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MULTIPLICATIVE SOBOLEV INEQUALITIES

OF THE LADYZHENSKAYA TYPE

YONG-KUM CHO

(Communicated by J. Pečarić)

Abstract. We present a set of multiplicative Sobolev inequalities that yield less restrictive em-
bedding and Trudinger-type results. The proofs are elementary and deduced only from a mul-
tiplicative inequality of Gagliardo-Nirenberg and Hölder’s inequality with no recourse to any
potential estimates.

1. Introduction

As for the Sobolev inequality ‖u‖p∗ � C(n, p)‖∇u‖p for u ∈ W 1, p(Rn) , if we
apply it to the functions ut(x) = t−n u(x/t) for t > 0 , then it is plain to see that the con-
dition 1/p∗ = 1/p−1/n and 1 � p < n arises necessarily. A more flexible Sobolev
inequality may be obtainable in the form

‖u‖q � C(n, p)‖u‖αp ‖∇u‖βp (α, β > 0) (1)

for the necessary condition 1− 1/q = (α +β )(1− 1/p)+β/n would be much less
restrictive. For instance, when α+β = 1 , it follows from interpolating two end-points
p, p∗ that (1) holds for all q with 0 � 1/p −1/q � 1/n .

In this note we consider Sobolev inequalities of type

‖u‖q � C(n, p)‖u‖αp
n

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
β
n

p

(α, β > 0) , (2)

which may be regarded as a sharper version of (1) in view of

n
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∥∥∥∥ ∂u
∂x j
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1
n

p

�
(

1
n

n

∑
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
p

p

)1/p

� n−1/p‖∇u‖p .

Perhaps best known is an inequality of Gagliardo-Nirenberg ([3], [4])

∫
Rn

∣∣u(x)
∣∣ n

n−1 dx �
(

1
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) n
n−1 n

∏
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1
. (3)
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Multiplicative inequalities of type (2) have been also proven to be useful in the
study of non-linear differential equations of mathematical physics. For example, O.
A. Ladyzhenskaya [4] has used the following inequalities in studying boundary value
problems for Navier-Stokes equations:

‖u‖4
4 � ‖u‖2

2

2

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
2

for all u ∈W 1,2(R2) , (4)

‖u‖4
4 � ‖u‖2

3

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
2

and ‖u‖3
6 � 9

2

3

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
2

(5)

for all u ∈ W 1,2(R3) . It would be interesting to extend the results of this kind to all
dimensions and 1 � p < ∞ .

2. Inequalities of Ladyzhenskaya Type

To begin with, we observe the following which come in a straightforward manner
from the Gagliardo-Nirenberg inequality (3) and Hölder’s inequality.

THEOREM A. Let u ∈W 1, p(Rn) .

(a) For 1 � p < ∞ and n � 1 ,

∥∥u∥∥ pn
n−1

�
( p

2

) 1
p ∥∥u∥∥1− 1

p
p

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1
pn

p

. (6)

(b) For 1 � p < n and n � 2 , if p∗ = np/(n− p) , then

∥∥u∥∥p∗ � p(n−1)
2(n− p)

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1
n

p

. (7)

(c) For p = n and n � 2 , if � is an integer with � � n−1 , then

∥∥u∥∥�
�n

n−1
� �!

(n−1)!2�−n+1

∥∥u∥∥n−1
n

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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�−n+1

n

n

. (8)

Proof. By the inequality (3) and Hölder’s inequality, we have

∫
Rn

∣∣u(x)
∣∣ γn

n−1 dx �
( γ

2

) n
n−1
(∫

Rn

∣∣u(x)
∣∣ (γ−1)p

p−1 dx

) n(p−1)
(n−1)p n

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
1

n−1

p

(9)

for any γ > 0 . The inequalities (6) and (7) follow from (9) with the choice of γ = p
and γn/(n−1) = (γ−1)p/(p−1) , respectively. If we let

I� =
∫

Rn

∣∣u(x)
∣∣ �n

n−1 dx (� � n−1) ,
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then the inequality (9), applied to γ = � , p = n , yields

I� �
(

�

2

) n
n−1 n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1

n−1

n

I�−1 (� � n) , In−1 = ‖u‖n
n

and the inequalities of (c) follow from this recursive relation. �

In the special case p = (n−1)/(n−2) , it is possible to obtain a slight improve-
ment in the bound of (7) and an additional estimate.

THEOREM B. Let u ∈W 1, p(Rn) for p = (n−1)/(n−2) with n � 3 . Then

∥∥u∥∥p∗ � p∗
2p

[
(n−1)2

n(n−2)

] 1
n n

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
1
n

p

, (10)

∥∥u∥∥p2 �
( p

2

) n
p(n−1) ∥∥u∥∥ 1

(n−1)2
p

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1

(n−1)2

p

. (11)

Proof. Let x = (x̂,xn) and γ > 0 . Applying (3) to the x̂ -variable function uγ(·,xn)
and then integrating with respect to dxn , we get

∫
R

[∫
Rn−1

∣∣u(x̂,xn)
∣∣γ n−1

n−2 dx̂

]
dxn �

( γ
2

) n−1
n−2
(∫

Rn−1

[
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·
∫

R

n−1

∏
j=1

(∫
Rn−1
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p
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) 1
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By using the estimate

max
xn

∣∣u(x̂,xn)
∣∣(γ−1)(n−1) � (γ−1)(n−1)

2

∫
R

∣∣u(x)
∣∣(γ−1)(n−1)−1

∣∣∣∣ ∂u
∂xn

∣∣∣∣dxn ,

a successive application of Hölder’s inequality yields

∫
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∣∣u(x)
∣∣γ n−1

n−2 dx �
[
γn−1(γ−1)(n−1)

2n

] 1
n−1

·
(∫

Rn

∣∣u(x)
∣∣[(γ−1)(n−1)−1](n−1)

dx

) 1
(n−1)(n−2) n

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
1
n

p

. (12)

Now the inequalities (10), (11) follow from (12) upon choosing γ so that γ = [(γ −
1)(n−1)−1](n−2) and [(γ−1)(n−1)−1](n−1)= p , respectively, and simplifying
algebra. �
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REMARKS.

(i) Each inequality of Theorem A or B serves as an end-point of interpolation with
the other end-point p . For instance, if 1 � p <∞ and p � q � pn/(n−1) , then

∥∥u∥∥q �
( p

2

)n
(

1
p− 1

q

) ∥∥u∥∥1−n
(

1
p− 1

q

)
p

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1
p− 1

q

p

. (13)

(ii) When n = 3 , p = 2 , the inequalities (10), (11) coincide with the Ladyzhenskaya
inequalities (4). When n = p = 2 , (6) reduces to (3).

(iii) Given any domain Ω ⊂ R
n, both theorems remain valid on W 1, p

0 (Ω) with re-

placing Lp(Rn) norms by Lp(Ω) norms, where W 1, p
0 (Ω) denotes the closure of

C∞
0 (Ω) with respect to the usual Sobolev norm. Indeed, it is plain to observe that

(3) and Theorems A, B hold for each C∞
0 (Ω)-function because all integrals may

be written as integrals over R
n and the results follow by simple limiting argu-

ments. As a consequence, W 1, p
0 (Ω) ↪→ Lq(Ω) holds if (a) 1 � p < ∞ , p � q �

pn/(n− 1) or (b) 1 � p < n , p � q � p∗ or (c) p = n , q � n . Of particular
interest is the case (a) with p > n for which the standard result is the embedding
W 1, p

0 (Ω) ↪→ C1−n/p(Ω) due to C. Morrey (see [3], pp. 164). Moreover, these
results can be extended to W 1, p(Ω) provided that Ω satisfies certain smoothness
condition on the boundary such as the Lipschitz condition or the uniform cone
condition (refer to [3], pp. 158, for instance).

3. Inequalities of Trudinger Type

In the special case p = n , while W 1,n
0 (Ω) ↪→ Lq(Ω) for all q � n , there have

been a great deal of literature concerning the substitutes of (ii), Theorem A, or the best
bounds since the fundamental work of N. Trudinger ([3], [7]) which states that

∫
Ω

exp

(
c1 |u(x)|
‖∇u‖n

) n
n−1

dx � c2 |Ω| ,

where the constants c1, c2 depend only on n . The key ingredient comes from the
Hardy-Littlewood-Sobolev inequality for the Riesz potentials. Using more refined esti-
mates for the Bessel potentials, R. Strichartz [6] extended Trudinger’s result to Lp

n/p(Ω)
spaces and T. Ozawa [5] extended Strichartz’s result to R

n . In the present case, as we
are interested in multiplicative inequalities of type (2), an approach by either Riesz or
Bessel potentials would not be of much help. We are only able to observe the following
which resembles Ozawa’s result but with explicit constants and a bit different style.

THEOREM C. For u ∈W 1,n
0 (Ω) with n � 2 , let 0 < α < 2 and

Φ(t) =
∞

∑
k=n−1

tk

k!
, Ψ(t) = tΦ(t) , λ =

n

∏
j=1

∥∥∥∥ ∂u
∂x j
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1
n

n

.
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Then there exists a constant C(n,α) such that∫
Ω
Ψ
(
α|u(x)|

λ

)
dx � 2αn

(n−1)!(2−α)

∫
Ω

( |u(x)|
λ

)n

dx , (14)

∫
Ω

[
Φ
(
α|u(x)|

λ

)] n
n−1

dx � C(n,α)
∫
Ω

( |u(x)|
λ

)n

dx . (15)

Proof. The estimates (8) and Hölder’s inequality give

∫
Rn

|u|n+k dx � (n+ k−1)!
(n−1)!2k ‖u‖n

n

(
n

∏
j=1

∥∥∥∥ ∂u
∂x j

∥∥∥∥
1

n−1

n

)k

(16)

for k = 0,1,2, · · · . The desired inequality (14) follows from this estimates upon sum-
ming the resulting power series.

To prove (15), we choose β with α < β < 2 and put γ = α/β . By discrete
Hölder’s inequality,

[
Φ
(
α|u(x)|

λ

)] n
n−1

�
∞

∑
k=n−1

[(
β |u(x)|

λ

)k 1
k!

] n
n−1

·
(

∞

∑
k=n−1

γkn

) 1
n−1

�
(
γn(n−1)

1− γn

) 1
n−1 ∞

∑
k=n−1

[(
β
λ

)k 1
k!

] n
n−1 ∣∣u(x)

∣∣ kn
n−1 .

Integrating and using the estimates (8), the inequality (15) follows at once upon sum-
ming the resulting series. A careful computation shows that we may take

C(n,α) =
[

2
(n−1)!

] n
n−1 αn

(1− γn)
1

n−1

(
2

n
n−1 −β

n
n−1

) . �

4. An Extension of Gagliardo-Nirenberg Inequality

As all of our results are basically deduced from the Gagliado-Nirenberg inequality
(3), it would be meaningful to consider any of its extension. In this note we extend it to
the mixed partial derivatives.

LEMMA D. (A. P. Calderón [2]) For each ordered set I ⊂ {1,2, · · · ,n} of the
form I = {i1, · · · , ik} with 1 � i1 < i2 < · · · < ik � n , write

xI = (xi1 , · · · ,xik) and dxI = dxi1 · · ·dxik .

Given 1 � k � n , if ( fI(xI)) is a sequence of non-negative measurable functions on
R

k , where I ranges over all ordered subsets of {1,2, · · · ,n} with #(I) = k , then

∫
Rn

[
∏

#(I)=k

fI(xI)
]
dx � ∏

#(I)=k

[∫
Rk

( fI(xI))r dxI

]1/r

,
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where r denotes the binomial coefficient r =
(n−1
k−1

)
.

THEOREM E. Let u ∈W �,1(Rn) with 1 � � � n . Then

∥∥u∥∥ n
n−�

� 1
2� ∏

1�i1<···<i��n

∥∥∥∥ ∂ �u
∂xi1 · · ·∂xi�

∥∥∥∥
�! (n−�)!

n!

1

(17)

with the usual interpretation for the case � = n .

Proof. We may assume u ∈C∞
0 (Rn) . For 1 � i1 < · · · < i� � n , the Fundamental

Theorem of Calculus shows that

|u(x)| � 1
2�

∫
R�

∣∣∣∣ ∂ �u
∂xi1 · · ·∂xi�

∣∣∣∣ dxi1 · · ·dxi� . (18)

If � = n , this inequality gives the stated result, that is,

∥∥u∥∥∞ � 1
2n

∥∥∥∥ ∂ nu
∂x1 · · ·∂xn

∥∥∥∥
1
. (19)

In the case 1 � � < n , if we put I = {1,2, · · · ,n}−{i1, · · · , i�} , arranged in an increas-
ing order, and denote by fI(xI) the function on the right side of (18), then

∣∣u(x)
∣∣(n

�) 1
r �

(
1
2

)(n
�) �

r

∏
#(I)=n−�

[
fI(xI)

] 1
r ,

where r =
( n−1
n−�−1

)
. Since

(n
�

) 1
r = n/(n− �) , integrating and applying Calderón’s

lemma, we get

∫
Rn

∣∣u(x)
∣∣ n

n−� dx �
(

1
2

) n�
n−�

∏
#(I)=n−�

[∫
Rn−�

fI(xI)dxI

]1/r

=
(

1
2

) n�
n−�

∏
1�i1<···<i��n

∥∥∥∥ ∂ �u
∂xi1 · · ·∂xi�

∥∥∥∥
1/r

1

,

which yields the desired inequality (17) after simplifying. �
REMARK. As in the case W 1, p(Rn) or W 1, p

0 (Ω) , Theorem E may be used in

obtaining sharper Sobolev inequalities on Wk, p(Rn) or Wk, p
0 (Ω) with k � 2 . For ex-

ample, if u ∈W 2,2(R2) , then the inequality (19), applied to u2 , implies

∥∥u∥∥2
∞ � 1

2

(∥∥∥∥ ∂u
∂x1

∥∥∥∥
2

∥∥∥∥ ∂u
∂x1

∥∥∥∥
2
+
∥∥u∥∥2

∥∥∥∥ ∂ 2u
∂x1∂x2

∥∥∥∥
2

)

� 1
4
‖∇u‖2

2 +
1
2

∥∥∇2u
∥∥

2

� 3
4

∥∥u∥∥2
W 2,2(R2) , (20)
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which may be regarded as an alternative of the Brézis-Gallouet inequality [1]. While it
is common to apply the first-order Sobolev inequalities repeatedly in deriving higher-
order Sobolev inequalities in terms of

∥∥∇ku
∥∥

p , such an approach would not be so
effective in obtaining the results of the above kind.
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