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WILLMORE LAGRANGIAN SUBMANIFOLDS

IN COMPLEX PROJECTIVE SPACE

SHICHANG SHU AND SANYANG LIU

Abstract. Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex
projective space CPn and let S and H be the squared norm of the second fundamental form and
the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q
the functions which assign to each point of M the infimum of the sectional curvature and Ricci
curvature at the point. We prove some integral inequalities of Simons’ type for n -dimensional
compact Willmore Lagrangian submanifolds in CPn in terms of ρ2 , K , Q and H and obtain
some characterization theorems.
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