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ON WEIGHTED MEAN MATRICES WHOSE l p NORMS

ARE DETERMINED ON DECREASING SEQUENCES

PENG GAO

(Communicated by G. Bennett)

Abstract. We give a condition on weighted mean matrices so that their l p norms are determined
on decreasing sequences when the condition is satisfied. We apply our result to give a proof of a
conjecture of Bennett and discuss some related results.

1. Introduction

Suppose throughout that p �= 0, 1
p + 1

q = 1. For p � 1, let l p be the Banach space
of all complex sequences a = (an)n�1 with norm

||a||p := (
∞

∑
n=1

|an|p)1/p < ∞.

The celebrated Hardy’s inequality ([18, Theorem 326]) asserts that for p > 1,

∞

∑
n=1

∣∣∣1
n

n

∑
k=1

ak

∣∣∣p �
( p

p−1

)p ∞

∑
n=1

|an|p. (1.1)

Hardy’s inequality can be regarded as a special case of the following inequality:

∣∣∣∣∣∣C ·a
∣∣∣∣∣∣p

p
=

∞

∑
n=1

∣∣∣ ∞

∑
k=1

cn,kak

∣∣∣p � Up

∞

∑
n=1

|an|p, (1.2)

in which C = (cn,k) and the parameter p > 1 are assumed fixed, and the estimate is to
hold for all complex sequences a ∈ l p . The l p operator norm of C is then defined as

||C||p,p = sup
||a||p=1

∣∣∣∣∣∣C ·a
∣∣∣∣∣∣

p
.

It follows that inequality (1.2) holds for any a ∈ l p when U1/p
p � ||C||p,p and fails to

hold for some a ∈ l p when U1/p
p < ||C||p,p . Hardy’s inequality thus asserts that the
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Cesáro matrix operator C , given by cn,k = 1/n,k � n and 0 otherwise, is bounded on
l p and has norm � p/(p−1) . (The norm is in fact p/(p−1) .)

We say a matrix A = (an,k) is a lower triangular matrix if an,k = 0 for n < k and
a lower triangular matrix A is a summability matrix if an,k � 0 and ∑n

k=1 an,k = 1. We
say a summability matrix A is a weighted mean matrix if its entries satisfy:

an,k = λk/Λn, 1 � k � n; Λn =
n

∑
i=1

λi, λi � 0, λ1 > 0. (1.3)

We shall also say that a weighted mean matrix A is generated by {λn}∞n=1 (resp.
{λn}N

n=1 ) when A is an infinite weighted mean matrix (resp. finite N ×N weighted
mean matrix) whose entries are given by (1.3).

Hardy’s inequality (1.1) motivates one to determine the l p operator norm of an
arbitrary summability or weighted mean matrix A . In the weighted mean matrix case,
as the diagonal entries {λn/Λn} uniquely determine one such a matrix, one certainly
expects to obtain a bound for its norm using only the diagonal terms. In [17], the author
proved the following result:

THEOREM 1.1. Let 1 < p <∞ be fixed. Let A be a weighted mean matrix gener-
ated by {λn}∞n=1 . If for any integer n � 1 , there exists a positive constant 0 < L < p
such that

Λn+1

λn+1
� Λn

λn

(
1− Lλn

pΛn

)1−p
+

L
p

, (1.4)

then ||A||p,p � p/(p−L) .

It is easy to see that the above result implies the following well-known result of
Cartlidge [9] (see also [2, p. 416, Theorem C]):

THEOREM 1.2. Let 1 < p <∞ be fixed. Let A be a weighted mean matrix gener-
ated by {λn}∞n=1 . If

L = sup
n

(Λn+1

λn+1
− Λn

λn

)
< p , (1.5)

then ||A||p,p � p/(p−L) .

The above result of Cartlidge is often very handy to apply for determining l p

norms of certain weighted mean matrices, when combined with a result of Cass and
Kratz [10], which says that for a weighted mean matrix A generated by {λn}∞n=1 ,
with the λn ’s generated by a positive logarithmico-exponential function (for details,
see [14]) and satisfying limn→∞Λn/(nλn) = L < p , then ||A||p,p � p/(p−L) . As an
example, we note the following two inequalities were claimed to hold (with no proofs
supplied) by Bennett ( [4, p. 40-41]; see also [5, p. 407]):

∞

∑
n=1

∣∣∣ 1
nα

n

∑
i=1

(iα − (i−1)α)ai

∣∣∣p �
( α p
α p−1

)p ∞

∑
n=1

|an|p, (1.6)

∞

∑
n=1

∣∣∣ 1

∑n
i=1 iα−1

n

∑
i=1

iα−1ai

∣∣∣p �
( α p
α p−1

)p ∞

∑
n=1

|an|p, (1.7)
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whenever p > 1,α p > 1. We note here the constant (α p/(α p−1))p is best possible
by the result of Cass and Kratz (or see [6]).

Straightforward applications of Theorem 1.2 allow the author [14] to prove in-
equalities (1.6) for p > 1,α � 1 and (1.7) for p > 1,α � 2 or 0 < α � 1,α p > 1. The
same result was obtained for (1.7) by Bennett himself [6] independently and his proof
also relies on Cartlidge’s result. Using a different approach, Bennett was able to prove
(1.6) for the full range of α (see [6, Theorem 1] with β = 1 there). Using the result of
Theorem 1.1, the author [17] has shown that inequality (1.7) holds for p � 2,1 < α < 2
(in fact, as pointed out in [17], for fixed 1 < p < 2, one can also prove (1.7) for some
cases of 1 < α < 2).

We note here that by a change of variables ak → a1/p
k in (1.1) and on letting p →

+∞ , one obtains the following well-known Carleman’s inequality [8], which asserts
that for convergent infinite series ∑an with non-negative terms, one has

∞

∑
n=1

(
n

∏
k=1

ak)
1
n � e

∞

∑
n=1

an,

with the constant e being best possible.
It is then natural to study the following weighted version of Carleman’s inequality:

N

∑
n=1

( n

∏
k=1

aλk/Λn
k

)
� EN

N

∑
n=1

an, (1.8)

where the notations are as in (1.3) and N � 1 is an integer or N = ∞ . The task here
is to determine the best constant EN so that inequality (1.8) holds for any (convergent
when N = ∞) series ∑an with non-negative terms. Note that (1.8) can be regarded as
the p → +∞ case of the following inequality (once again by a change of variables):

N

∑
n=1

( n

∑
k=1

λk

Λn
ak

)p
� Up,N

N

∑
n=1

ap
n , (1.9)

where Up,N is a positive constant, an � 0 and λn,Λn ’s are given as in (1.3).
Note that Cartlidge’s result (Theorem 1.2) implies that when (1.5) is satisfied, then

for any a ∈ l p , inequality (1.9) holds for any N with Up,N = (p/(p−L))p . Similar

to our discussions above, by a change of variables ak → a1/p
k in (1.9) and on letting

p → +∞ , one obtains inequality (1.8) with EN = eL as long as (1.5) is satisfied with p
replaced by +∞ there.

In connection to (1.7), Bennett [6, p. 829] further conjectured that inequality (1.8)
holds for λk = kα for α >−1 with E∞ = e1/(α+1) . As the cases −1 < α � 0 or α � 1
follow directly from the known cases of inequalities (1.7) upon changes of variables
α → α + 1,ak → a1/p

k and on letting p → +∞ , the only nontrivial cases are when
0 < α < 1. As these cases are the limits of the corresponding l p cases and the author
[17] has shown (1.7) hold for p � 2,1 < α < 2 using Theorem 1.1, it follows that
Bennett’s conjecture is true.

Motivated by the study of inequalities (1.6)–(1.7), we seek for extra inputs that
may lead to a resolution of the remaining case of (1.7) for 1 < p < 2,1 < α < 2. For
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this, we note the following natural question related to the l p norms of any matrix asked
by Bennett [5, Problem 7.23]: When is the norm of a matrix determined by its action
on decreasing sequences? In other words, when do we have

||C||p,p = sup
{
||C ·a||p : ||a||p = 1 and a decreasing

}
? (1.10)

For weighted mean matrices, it is known that [2, p. 422] that sequences a , with

an/λ
1/(p−1)
n decreasing in n , are sufficient to determine the norm. Note that this cer-

tainly implies (1.10) when the λn ’s are decreasing. A slightly generalization of this
later case is given in the following lemma:

LEMMA 1.1. [12, Lemma 2.4] Let p > 1 and C = (cn,k)n,k�1 be an arbitrary
lower triangular matrix. If cn,k � cn,k+1 � 0 for all n � 1,1 � k � n− 1 , then (1.10)
holds.

We refer the reader to the articles [11] and [13] for more recent developments in
this area. It is our goal in this paper to give a condition on weighted mean matrices in
Section 2 so that (1.10) will hold. As an application, we will give another proof of the
above mentioned Bennett’s conjecture.

We note that Cartlidge’s result (Theorem 1.2) only allows one to prove (1.6) with
some restrictions on the α ’s, as in [14], leaving alone the cases 1/p <α � 1. However,
for these cases, Lemma 1.1 implies that (1.10) holds for the corresponding matrices.
This extra information can be used to give a proof of these cases and in fact we shall
prove a more general result in Section 3.

In [17], the author has shown that several approaches in the literature concerning
the l p norms of weighted mean matrices are equivalent. In Section 4, we will consider
another approach to the l p norms of weighted mean matrices, namely the Schur’s test.
We will show that Schur’s test is equivalent to the other approaches mentioned in [17]
and we shall point out how Bennett’s proof of (1.6) can be rewritten using Schur’s test.
We shall also apply Schur’s test to give extensions of (1.6) which in turn allows us to
view both inequalities (1.6) and (1.7) as special cases of a family of inequalities.

2. On the validity of (1.10) for weighted mean matrices

In this section, we want to first present a result regarding the validity of (1.10)
for weighted mean matrices. Since one can often reduce the questions of finding the
norms of infinite weighted mean matrices to that of finite ones, we consider only finite
weighted mean matrices here. Thus instead of (1.2), we consider (1.9) instead and we
have

THEOREM 2.1. Let p > 1 be fixed and let N � 1 be a fixed integer and A a
weighted mean matrix generated by {λn}N

n=1 . Suppose that (1.9) is satisfied for some
positive constant Up,N . If for any 1 � k � N−1 , the following condition

1
Λk

� Up,N

( 1
λk

− 1
λk+1

)
(2.1)
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is satisfied, then (1.10) holds for C = A in this case.

Proof. Since our matrix A is of finite dimension, it is easy to see that in this case
we have

μ1/p
p,N := ||A||p,p = max

||a||p=1

∣∣∣∣∣∣A ·a
∣∣∣∣∣∣

p
.

Thus without loss of generality, we may assume that the maximum is reached at some
a with ||a||p = 1. It is shown in [17, Sec 3] that in this case we have an > 0 for all
1 � n � N and on setting

An =
n

∑
k=1

λkak

Λn
,

we also have

μp,N

(
ap−1

k

λk
− ap−1

k+1

λk+1

)
=

Ap−1
k

Λk
, 1 � k � N−1; μp,N

ap−1
N

λN
=

Ap−1
N

ΛN
;

N

∑
n=1

ap
n = 1.

(2.2)
We now show by induction on k that if (2.1) is satisfied, then the sequence a

satisfying (2.2) must be decreasing. First, it is easy to see that a1 � a2 using the
relation k = 1 in (2.2) and noting that A1 = a1 and 0 < μp,N � Up,N by assumption. It
now follows by induction that Ak � ak for k � 1 and that ak � ak+1 now follows from
the k -th relation in (2.2) and this establishes our assertion. �

We note here that one sees from (2.2) that that sequence a with an/λ
1/(p−1)
n de-

creasing in n , are sufficient to determine the norm, this is mentioned in Section 1.
Now to apply Theorem 2.1, one needs to find some constant Up,N so that (1.9)

holds. This is not a problem in many cases, as one can apply Theorem 1.1 or Theorem
1.2. For example, if we use Theorem 1.2, then we can deduce the following result from
Theorem 2.1:

COROLLARY 2.1. Let p > 1 be fixed and let N � 1 be a fixed integer and A a
weighted mean matrix generated by {λn}N

n=1 . Suppose that (1.5) is satisfied and for
any 1 � k � N−1 , we have

(
1− L

p

)p
� Λk

( 1
λk

− 1
λk+1

)
, (2.3)

then (1.10) holds for C = A in this case.

We note that the left-hand side expression of (2.3) is an increasing function of p
for fixed L . Thus if L < 1, then upon taking p = 1, we see that (1.10) holds for any
p > 1 as long as

inf
n

(Λn+1

λn+1
− Λn

λn

)
� L. (2.4)

One should compare the above with (1.5). Interestingly enough, (2.4) tells us that if
the condition (1.5) fails in the worst possible way (so that (2.4) holds), then Cartlidge’s
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result (Theorem 1.2) does not help in determining the norm but then we can have an
extra input by knowing that in this case (1.10) holds, provided that we can know by
means other than Theorem 1.2 that the norm is bounded by p/(p− L) (thus (2.3) is
still applicable here). In particular, we point out here that if inequalities (1.7) were true
for p > 1,1 <α < 2 (note that it is shown in [17] that this is the case when p � 2), then
Theorem 2.1 implies that one may focus on decreasing sequences when trying to prove
(1.7), since in this case (2.4) holds with λk = kα−1 and L = 1/α (see [6, Theorem 6]).
Of course one is not able to apply (2.1) using the constant Up,N = (α p/(α p−1))p for
the unknown cases of (1.7). However, for the case of p being large, one may hope to
find a coarse bound Up,N so that (1.7) hold with the constant (α p/(α p−1))p replaced
by Up,N and (2.1) is also satisfied and hopefully the extra information (that one may
focus on decreasing sequences) will allow one to give a proof of (1.7) for the cases
1 < α < 2 and p large. We shall not worry about finding such a coarse bound here but
we will show later in this section that the p→+∞ case (corresponding to the conjecture
of Bennett mentioned in Section 1) follows from this approach.

By looking at the case k = 1 of (2.2), we see that the case k = 1 of (2.1) with Up,N

replaced by μp,N is a necessary condition for a2 � a1 . When A = (ai, j) is an infinite
weighted mean matrix, then we denote AN = (ai, j)1�i, j�N and let μp,N = ||AN ||pp,p and
note that we have μp,N−1 � μp,N for N � 2 (one sets aN = 0 in (1.9) to see this), thus
the sequence {μp,N}∞N=1 is increasing and thus we have μp,N → ||A||pp,p as N → +∞ ,
which allows us to deduce immediately the following

COROLLARY 2.2. Let p > 1 be fixed and A a weighted mean matrix generated
by {λn}N

n=1 . A necessary condition for (1.10) to hold for C = A is

1
λ1

� ||A||pp,p

( 1
λ1

− 1
λ2

)
.

If moreover, the sequence {Λn/λn}∞n=1 is convex, then the above condition is also suf-
ficient.

We note here by a result of Bennett [6, Theorem 2], we know that the sequence
{Λn/λn}∞n=1 is convexwhen λn = nα for α � 1 or α � 0 and is concave for 0 �α � 1.

We now consider two analogues of Theorem 2.1 here. First we note that using [15,
Sec 2] and arguing as in the proof of Theorem 2.1, we have a similar result concerning
inequality (1.8), namely,

THEOREM 2.2. Let N � 1 be a fixed integer and suppose that EN is the best
possible constant to make (1.8) hold. If for any 1 � k � N − 1 , inequality (2.1) is
satisfied with Up,N replaced by E ′

N for some constant E ′
N � EN there, then to prove

(1.8), it suffices to establish it for decreasing sequences.

Next, we note that one can also study inequality (1.9) when p < 0 and one of-
ten expects to get result analogue to the case p > 0. To be precise, we consider the
following inequality for an � 0 and p < 0,

N

∑
n=1

( n

∑
k=1

λk

Λn
a1/p

k

)p
� Up,N

N

∑
n=1

an. (2.5)
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Here we define the value of the left-hand side expression above to be 0 when one or
more of the an ’s is zero. This makes the left-hand side expression above a continuous
function on the compact set {an � 0|∑N

n=1 an = 1} and therefore we have Up,N < ∞ .
From now on, for a weighted mean matrix A generated by {λn}N

n=1 (N finite or infi-
nite) and a fixed p < 0, we shall denote ||A||pp,p for the supreme of the left-hand side
expression of (2.5), over the set {an � 0|∑N

n=1 an = 1} . We now have the following
analogue of Cartlidge’s result for p < 0, which can be easily established by following
the proof for the case p > 1 given in [16] by noting that the case n = 1 of (1.5) implies
L � 0.

THEOREM 2.3. Let p < 0 be fixed and A a weighted mean matrix generated by
{λn}N

n=1 . Then
∞

∑
n=1

Ap
n � p

p−L

∞

∑
n=1

anA
p−1
n ,

where L is given as in (1.5). In particular, inequality (2.5) holds with ||A||pp,p � (p/(p−
L))p .

Now, analogue to Theorem 2.1, we have

THEOREM 2.4. Let p < 0 be fixed and N � 1 a fixed integer and A a weighted
mean matrix generated by {λn}N

n=1 and suppose that (2.5) holds for some constant
Up,N . If for any 1 � k � N−1 , inequality (2.1) is satisfied with Up,N , then ||A||pp,p is
determined on an increasing sequence.

Now, we want to see what can be said about the l p norm of a given matrix, taking
into the account that (1.10) holds for such a matrix. One strategy is to find a matrix
whose l p norm (or an upper bound of it) is known, say by Cartlidge’s result. Then one
can make a comparison of the two matrices, thanks to the following result:

LEMMA 2.1. [5, Lemma 2.1] Let u,v be n-tuples with non-negative entries with
n � 1 and

k

∑
i=1

ui �
k

∑
i=1

vi, 1 � k � n−1;
n

∑
i=1

ui =
n

∑
i=1

vi.

then
n

∑
i=1

uiai �
n

∑
i=1

viai,

for any decreasing n-tuple a and the above inequality reverses when a is increasing.

We note that the above lemma is given in [5, Lemma 2.1] for a slightly general
statement, but only for the case when a is decreasing and the case of a being increasing
follows by applying the previous case to −a .

The above lemma allows us to deduce the following result:
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THEOREM 2.5. Let A,A′ be two weighted mean matrix generated by {λn}N
n=1

and {λ ′
n}N

n=1 respectively. Suppose that Λn/λn � Λ′
n/λ ′

n for all n . Then for fixed
p > 1 , if (1.10) holds for C = A, we have ||A||p,p � ||A′||p,p . Similarly, for fixed
p < 0 , if ||A||pp,p is determined on an increasing sequence, we have ||A||pp,p � ||A′||pp,p .

Proof. Since the proofs are similar, we will only prove the p > 1 case here. In
this case as (1.10) holds for C = A , it follows from Lemma 2.1 that ||A||p,p � ||A′||p,p

as long as one can show that for any k � n ,

Λk

Λn
� Λ′

k

Λ′
n
.

By induction, it suffices to establish the above inequality for k = n−1 and one sees eas-
ily in this case the above inequality is equivalent to Λn/λn � Λ′

n/λ ′
n and this completes

the proof. �

We note here the above theorem can be regarded as in the spirit of Bennett’s “right
is tight principle” (see page 409 of [5]) concerning the l p norms of summability matri-
ces. According to the above theorem, we can interpret this principle for the weighted
mean matrices as saying that for two given weighted mean matrices, the one with
termwise larger diagonal entries has smaller norm, provided its norm is determined
on decreasing sequences.

As a concrete example of an application of the above theorem, we consider (1.7)
for the cases p > 1,1 < α < 2. As we mentioned earlier, if we assume (1.7) hold for
those cases, then (1.10) holds for the corresponding matrix and in fact this is the case
at least for p � 2,1 < α < 2 as (1.7) are known to hold for these cases. Now assume
(1.10) does hold for the corresponding matrix for the cases p > 1,1 < α < 2 of (1.7),
then in order to apply Theorem 2.5 to establish (1.7), we need to find a weighted mean
matrix A′ (we may again focus on the finite matrices) whose l p norm is bounded by
α p/(α p−1) . Now for the cases 1 < α < 2 of (1.7), we consider the following choice
of the matrix A′ generated by {λ ′

n}N
n=1 , satisfying

λ ′
1 = 1,

Λ′
n

λ ′
n

=
n+α/2

α
, n � 2.

Note that this defines the λ ′
n ’s uniquely and λ ′

n > 0 for all n . For a fixed 1 < α < 2, we
now apply Theorem 1.1 to conclude ||A′||p,p � α p/(α p− 1) for p > 1/(α − 1)2 by
noting that it suffices to prove the case n= 1 of (1.4) with L = 1/α and this case follows
when we bound (1−1/(pα))1−p from below by 1−(1− p)/(pα)+(1−1/p)/(2α2) .
It is also easy to check that for n � 2,

∑n
k=1 kα−1

nα−1 � n+α/2
α

.

One can similarly discuss the case p < 0,1 < α < 2 using the following analogue of
Theorem 1.1:
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THEOREM 2.6. Let p < 0 be fixed. Let A be a weighted mean matrix generated
by {λn}N

n=1 . If for any integer n � 1 , there exists a positive constant L > 0 such that

Λn+1

λn+1
� Λn

λn

(
1− Lλn

pΛn

)1−p
+

L
p

,

then ||A||pp,p � (p/(p−L))p .

Apply the above theorem to A′ defined above, we see that ||A′||pp,p � (α p/(α p−
1))p . Combining this with our discussions above, we then deduce immediately from
Theorem 2.5 the following

COROLLARY 2.3. Inequalities (1.7) hold for p < 0,1 < α < 2 for any increasing
sequence a and inequalities (1.7) hold for 1 < α < 2, p > 1/(α−1)2 for any decreas-
ing sequence a .

Now, Corollary 2.3 allows us to give another proof of the nontrivial cases 0 < α <
1 of Bennett’s conjecture and in fact we shall prove a slightly general version by first
establishing

THEOREM 2.7. Let p < 0 be fixed and N an integer and A a weighted mean
matrix generated by {λn}N

n=1 . Suppose that the sequence {Λn/λn}∞n=1 is concave and
that limn→+∞Λn/(nλn) = L. If we have

eλ1/λ2(1−L) < 1, (2.6)

then ||A||pp,p is determined on an increasing sequence.

Proof. As {Λn/λn}∞n=1 is concave and that limn→+∞Λn/(nλn) = L , a result of
Bennett [6, Lemma 2] implies that L �Λn+1/λn+1−Λn/λn �Λ2/λ2−Λ1/λ1 = λ1/λ2 .
It follows from Theorem 2.3 that ||A||pp,p � (p/(p−λ1/λ2))p for p < 0. Thus inequal-
ity (2.5) holds with Up,N = (p/(p−λ1/λ2))p . As limp→−∞(p/(p−λ1/λ2))p = eλ1/λ2

and (p/(p−λ1/λ2))p is a decreasing function of p < 0, we see that inequality (2.1)
holds with Up,N = (p/(p−λ1/λ2))p by (2.6). Now our assertion follows from Theo-
rem 2.4. �

We now apply the above theorem to λn = nα for 0 < α < 1, in which case (2.6)
is equivalent to

1+
1
α

> e1/2α .

As e1/2α < e when 0 <α < 1, it follows that the above inequality holds for α < 1/(e−
1)≈ 0.58. Thus we may assume that 1/2�α < 1 and in this case e1/2α < e1/

√
2 and by

repeating the above argument, we see that we may further assume that 0.8 � α < 1 but
then the above inequality holds since e1/20.8

< 2. Therefore, combined with Corollary
2.3, we see that inequalities (1.7) hold for p < 0,1 < α < 2 and for the other positive
α ’s, we can apply Theorem 2.3 to conclude that inequalities (1.7) hold as well and we
summarize our result in the following
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COROLLARY 2.4. Inequalities (1.7) hold for p < 0,α > 0 .

We note here that the above corollary implies the nontrivial cases 0 < α < 1 of
Bennett’s conjecture, which one obtains by taking p →−∞ of the corresponding cases
of (1.7).

3. A generalization of a result of Bennett

As we mentioned in the introduction, the validity of (1.10) will allow us to deduce
the cases 1/p < α � 1 of inequalities (1.6). In this section, we shall generalize a result
of Bennett which in turn implies these cases. We shall assume all the infinite sums
converge and we start by noting the following result of Bliss [7]:

THEOREM 3.1. Let r > p > 1 and let α be a real number satisfying (α +1)p >
1 . Let f (x) be a non-negativemeasurable function on [0,+∞) such that f ∈Lp(0,+∞) .
Then the integral

∫ x
0 f (t)tαdt is finite for every x and

∫ ∞

0

(∫ x

0
f (t)tαdt

)r dx

x(α+1)r−s
� Kr,s,α

(∫ ∞

0
f (x)pdx

)r/p
,

where

s = r/p−1, Kr,s,α =
1

(r− s−1)(1+αq)r−s

( sΓ(r/s)
Γ(1/s)Γ((r−1)/s)

)s
.

We note here Bliss only proved the case α = 0 in [7] but the general case can be
obtained by some changes of variables. Based on the above result, we now prove the
following

THEOREM 3.2. Let r > s > 1 and s/r < α � 1 . Let u,v,a be sequences with
positive entries. Let Vn = ∑n

k=1 vk for n � 1 and V0 = 0 . If for m � 1 ,

m

∑
n=1

unV
αr
n � Vs

m.

Then
∞

∑
n=1

un

( n

∑
k=1

(Vα
k −Vα

k−1)ak

)r
� sαrKr,s−1,α−1

( ∞

∑
n=1

vna
r/s
n

)s
.

Proof. The proof is almost identical to the proof of Theorem 2 in [3], taking ac-
count into Theorem 3.1, as long as one can show (see also the proof of Theorem 1 in
[2]) that for 1 � i < j,ai < a j ,

(Vα
i −Vα

i−1)ai +(Vα
j −Vα

j−1)a j

(Vα
i −Vα

i−1)+ (Vα
j −Vα

j−1)
� viai + v ja j

vi + v j
.
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The above inequality follows from Lemma 2.1 (note that a j > ai here) provided that

Vα
j −Vα

j−1

Vj −Vj−1
�

Vα
i −Vα

i−1

Vi−Vi−1
.

The above inequality holds by the mean value theorem, since the right-hand side is no
less than αVα−1

i and the left-hand side is no greater than αVα−1
j−1 and this completes

the proof. �
We now take un = (Vs

n −Vs
n−1)/V

αr
n in the above theorem and make a change of

variables an → as/r
n and let r → +∞ to deduce that

COROLLARY 3.1. Let s > 1 and 0 < α � 1 . Let v,a be sequences with positive
entries. Let Vn = ∑n

k=1 vk for n � 1 and V0 = 0 . Then

∞

∑
n=1

(Vs
n −Vs

n−1)
( n

∏
k=1

a
Vα

k −Vα
k−1

k

)s/Vα
n � e−(α−1)s/α

α1−s

s
s−1

( s−1
Γ(1/(s−1))

)s−1( ∞

∑
n=1

vnan

)s
.

Note that we will get back Carleman-type inequalities on letting s → 1+ in the above
corollary. We can also take vn = 1 and un = (ns − (n− 1)s)/nαr in Theorem 3.2 to
deduce that

COROLLARY 3.2. Let r > s > 1 and s/r < α � 1 . Let a be sequences with
positive entries. Then

∞

∑
n=1

(ns− (n−1)s)
( 1

nα

n

∑
k=1

(kα − (k−1)α)ak

)r
� sαrKr,s−1,α−1

( ∞

∑
n=1

ar/s
n

)s
.

Note that we get back the cases 1/p < α � 1 of (1.6) on setting r = p and letting
s → 1+ in the above corollary.

4. Schur’s Test and Some Generalizations of inequalities (1.6) and (1.7)

In this section we first state a discrete version of Schur’s test concerning the norms
of linear operators:

LEMMA 4.1. Let p > 1 be fixed and let A = (α j,i)1�i, j�N be a matrix with non-
negative entries. If there exist positive numbers U1,U2 and two positive sequences
c = (ci),1 � i � N;d = (di),1 � i � N , such that

N

∑
i=1

α j,ic
1/p
i � U1d

1/p
j , 1 � j � N; (4.1)

N

∑
j=1

α j,id
1/q
j � U2c

1/q
i , 1 � i � N. (4.2)

Then
||A||p,p � U1/q

1 U1/p
2 .
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We now point out that Schur’s test is equivalent to the approaches mentioned in
[17] in determining the operator norms of weighted mean matrices. It suffices to show
that it is equivalent to the approach of Kaluza and Szegö. To see this, note that our goal
in general is to find some (smallest possible) constant Up,N so that for a weighted mean
matrix generated by {λn}N

n=1 (we may assume λn > 0 for all n ), inequality (1.9) holds
for any integer N � 1 and any a ∈ l p . We now apply Lemma 4.1 with α j,i = λi/Λ j for
i � j and α j,i = 0 for i > j with

ci =
(wi

λi

)p
, d j =

(∑ j
k=1 wk

Λ j

)p
,

where the auxiliary sequence {wn}∞n=1 is of positive terms and to be determined later.
The choice of the ci ’s and d j ’s is to make inequality (4.1) satisfied with U1 = 1 (it
becomes an identity) and inequality (4.2) becomes

N

∑
j=i

λi

Λp
j

( j

∑
k=1

wk

)p−1
� U2

(wi

λi

)p−1
. (4.3)

Suppose now one can find for each p > 1 a positive constant U2 , a sequence w of
positive terms with wp−1

n /λ p
n decreasing to 0, such that for any integer n � 1,

(w1 + · · ·+wn)p−1 < U2Λp
n

(
wp−1

n

λ p
n

− wp−1
n+1

λ p
n+1

)
,

then inequality (4.3) will follow from this and this is exactly the starting point of Kaluza
and Szegö’s approach.

In what follows, we will give an account of Bennett’s proof of (1.6) in the form
of Schur’s test. First we consider the case α > 1/p of (1.6) and we can replace the
infinite sums by finite sums from 1 to N with N � 1 here and we note the following
estimation ([6, (99)]):

N

∑
j=i

∫ i
i−1 xα−1/pdx

jα+1/q
� 1

α−1/p
. (4.4)

We now apply Lemma 4.1 with α j,i = α
(∫ i

i−1 xα−1/pdx
)1/p(∫ i

i−1 xα−1/p−1dx
)1/q

/ jα

for i � j and α j,i = 0 otherwise and ci = (
∫ i
i−1 xα−1/p−1dx/

∫ i
i−1 xα−1/pdx),d j = 1/ j ,

U1 = U2 = (α p)/(α p− 1) to see that in this case inequality (4.1) becomes an iden-
tity and inequality (4.2) becomes exactly (4.4). From this we deduce the following
inequality for p > 1,α > 1/p and any a ∈ l p ,

∞

∑
n=1

∣∣∣ 1
nα

n

∑
i=1

α
(∫ i

i−1
xα−1/pdx

)1/p(∫ i

i−1
xα−1−1/pdx

)1/q
ai

∣∣∣p �
( α p
α p−1

)p ∞

∑
n=1

|an|p.

from which one deduces the corresponding cases of (1.6) easily.
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We note here in Bennett’s proof of (1.6) given above, a key ingredient is inequality
(4.4). We point out here that when 1 � α � 1+1/p , a better estimation exists, namely,

N

∑
j=i

α
(
i− 1

2

)α−1+1/q

jα+1/q
� α p

α p−1
. (4.5)

Inequality (4.5) can be easily deduced from the following inequality for all integers
i � 1 and 1 � α � 1+1/p ,

i−α−1/q � 1
α−1/p

((
i−1/2

)1−α−1/q−
(
i+1/2

)1−α−1/q)
=
∫ i+1/2

i−1/2
x−α−1/qdx.

The above inequality follows from the well-known Hadamard’s inequality (with h(x) =
x−α−1/q,a = i− 1/2,b = i + 1/2 below), which asserts that for a continuous convex
function h(x) on [a,b] ,

h

(
a+b

2

)
� 1

b−a

∫ b

a
h(x)dx � h(a)+h(b)

2
.

The above inequality also allows us to see easily that inequality (4.5) improves upon
(4.4) for 1 � α � 1+1/p .

Now, inequality (4.5) allows us to establish the following

THEOREM 4.1. Let p > 1 be fixed, then the following inequality holds for 1 �
α � 1+1/p and any a ∈ l p ,

∞

∑
n=1

∣∣∣ 1
nα

n

∑
i=1

α
(
i− 1

2

) 1
p (α− 1

p )(∫ i

i−1
xα−1−1/pdx

)1/q
ai

∣∣∣p �
( α p
α p−1

)p ∞

∑
n=1

|an|p.

Proof. We can replace the infinite sums by finite sums from 1 to N with N � 1

here and we apply Lemma 4.1 here with α j,i =α
(
i− 1

2

) 1
p (α− 1

p )(∫ i
i−1 xα−1−1/pdx

)1/q
/ jα

for i � j and 0 otherwise and ci =
(
i− 1

2

)−(α− 1
p )(∫ i

i−1 xα−1−1/pdx
)
,d j = j−1 to see

that estimations (4.1)–(4.2) hold by (4.5) with U1 = U2 = α p/(α p−1) and this com-
pletes the proof. �

To deduce interesting corollaries from Theorem 4.1, we note the following lemma:

LEMMA 4.2. ([1, Lemma 2.1]) Let a > 0,b > 0 and r be real numbers with a �=
b, and let

Lr(a,b) =
(

ar −br

r(a−b)

)1/(r−1)

(r �= 0,1),

L0(a,b) =
a−b

loga− logb
,

L1(a,b) =
1
e

(
aa

bb

)1/(a−b)

.
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The function r �→ Lr(a,b) is strictly increasing on R .

It readily follows from the above lemma that for 1 � α � 1+1/p , we have

iα − (i−1)α = αLα−1
α (i, i−1) � αLα−1

2 (i, i−1) = α
(
i−1/2

)α−1

� α
(
i−1/2

) 1
p (α− 1

p )(∫ i

i−1
xα−1−1/pdx

)1/q

= αL
1
p (α− 1

p )
2 (i, i−1) ·L

1
q (α−1− 1

p )

α− 1
p

(i, i−1).

It follows from this that Theorem 4.1 not only implies the corresponding cases of (1.6)
but also the following stronger result:

COROLLARY 4.1. Let p > 1 be fixed, then the following inequality holds for 1 �
α � 1+1/p and any a ∈ l p ,

∞

∑
n=1

∣∣∣ 1
nα

n

∑
i=1

α
(
i− 1

2

)α−1
ai

∣∣∣p �
( α p
α p−1

)p ∞

∑
n=1

|an|p.

As an interesting consequence of Corollary 4.1, we note for the case p = 2 we
have 2α−1 � 2 for α � 3/2 so that Corollary 4.1 implies the following inequality for
a ∈ l2 and 1 � α � 3/2:

N

∑
n=1

∣∣∣ n

∑
i=1

αLα−1
2α−1(i, i−1)

nα
ai

∣∣∣2 � α2

(α−1/2)2

N

∑
i=1

|ai|2. (4.6)

We now apply the duality principle [19, Lemma 2] to deduce from (4.6) the fol-
lowing inequality for a ∈ l2,ai � 0 and 1 � α � 3/2:

N

∑
i, j=1

α2 min(i2α−1, j2α−1)
(2α−1)iα jα

aia j =
N

∑
n=1

( N

∑
i=n

αLα−1
2α−1(n,n−1)

iα
ai

)2
� α2

(α−1/2)2

N

∑
i=1

a2
i .

We note here the case α = 1 above gives back a result of Schur in [20], who
showed that for x,y ∈ l2 ,

∞

∑
i, j=1

xiy j

max(i, j)
� 4||x||2||y||2.

By the duality principle, the above inequality is equivalent to Hardy’s inequality (1.1)
for the case p = 2, even though this was not mentioned in [20] (this is actually prior to
Hardy’s discovery of (1.1)).

Our discussions above allow us to regard the cases of α � 1 of inequalities (1.6)
and (1.7) as special cases of a family of inequalities. Namely, it is interesting to de-
termine the best constant U = U(α,β , p) so that the following inequality holds for all
a ∈ l p ( p > 1,β � α � 1):

∞

∑
n=1

∣∣∣ 1

∑n
k=1 Lα−1

β (k,k−1)

n

∑
i=1

Lα−1
β (i, i−1)ai

∣∣∣p � U
∞

∑
n=1

|an|p. (4.7)
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Note that the case of β = α above corresponds to inequality (1.6) and the case of
β →+∞ above corresponds to inequality (1.7) by Lemma 4.2. In both cases, we expect
U = (α p/(α p−1))p (of course this is known except for some cases of (1.7) when 1 <
p < 2,1 <α < 2. Thanks to Corollary 4.1 and Lemma 4.2, we also know that inequality
(4.7) holds with U = (α p/(α p−1))p for p > 1,1 � α � 1+1/p,α � β � 2.

Acknowledgement. The author is supported by a research fellowship from an Aca-
demic Research Fund Tier 1 grant at Nanyang Technological University for this work.
The author is grateful to the referee for his/her helpful comments and suggestions.

RE F ER EN C ES

[1] H. ALZER, Sharp bounds for the ratio of q -gamma functions, Math. Nachr., 222 (2001), 5–14.
[2] G. BENNETT, Some elementary inequalities, Quart. J. Math. Oxford Ser. (2), 38 (1987), 401–425.
[3] G. BENNETT, Some elementary inequalities. III, Quart. J. Math. Oxford Ser. (2), 42 (1991), 149–174.
[4] G. BENNETT, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120 (1996), 1–130.
[5] G. BENNETT, Inequalities complimentary to Hardy, Quart. J. Math. Oxford Ser. (2), 49 (1998), 395–

432.
[6] G. BENNETT, Sums of powers and the meaning of lp , Houston J. Math., 32 (2006), 801–831.
[7] G. A. BLISS, An integral inequality, J. London. Math. Soc., 5 (1930), 40–46.
[8] T. CARLEMAN, Sur les fonctions quasi-analytiques, in Proc. 5th Scand. Math. Congress, Helsingfors,

Finland, 1923, 181–196.
[9] J. M. CARTLIDGE, Weighted mean matrices as operators on lp , Ph.D. thesis, Indiana University,

1978.
[10] F. P. CASS AND W. KRATZ, Nörlund and weighted mean matrices as operators on lp , Rocky Moun-

tain J. Math., 20 (1990), 59–74.
[11] C.-P. CHEN, H.-W. HUANG AND C.-Y. SHEN, Matrices whose norms are determined by their actions

on decreasing sequences, Canad. J. Math., 60 (2008), 520–531.
[12] C.-P. CHEN, D.-C. LUOR AND Z.-Y. OU, Extensions of Hardy inequality, J. Math. Anal. Appl., 273

(2002), 160–171.
[13] C.-P. CHEN, C.-Y. SHEN AND K.-Z. WANG, Characterization of the matrix whose norm is deter-

mined by its action on decreasing sequences (the exceptional cases), J. Math. Sci. Adv. Appl., 2 (2009),
29–42.

[14] P. GAO, A note on Hardy-type inequalities, Proc. Amer. Math. Soc., 133 (2005), 1977–1984.
[15] P. GAO, A note on Carleman’s inequality, arXiv:0706.2368.
[16] P. GAO, On a result of Cartlidge, J. Math. Anal. Appl., 332 (2007), 1477–1481.
[17] P. GAO, On lp norms of weighted mean matrices, Math. Z., 264 (2010), 829–848.
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