk+1

= @ (k+3)+1- (13)

We note here that a1y, ¢ = f. We obtain a three coefficient expression
involving just apgir,@k+2+7r and apgiay, from substitution of (13) into (11). This
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leads to the non-negative expression (where 0 < k < u —3)
216 (k+2)(k+ D auiz) e 4
[ (w—k=1)(u—kPa5, , “**T
360 36, (k+2)°(k+1) az<k+z>+ra§(k+1>
o (u—k—1)2(p—k)*az;, .
- 432(k+2) (k+ 1) a2(k+2) .
(U =k (u—k—1)3 a2k+‘r

Equate the expression to zero, solve for a;(; )¢, and obtain the positive lower bound

2kt 1)+t = VL) Ok 1\ /@22 (k1 2) 110

O(azky1y4r) = —

+(3244+—

where L(f) is
(9> —14+10f—((9f% — 1+ 10)* —288£)%3)/12f.

It is easily verified that f =1 yields L(f) = 1, and that the quartic Q becomes
negative if ay(y1)4¢ — +oo. Using the estimates fi < f = ayy1)4:9 < fl2 in place
of the unknown f > 1, we obtain L(f) > L(f1). Hence, as claimed in (10), we have

%(k+l)+r >L(f1)- Uk+1azk+ra2(k+2) u

Theorem 4 gives improved bounds compared to (5).

EXAMPLE. Consider a real, stable interval polynomial
x) =Y ax' with positive coefficients.

Yang’s inequalities (5) with N := |n/2] = 3 for the four coefficients of even index yield

2N 3N—1
>0
a, > N l\/aoa4, and a4 > AN 2\/a2a

Suppose that a, and qq are allowed to vary in some finite interval. Let a4 = 1600 and
ag = 1. If ap < 6500, Yang’s inequalities yield the estimate ap < 8802.08. The new
estimate (8) of Th. 4 yields

ap < 6614.15,

while the true value is slightly smaller than 6609.968.

If the admissible lower bound for a; is unknown, and ay > 5000, then Yang’s
inequalities yield a, > 4898.97. The term f used in Theorem 4 is approx. f; =
174.186, the new inequality yields

az > 5653.24.
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This is close to the lowest possible value of approx. 5653.726. Hence, before any test
of Hurwitz-stability of an interval family

P(x) = x° + asx® + 1600x* + a3x® + [5000,6500]x* + a1x! + [5000, 8000]

we may exclude certain coefficient values, and limit the test to

[1]

[2]
[3]

[4]

[5]
[6]

[7]
[8]

P(x) = x® 4 asx® + 1600x* 4 a3x® 4 [5653,6500]x* + a1 x' + [5000,6615].
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