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WILLMORE LAGRANGIAN SUBMANIFOLDS

IN COMPLEX PROJECTIVE SPACE

SHICHANG SHU AND SANYANG LIU

(Communicated by Y. Burago)

Abstract. Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex
projective space CPn and let S and H be the squared norm of the second fundamental form and
the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q
the functions which assign to each point of M the infimum of the sectional curvature and Ricci
curvature at the point. We prove some integral inequalities of Simons’ type for n -dimensional
compact Willmore Lagrangian submanifolds in CPn in terms of ρ2 , K , Q and H and obtain
some characterization theorems.

1. Introduction

Let Nn+p be an oriented smooth Riemannian manifold of dimension (n+ p) and
let x : M �→ Nn+p be an n -dimensional compact submanifold of Nn+p . Denote by
hαi j,S, �H and H the second fundamental form, the squared norm of the second funda-
mental form, the mean curvature vector and the mean curvature of M . We denote by
W (x) the Willmore functional on M (see [1], [15], [18]), that is, W (x) =

∫
M ρndv =∫

M(S− nH2)
n
2 dv . From [1], [15] and [18], we know that W (x) is an invariant under

Moebius (or conformal) transformations of Nn+p . The Willmore submanifold was de-
fined by Li [11] and Hu-Li [8], [9], a submanifold is called a Willmore submanifold if
it is a extremal submanifold to the Willmore functional. When n = 2, the functional
essentially coincides with the well-known Willmore functional and its critical points
are the Willmore surfaces. In [11] (also see [15], [6]), Li obtained a Willmore equation
for Willmore functional in terms of Euclidean geometry. It is very important for study
of rigidity and geometry of Willmore submanifold in Nn+p .

Let CPn be a complete connected n -dimensional Kaehler manifold with constant
holomorphic sectional curvature 4, we call it the n -dimensional complex projective
space. Let x : M �→ CPn be an immersion of an n-dimensional Riemannian manifold
M into CPn . M is called a Lagrangian submanifold if the complex structure J of CPn

carries each tangent space of M into its corresponding normal space. We note that in
recent years, due to their backgrounds in mathematical physics, special Lagrangian sub-
manifolds have been extensively studied (see[7], [14] and [17]). Moreover, Hu-Li [8]
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obtained an important Willmore equation and showed that a Lagrangian submanifold is
Willmore submanifold if and only if it satisfies the Willmore equation.

For Willmore Lagrangian submanifolds, we have the following examples:

EXAMPLE 1.1. ([8]). Let RPn(1) be the n -dimensional real projective space
with constant sectional curvature 1. RPn(1) can be isometrically immersed into CPn

as a totally geodesic Lagrangian submanifold of CPn . From proposition 6.2 in [8], we
know that RPn(1) is a (compact) Willmore submanifold of CPn .

EXAMPLE 1.2. ([14], [8]). The Clifford torus Tn ⊂CPn .
Consider the isometric embedding of (n+1)-torus

Tn+1 : S1
(

1√
n+1

)
×·· ·×S1

(
1√

n+1

)
�→ S2n+1(1) �→Cn+1,

this embedding is Lagrangian in Cn+1 and it is minimal in S2n+1(1) . Since the standard
action by S1 on Cn+1 restricts to both the above torus Tn+1 and S2n+1(1) , we take the
quotients of these. The induced quotient metric on CPn as the quotient S2n+1(1)/S1

has holomorphic sectional curvature 4. The torus Tn := Tn+1/S1 in the CPn is both
Lagrangian and minimal. Since Tn is flat, it follows from proposition 6.2 in [8] that Tn

is a Willmore Lagrangian submanifold in CPn .
It is well known that in the theory of minimal Lagrangian submanifolds in CPn ,

Chen and Ogiue [2], Ludden, Okumura and Yano [13], Shen [16] and Li [10] had ob-
tained some important rigidity theorems in terms of the squared norm of the second
fundamental form and section curvature of the minimal Lagrangian submanifolds. In
this paper, we shall establish the rigidity theorems of Willmore Lagrangian submani-
folds in CPn in terms of the scalar curvature, the Ricci curvature, the sectional curvature
and the mean curvature of the Willmore Lagrangian submanifolds.

2. Preliminaries

Let x : M �→ CPn be an n -dimensional Lagrangian submanifold in CPn . We
choose a local field of orthonormal frames e1, · · · ,en,e1∗ = Je1, · · · ,en∗ = Jen in CPn ,
such that, restricted to M , the vectors e1, · · · ,en are tangent to M , where J is the
complex structure of CPn . Let ω1, · · · ,ω2n is the field of dual frames. We make the
following convention on the range of indices:

i, j,k, · · · = 1, · · · ,n;1∗ = n+1, · · · ,n∗ = 2n;A,B,C, · · · = 1, · · · ,n,1∗, · · · ,n∗.
Then the structure equations of CPn are

dωA = −∑
B
ωAB ∧ωB, ωAB +ωBA = 0, (2.1)

dωAB = −∑
C

ωAC ∧ωCB +
1
2 ∑C,D

KABCDωC ∧ωD, (2.2)

KABCD = δACδBD − δADδBC + JACJBD − JADJBC +2JABJCD, (2.3)
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where JAB are the components of the complex structure J =∑JABeA
⊗

eB of CPn . Let
θA,θAB be the restriction of ωA,ωAB to M . Then θi∗ = 0. Taking its exterior derivative
and making use of (2.1) and the Cartan lemma, we obtain that

θik∗ =∑
j

hk∗
i j θ j, hk∗

i j = hk∗
ji . (2.4)

Since x : M �→CPn is Lagrangian, we have for any i, j

〈Jei,e j〉 = 0, 〈ei∗ ,Je j〉 = δi j. (2.5)

Taking exterior derivative of (2.5), we get for any i, j,k

hk∗
i j = hi∗

jk = h j∗
ik , θi∗ j∗ = θi j. (2.6)

If we denote by Ri jkl the Riemannian curvature tensor of M , we obtain the Gauss
equations

Ri jkl = (δikδ jl − δilδ jk)+∑
m∗

(hm∗
ik hm∗

jl −hm∗
il hm∗

jk ), (2.7)

Rik = (n−1)δik +n∑
m∗

Hm∗
hm∗

ik − ∑
j,m∗

hm∗
i j hm∗

jk , (2.8)

n(n−1)R = n(n−1)+n2H2−S, (2.9)

where S = ∑
i, j,k∗

(hk∗
i j )

2 , �H =∑
k∗

Hk∗ek∗ , Hk∗ = 1
n ∑

i
hk∗

ii , H = |�H| and R is the normalized

scalar curvature of M . The Codazzi equations and the Ricci identities are

hm∗
i jk = hm∗

ik j, (2.10)

hm∗
i jkl −hm∗

i jlk =∑
m

hm∗
mjRmikl +∑

m
hm∗

im Rmjkl +∑
k∗

hk∗
i j Rk∗m∗kl . (2.11)

The Ricci equations are

Ri∗ j∗kl = δ jlδik − δ jkδil +∑
m

(hi∗
kmh j∗

lm −h j∗
kmhi∗

lm). (2.12)

Combining (2.6) with (2.10), we know hk∗
i jl are totally symmetric, that is, for any i, j,k, l

hk∗
i jl = hi∗

jlk = h j∗
lki = hl∗

ki j. (2.13)

For the fix index m∗(n + 1 � m∗ � 2n) , we introduce an operator �m∗
due to

Cheng-Yau [4] by
�m∗

f =∑
i, j

(nHm∗
δi j −hm∗

i j ) fi, j. (2.14)

Since M is compact, the operator �m∗
is self-adjoint if and only if (see [4])∫

M
(�m∗

f )gdv =
∫

M
f (�m∗

g)dv, (2.15)

where f and g are any smooth functions on M .
The following lemma will be used in order to prove our theorems.
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LEMMA 2.1. ([12]). Let x : M �→CPn be an n-dimensional (n � 2) Lagrangian
submanifold. Then we have

|∇h|2 � 3n2

n+2
|∇⊥�H|2, (2.16)

where |∇h|2 = ∑
i, j,k,m∗

(hm∗
i jk)

2 , |∇⊥�H|2 = ∑
i,m∗

(Hm∗
,i )2 .

3. Integral equalities

Define tensors
h̃m∗

i j = hm∗
i j −Hm∗

δi j, (3.1)

σ̃m∗l∗ =∑
i, j

h̃m∗
i j h̃l∗

i j , σm∗l∗ =∑
i, j

hm∗
i j hl∗

i j . (3.2)

Then the (n×n)-matrix (σ̃αβ ) is symmetric and can be assumed to be diagonized for
a suitable choice of e1∗ , · · · ,en∗ . We set

σ̃m∗l∗ = σ̃m∗δm∗l∗ . (3.3)

By a direct calculation, we have

∑
k

h̃m∗
kk = 0, σ̃m∗l∗ = σm∗l∗ −nHm∗

Hl∗ , ρ2 =∑
m∗
σ̃m∗ = S−nH2, (3.4)

∑
i, j,k,m∗

hl∗
k jh

m∗
i j hm∗

ik = ∑
i, j,k,m∗

h̃l∗
k jh̃

m∗
i j h̃m∗

ik +2 ∑
i, j,m∗

Hm∗
h̃m∗

i j h̃l∗
i j +Hl∗ρ2 +nH2Hl∗ . (3.5)

From (3.1), (3.4) and (3.5), we may rewrite the Willmore equation of Hu-Li [8] as
follows

PROPOSITION 3.1. A Lagrangian submanifold x : M �→CPn is Willmore subman-
ifold if and only if for n+1 � m∗, l∗ � 2n

�m∗
(ρn−2) =(n−1)ρn−2Δ⊥Hm∗

+2(n−1)∑
i

(ρn−2)iH
m∗
,i (3.6)

+(n−1)Hm∗
Δ(ρn−2)+3(n−1)ρn−2Hm∗

+ρn−2(∑
l∗

Hl∗ σ̃m∗l∗ + ∑
i, j,k,l∗

h̃m∗
i j h̃l∗

ik h̃
l∗
k j).

Setting f = nHm∗
in (2.14), we have

�m∗
(nHm∗

) =∑
i
(nHm∗

)(nHm∗
)i,i −∑

i, j
hm∗

i j (nHm∗
)i, j. (3.7)

We also have

1
2
Δ(nH)2 =

1
2 ∑m∗,i

[(nHm∗
)2]i,i = n2|∇⊥�H|2 +∑

m∗,i
(nHm∗

)(nHm∗
)i,i. (3.8)
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Therefore, from (3.7) and (3.8), we get

∑
m∗

�m∗
(nHm∗

) =
1
2
Δ(nH)2−n2|∇⊥�H|2 − ∑

i, j,m∗
hm∗

i j (nHm∗
)i, j (3.9)

=
1
2
ΔS+

1
2
n(n−1)ΔH2− 1

2
Δρ2−n2|∇⊥�H|2 − ∑

i, j,m∗
hm∗

i j (nHm∗
)i, j.

On the other hand, we have

1
2
ΔS = ∑

i, j,k,m∗
(hm∗

i jk)
2 + ∑

i, j,m∗
hm∗

i j Δhm∗
i j (3.10)

= |∇h|2 + ∑
i, j,m∗

hm∗
i j (nHm∗

)i, j +∑
m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk)

+ ∑
m∗,l∗

∑
i, j,k

hm∗
i j hl∗

kiRl∗m∗ jk.

Putting (3.10) into (3.9), we have

∑
m∗

�m∗
(nHm∗

) = |∇h|2−n2|∇⊥�H|2 +
1
2
n(n−1)ΔH2− 1

2
Δρ2 (3.11)

+∑
m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk)+ ∑

m∗,l∗
∑
i, j,k

hm∗
i j hl∗

kiRl∗m∗ jk.

Multiplying (3.11) by ρn−2 and taking integration, we have from (2.15) that

∑
m∗

∫
M

(nHm∗
)�m∗

(ρn−2)dv =
∫

M
ρn−2(|∇h|2−n2|∇⊥�H|2)dv (3.12)

+
1
2
n(n−1)

∫
M
ρn−2ΔH2dv− 1

2

∫
M
ρn−2Δρ2dv

+
∫

M
ρn−2∑

m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk)dv

+
∫

M
ρn−2 ∑

m∗,l∗
∑
i, j,k

hm∗
i j hl∗

kiRl∗m∗ jkdv.

Taking the Willmore equation (3.6) into (3.12) and making use of the following∫
M
ρn−2∑

m∗
Hm∗�⊥Hm∗

dv =
1
2

∫
M
ρn−2∑

m∗
Δ⊥(Hm∗

)2dv−
∫
M
ρn−2 ∑

i,m∗
(Hm∗

,i )2dv

=
1
2

∫
M
ρn−2ΔH2dv−

∫
M
ρn−2|∇�H|2dv,

∫
M

H2Δ(ρn−2)dv = ∑
m∗,i

∫
M

(Hm∗
)2(ρn−2)i,idv = −∑

m∗,i

∫
M

(ρn−2)i((Hm∗
)2),idv

= −2
∫

M
∑
m∗

Hm∗∑
i

(ρn−2)iH
m∗
,i dv,
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−1
2

∫
M
ρn−2Δρ2dv =

1
2∑i

∫
M

(ρ2)i(ρn−2)idv = (n−2)
∫
M
ρn−2|∇ρ |2dv.

By a direct calculation, we have

PROPOSITION 3.2. For any n-dimensional compact Willmore Lagrangian sub-
manifold in CPn , the following integral equality holds

∫
M
ρn−2(|∇h|2−n|∇⊥�H|2)dv+(n−2)

∫
M
ρn−2|∇ρ |2dv (3.13)

−3n(n−1)
∫
M
ρn−2H2dv

−
∫
M
ρn−2 ∑

m∗,l∗
nHm∗

(Hl∗ σ̃m∗l∗ +∑
i, j,k

h̃m∗
i j h̃l∗

ik h̃
l∗
k j)dv

+
∫
M
ρn−2∑

m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk)dv

+
∫
M
ρn−2 ∑

m∗,l∗
∑
i, j,k

hm∗
i j hl∗

kiRl∗m∗ jkdv = 0.

From (2.8), (2.12) and (3.1), we have

∑
m∗,l∗

∑
i, j,k

hm∗
i j hl∗

kiRl∗m∗ jk = ∑
m∗,l∗

∑
i, j,k

hm∗
i j hl∗

ki(δl jδmk − δlkδmj) (3.14)

+ ∑
m∗,l∗

∑
i, j,k,p

hm∗
i j hl∗

ki(h
l∗
jph

m∗
pk −hl∗

kph
m∗
p j )

= ρ2−n(n−1)H2− 1
2 ∑

m∗,l∗, j,k
(∑

p
hl∗

jph
m∗
pk −∑

p
hm∗

jp hl∗
pk)

2

= ρ2−n(n−1)H2− 1
2 ∑

m∗,l∗, j,k
(∑

p
h̃l∗

jph̃
m∗
pk −∑

p
h̃m∗

jp h̃l∗
pk)

2

= ρ2−n(n−1)H2− 1
2 ∑m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗),

where Ãm∗ := (h̃m∗
i j ) = (hm∗

i j −Hm∗δi j) and N(A) denotes the square of the norm of
matrix A = (ai j) .

From (2.6), (2.7), (3.2), (3.4), (3.5) and (3.14), by a simple and direct calculation,
we have

∑
m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk) = nρ2− ∑

m∗,l∗
∑

i, j,k,l

hm∗
i j hl∗

i j h
m∗
lk hl∗

lk (3.15)

+n ∑
m∗,l∗

∑
i, j,k

Hl∗hl∗
k jh

m∗
i j hm∗

ik + ∑
m∗,l∗

∑
i, j,k,l

hm∗
i j hl∗

ki(h
l∗
jlh

m∗
lk −hl∗

klh
m∗
l j )
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=nρ2− ∑
m∗,l∗

σ2
m∗l∗ +n ∑

m∗,l∗
∑
i, j,k

Hl∗ h̃l∗
k jh̃

m∗
i j h̃m∗

ik +2n ∑
m∗,l∗

∑
i, j

Hm∗
Hl∗ h̃m∗

i j h̃l∗
i j

+n∑
l∗

(Hl∗)2ρ2 +n2H2∑
l∗

(Hl∗)2 − 1
2 ∑m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗)

=nρ2− ∑
m∗,l∗

σ̃2
m∗l∗ +nH2ρ2 +n ∑

m∗,l∗
∑
i, j,k

Hl∗ h̃l∗
k jh̃

m∗
i j h̃m∗

ik

− 1
2 ∑m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗ Ãm∗).

Putting (3.14) and (3.15) into (3.13), we have

PROPOSITION 3.3. For any n-dimensional compact Willmore Lagrangian sub-
manifold in CPn , the following integral equality holds∫

M
ρn−2(|∇h|2 −n|∇⊥�H|2)dv+(n−2)

∫
M
ρn−2|∇ρ |2dv (3.16)

−4n(n−1)
∫
M
ρn−2H2dv+n

∫
M
ρn−2(H2ρ2− ∑

m∗,l∗
Hm∗

Hl∗ σ̃m∗l∗)dv

+(n+1)
∫
M
ρndv−

∫
M
ρn−2 ∑

m∗,l∗
(N(Ãm∗ Ãl∗ − Ãl∗ Ãm∗)+ σ̃2

m∗l∗)dv = 0.

4. Rigidity theorems

We shall prove the following rigidity theorems in terms of ρ , the sectional curva-
ture and the Ricci curvature.

THEOREM 4.1. Let M be an n-dimensional (n � 2) compact Willmore Lagrangian
submanifold in CPn . Then the following integral inequality holds∫

M
ρn−2

{(
1
n
−2

)
ρ4 +(n+1)ρ2−4n(n−1)H2

}
dv � 0.

In particular, if (
2− 1

n

)
ρ4− (n+1)ρ2 +4n(n−1)H2 � 0, (4.1)

then (i) n= 2 , M is totally geodesic or M = S1×S1 ; (ii) n > 2 , M is totally umbilical.

Proof. From the well-known algebraic lemma 1 in [5], (3.2) and (3.3), we have

− ∑
m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗)− ∑
m∗,l∗

σ̃2
m∗l∗ (4.2)

� −∑
m∗
σ̃2

m∗ −2 ∑
m∗�=l∗

σ̃m∗ σ̃l∗ = −2(∑
m∗
σ̃m∗)2 +∑

m∗
σ̃2

m∗

� −2ρ4 +
1
n
(∑
m∗
σ̃m∗)2 = −(2− 1

n
)ρ4,



350 SHICHANG SHU AND SANYANG LIU

We also have

∑
m∗,l∗

Hm∗
Hl∗ σ̃m∗l∗ =∑

m∗
(Hm∗

)2σ̃m∗ �∑
m∗

(Hm∗
)2∑

l∗
σ̃l∗ = H2ρ2. (4.3)

By making use of lemma 2.1, (3.16), (4.2) and (4.3), we have

0 �
∫

M
ρn−2

(
|∇h|2− 3n2

n+2
|∇⊥�H|2

)
dv+

∫
M
ρn−2

(
3n2

n+2
−n

)
|∇⊥�H|2dv (4.4)

−4n(n−1)
∫
M
ρn−2H2dv+(n+1)

∫
M
ρndv−

∫
M
ρn−2

(
2− 1

n

)
ρ4dv

�
∫

M
ρn−2{

(
1
n
−2

)
ρ4 +(n+1)ρ2−4n(n−1)H2}dv.

(i) If n = 2, from (4.1) and (4.4), we have 3
2ρ

4 − 3ρ2 + 8H2 = 0 on M . If
ρ2 = 0, then H = 0 on M , we infer that S = 0 and M is totally geodesic. If ρ2 �= 0,
from 3

2ρ
4 − 3ρ2 + 8H2 = 0, we know that the equalities in (4.4) hold. Therefore, we

have
N(Ã3Ã4− Ã4Ã3) = 2N(Ã3)N(Ã4), 2(σ̃2

3 + σ̃2
4 ) = (σ̃3 + σ̃4)2. (4.5)

Thus, we have
σ̃3 = σ̃4. (4.6)

For m∗, l∗ = 3,4, we also have

∑
m∗,l∗

Hm∗
Hl∗ σ̃m∗l∗ = H2ρ2. (4.7)

From lemma 1 in [5], we know that at most two of Ãm∗ = (h̃m∗
i j ),m∗ = 3,4, are different

from zero. If all of Ãm∗ = (h̃m∗
i j ) are zero, then it is in contradiction with M is not

totally umbilical. If only one of them, say Ãm∗ , is different from zero, then it is in
contradiction with (4.6). Therefore, we may assume that

Ã3 = λ Ã, Ã4 = μB̃, λ ,μ �= 0,

where Ã and B̃ are defined by lemma 1 in [5].
From (4.7), we have

λ 2(H3)2 + μ2(H4)2 = (λ 2 + μ2)((H3)2 +(H4)2).

Since λ , μ �= 0, we infer that H3 = H4 = 0, that is, �H = 0 and M is a minimal
Lagrangian submanifold in CP2 , we have ρ2 = 2 and S = 2 on M . From the theorem
of Ludden, Okumura and Yano [13], we know that M = S1×S1 .

(ii) If n > 2, from (4.1) and (4.4), we have ρ = 0 on M , that is, M is totally
umbilical, or ( 1

n −2)ρ4 +(n+1)ρ2−4n(n−1)H2 = 0. In the latter case, if ρ2 = 0 on
M , we have M is totally umbilical. If ρ2 �= 0, we know that the equalities in (4.4) hold.
By the same assertion as in the proof of (i), we know that M is a minimal Lagrangian
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submanifold in CPn and S = (n+ 1)/(2− 1
n ) on M . From the theorems of Chen and

Ogiue [2], Ludden, Okumura and Yano [13], we know that n = 2 and M = S1 × S1 .
This is in contradiction with n > 2. This completes the proof of theorem 4.1. �

From (3.13), (3.14), (3.15) and (3.16), we know that for any real number a , the
following integral equality holds∫

M
ρn−2(|∇h|2−n|∇⊥�H|2)dv+(n−2)

∫
M
ρn−2|∇ρ |2dv (4.8)

−4n(n−1)
∫
M
ρn−2H2dv+n

∫
M
ρn−2(H2ρ2− ∑

m∗,l∗
Hm∗

Hl∗ σ̃m∗l∗)dv

− (a+1)n
∫
M

H2ρndv+(1+a)
∫
M
ρn−2∑

m∗
∑

i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk)dv

− (1+a)n
∫
M
ρn−2 ∑

m∗,l∗
∑
i, j,k

Hm∗
h̃m∗

i j h̃l∗
ik h̃

l∗
k jdv− (an−1)

∫
M
ρndv

+a
∫
M
ρn−2 ∑

m∗,l∗
σ̃2

m∗l∗dv− 1−a
2

∫
M
ρn−2 ∑

m∗,l∗
N(Ãm∗ Ãl∗ − Ãl∗Ãm∗)dv = 0.

Denote by K the function which assigns to each point of M the infimum of the
sectional curvature at that point. We have

THEOREM 4.2. Let M be an n-dimensional (n � 2) compact Willmore Lagrangian
submanifold in CPn . Then the following integral inequality holds

∫
M
ρn−2

{
((2n−1)

(
K− n−2√

n(n−1)
Hρ−H2

)
− (n−2))ρ2−4n(n−1)H2

}
dv � 0.

In particular, if(
(2n−1)

(
K− n−2√

n(n−1)
Hρ−H2

)
− (n−2)

)
ρ2−4n(n−1)H2 � 0, (4.9)

then (i) n= 2 , M is totally geodesic or M = S1×S1 ; (ii) n > 2 , M is totally umbilical.

Proof. For a fixed m∗ , n + 1 � m∗ � 2n , we take a local orthonormal frame
field {e1, · · · ,en} such that hm∗

i j = λm∗
i δi j , then h̃m∗

i j = μm∗
i δi j with μm∗

i = λm∗
i −Hm∗

,

∑
i
μm∗

i = 0. Thus, we have

∑
m∗,i, j,k,l

hm∗
i j (hm∗

kl Rli jk +hm∗
li Rlk jk) =

1
2 ∑

m∗,i, j
(μm∗

i − μm∗
j )2Ri ji j � nKρ2, (4.10)

and the equality in (4.10) holds if and only if Ri ji j = K for any i �= j .
Let ∑

i
(h̃l∗

ii )
2 = τl∗ . Then τl∗ � ∑

i, j
(h̃l∗

i j )
2 = σ̃l∗ . Since ∑

i
h̃l∗

ii = 0, ∑
i
μm∗

i = 0 and

∑
i
(μm∗

i )2 = σ̃m∗ , from the algebraic lemmas in [3] (see lemma 3.3 and lemma 3.4 in
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[3]), we have

∑
m∗,l∗

∑
i, j,k

Hm∗
h̃m∗

i j h̃l∗
k jh̃

l∗
ik = ∑

l∗,m∗
∑
i, j,k

Hl∗ h̃l∗
i j h̃

m∗
k j h̃m∗

ik = ∑
m∗,l∗

Hl∗∑
i

h̃l∗
ii (μ

m∗
i )2 (4.11)

� n−2√
n(n−1)

∑
m∗,l∗

|Hl∗ |σ̃m∗
√
τl∗

� n−2√
n(n−1)

∑
m∗
σ̃m∗∑

l∗
|Hl∗ |

√
σ̃l∗

� n−2√
n(n−1)

ρ2
√
∑
l∗

(Hl∗)2∑
l∗
σ̃l∗ =

n−2√
n(n−1)

Hρ3.

From (3.3), we get

∑
m∗,l∗

σ̃2
m∗l∗ =∑

m∗
σ̃2

m∗ � 1
n
(∑
m∗
σ̃m∗)2 =

1
n
ρ4. (4.12)

From lemma 1 in [5], (3.2) and (3.3), we have

∑
m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗) � 2 ∑
m∗ �=l∗

σ̃m∗ σ̃l∗ = 2(∑
m∗
σ̃m∗)2 −2∑

m∗
σ̃2

m∗ (4.13)

� 2ρ4−2
1
n
(∑
m∗
σ̃m∗)2 = 2

n−1
n

ρ4.

Therefore, from (4.3), (4.8), lemma 2.1, (4.10)–(4.13), we obtain that

0 �
∫

M
ρn−2(|∇h|2−n|∇⊥�H|2)dv+(n−2)

∫
M
ρn−2|∇ρ |2dv (4.14)

−4n(n−1)
∫
M
ρn−2H2dv+n

∫
M
ρn−2(H2ρ2− ∑

m∗,l∗
Hm∗

Hl∗ σ̃m∗l∗)dv

− (1+a)n
∫
M

H2ρndv+(1+a)
∫
M
ρn−2nKρ2dv

− (1+a)n
∫
M
ρn−2 n−2√

n(n−1)
Hρ3dv− (an−1)

∫
M
ρndv

+a
∫
M
ρn−2 1

n
ρ4dv− (1−a)

∫
M
ρn−2 n−1

n
ρ4dv

�−4n(n−1)
∫
M
ρn−2H2dv+(1+a)n

∫
M
ρn

(
K− n−2√

n(n−1)
Hρ−H2

)
dv

− (an−1)
∫
M
ρndv+

[
a
n
− (1−a)

n−1
n

]∫
M
ρn+2dv.

Putting a = n−1
n , we have

0 �
∫

M
ρn−2

{(
(2n−1)

(
K− n−2√

n(n−1)
Hρ−H2

)
−(n−2)

)
ρ2−4n(n−1)H2

}
dv.

(4.15)
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(i) If n = 2, from (4.9) and (4.15), we have 3(K−H2)ρ2 −8H2 = 0. If ρ2 = 0
on M , then H = 0 on M , we infer that M is totally geodesic. If ρ2 �= 0 on M , then we
have the equality in (4.15) holds. Therefore, we know that the equalities in (4.14) hold.
Thus, the equalities in lemma 1 of [5], (4.12) and (4.13) hold. Since we know that M
is not totally umbilical, we have (4.5)–(4.7) hold. By making use of the same assertion
as in the proof of theorem 4.1, we infer that M is a minimal Lagrangian submanifold
in CP2 with K = 0 on M . From the theorem of Shen [16], we have M = S1×S1 .

(ii) If n > 2, from (4.9) and (4.15), we have ρ = 0, that is, M is totally umbilical,
or (

(2n−1)

(
K− n−2√

n(n−1)
Hρ−H2

)
− (n−2)

)
ρ2−4n(n−1)H2 = 0.

In the latter case, if ρ2 = 0 on M , we have M is totally umbilical. If ρ2 �= 0 on M ,
then we have the equality in (4.15) holds. Therefore, we know that the equalities in
(4.14) hold. By making use of the same assertion as in the proof of theorem 4.1, we
infer that M is a minimal Lagrangian submanifold in CPn with K = n−2

2n−1 on M . From
the theorem of Shen [16], we have n = 2 and M = S1 × S1 . This is in contradiction
with n > 2. This completes the proof of theorem 4.2. �

Denote by Q the function which assigns to each point of M the infimum of the
Ricci curvature at that point. We have

LEMMA 4.3. For any n-dimensional Lagrangian submanifold in CPn , the fol-
lowing inequality holds

∑
m∗,l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗) � 4{(n−1)+ (n−2)Hρ+H2−Q}ρ2− 4
n
ρ4. (4.16)

Proof. From Gauss equation (2.8), (3.1) and

∑
m∗

Hm∗
hm∗

ii �
√
∑
m∗

(Hm∗)2
√
∑
m∗

(hm∗
ii )2 � Hρ ,

we obtain that

∑
m∗ �=l∗,i

(h̃m∗
il )2 � (n−1)+ (n−2)Hρ+H2−Q− (h̃m∗

il )2. (4.17)

Thus, we have

∑
l∗

N(Ãm∗ Ãl∗ − Ãl∗Ãm∗) = ∑
l∗ �=m∗,i,l

(h̃l∗
il )

2(μm∗
i − μm∗

l )2 � 4 ∑
l∗ �=m∗,i,l

(h̃l∗
il )

2(μm∗
l )2 (4.18)

� 4{(n−1)+ (n−2)Hρ+H2−Q}∑
l

(μm∗
l )2−4∑

l

(μm∗
l )4

� 4{(n−1)+ (n−2)Hρ+H2−Q}∑
l

(μm∗
l )2− 4

n
(∑

l

(μm∗
l )2)2.

This completes the proof of lemma 4.3. �
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THEOREM 4.4. Let M be an n-dimensional (n � 2) compact Willmore Lagrangian
submanifold in CPn . Then the following integral inequality holds

∫
M
ρn−2

{(
4
n
−1

)
ρ4−4

(
3n−5

4
+(n−2)Hρ+H2−Q

)
ρ2−4n(n−1)H2

}
dv � 0.

In particular, if

(
4
n
−1

)
ρ4−4

(
3n−5

4
+(n−2)Hρ+H2−Q

)
ρ2−4n(n−1)H2 � 0, (4.19)

then M is totally umbilical.

Proof. From (3.16), lemma 2.1, (3.3), (4.3), lemma 4.3 and

∑
m∗,l∗

σ̃2
m∗l∗ =∑

m∗
σ̃2

m∗ � (∑
m∗
σ̃m∗)2 = ρ4, (4.20)

we obtain that

0 � −4n(n−1)
∫
M
ρn−2H2dv+(n+1)

∫
M
ρndv (4.21)

−
∫

M
ρn−2

{
4((n−1)+ (n−2)Hρ+H2−Q)ρ2− 4

n
ρ4
}

dv−
∫
M
ρn−2ρ4dv

=
∫

M
ρn−2

{(
4
n
−1

)
ρ4−4

(
3n−5

4
+(n−2)Hρ+H2−Q

)
ρ2−4n(n−1)H2

}
dv,

From (4.19) and (4.21), we have ρ = 0, that is, M is totally umbilical, or

(
4
n
−1

)
ρ4−4

(
3n−5

4
+(n−2)Hρ+H2−Q

)
ρ2−4n(n−1)H2 = 0.

In the latter case, if ρ2 = 0, then M is totally umbilical; if ρ2 �= 0, we know that the
equalities in (4.21) and (4.20) hold. From ∑

m∗
σ̃2

m∗ = (∑
m∗
σ̃m∗)2 , we have ∑

m∗ �=l∗
σ̃m∗ σ̃l∗ =

0. This implies that (n−1) of the σ̃m∗ must be zero. Since ρ2 = ∑
m∗,i, j

(h̃m∗
i j )2 �= 0 and

σ̃m∗ = ∑
i, j

(h̃m∗
i j )2 , we infer that (n−1) of the Ãm∗ = (h̃m∗

i j ) must be zero so that n = 1.

This is in contradiction with n � 2. This completes the proof of Theorem 4.4. �

5. Some related results

Let M be an n -dimensional (n � 2) compact Willmore Lagrangian submanifold
in CPn with nonnegative sectional curvature. Putting a = 1 in (4.8), by (4.3), (4.8),
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lemma 2.1, (4.10)–(4.12), we have

0 �
∫

M
ρn−2

(
|∇h|2− 3n2

n+2
|∇⊥�H|2

)
dv+

∫
M
ρn−2

(
3n2

n+2
−n

)
|∇⊥�H|2dv (5.1)

−4n(n−1)
∫
M
ρn−2H2dv−2n

∫
M
ρnH2dv+2

∫
M
ρn−2nKρ2dv

−2n
∫
M
ρn−2 n−2√

n(n−1)
Hρ3dv− (n−1)

∫
M
ρndv+

∫
M
ρn−2 1

n
ρ4dv

�
∫

M
ρn−2

{
1
n
ρ4−2n

(
H2 +

n−2√
n(n−1)

Hρ+
n−1
2n

)
ρ2−4n(n−1)H2

}
dv.

Therefore, we have the following

THEOREM 5.1. Let M be an n-dimensional (n � 2) compact Willmore Lagrangian
submanifold in CPn with nonnegative sectional curvature. Then the following integral
inequality holds

∫
M
ρn−2

{
1
n
ρ4−2n

(
H2 +

n−2√
n(n−1)

Hρ +
n−1
2n

)
ρ2−4n(n−1)H2

}
dv � 0.

In particular, if

1
n
ρ4−2n

(
H2 +

n−2√
n(n−1)

Hρ +
n−1
2n

)
ρ2−4n(n−1)H2 � 0, (5.2)

then (i) n = 2 , M is totally geodesic or M = S1×S1 ; (ii) n > 2 , M is totally umbilical
or M is an open part of the Clifford torus Tn ⊂CPn .

Proof. (i) If n = 2, from (5.1) and (5.2), we have 1
2ρ

4−4(H2 + 1
4)ρ2−8H2 = 0.

If ρ2 = 0 on M , then H = 0 on M , that is, M is totally geodesic. If ρ2 �= 0 on M ,
we have the equalities in (5.1) hold. Therefore, the equalities in (4.12) and (4.3) hold.
We obtain that 2(σ̃2

3 + σ̃2
4 ) = (σ̃3 + σ̃4)2 , that is,

σ̃3 = σ̃4, (5.3)

and for m∗, l∗ = 3,4,

∑
m∗,l∗

Hm∗
Hl∗ σ̃m∗l∗ = H2ρ2. (5.4)

From (5.4), we have

(H3)2σ̃3 +(H4)2σ̃4 = ((H3)2 +(H4)2)(σ̃3 + σ̃4),

that is,
(H3)2σ̃4 +(H4)2σ̃3 = 0. (5.5)

From (5.3) and ρ2 = σ̃3 + σ̃4 �= 0, we infer that σ̃3 = σ̃4 �= 0. Thus, (5.5) implies that
H3 = H4 = 0, that is, �H = 0 and M is a minimal Lagrangian submanifold in CP2 with
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ρ2 = 2 and S = 2 on M . From the theorem of Ludden, Okumura and Yano [13], we
know that M = S1×S1 .

(ii) If n > 2, from (5.1) and (5.2), we have ρ = 0, that is M is totally umbilical,
or

1
n
ρ4−2n

(
H2 +

n−2√
n(n−1)

Hρ +
n−1
2n

)
ρ2−4n(n−1)H2 = 0.

In the latter case, if ρ2 = 0 on M , we have M is totally umbilical. If ρ2 �= 0 on M , then
we have the equalities in (5.1) hold. Therefore, we have ∇⊥�H = 0 and ∇h = 0. This
implies that the second fundamental form of M is parallel. We also have the equalities
in (4.12) and (4.3) hold, that is, we have

σ̃n+1 = · · · = σ̃2n. (5.6)

∑
m∗,l∗

Hm∗
Hl∗ σ̃m∗l∗ = H2ρ2. (5.7)

From (5.7) and (3.3), we have ∑
m∗

(Hm∗
)2σ̃m∗ = H2ρ2 , that is, by (5.6), H2σ̃n+1 =

nH2σ̃n+1 . Thus, we have H2(n− 1)σ̃n+1 = 0. Since ρ2 �= 0 on M , we infer that
σ̃n+1 �= 0, then we have H = 0 and M is a minimal Lagrangian submanifold in CPn

with parallel second fundamental form and S = n(n−1) . From the theorem of Li and
Zhao [10], we have M is an open part of the Clifford torus Tn ⊂CPn . This completes
the proof of the Theorem 5.1. �
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