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CERTAIN INEQUALITIES FOR CLASSES OF ANALYTIC
FUNCTIONS WITH VARYING ARGUMENT OF COEFFICIENTS

J. DzIOK

(Communicated by H. M. Srivastava)

Abstract. In this paper we introduce new classes of analytic functions with varying argument
of coefficients defined by subordination. Several properties like the coefficients inequalities,
distortion bounds, subordination theorems and integral means inequalities are investigated. Some
consequences of our main results for new or well-known classes of functions are also pointed
out.

1. Introduction
Let .o/ denote the class of functions which are analyticin % = % (1), where
U(r)={z€C:lz| <r}.

and let ./ denote the class of functions f € & normalized by f(0) =f(0)—1=0.
Each function f € &/ can be expressed as

f(z)=z+ianz” (zew). (1)

n=2

Also, by 7, (n € R) we denote the class of functions f € &/ of the form (1) for
which all of non-vanishing coefficients satisfy the condition

arg(ay) =+ (1—n)n (n=2,3,...). (2)

For n = 0 we obtain the class .7 of functions with negative coefficients.
Moreover, we define
T=U %
ner
The class .7 was introduced by Silverman [16] (see also [22]). It is called the
class of functions with varying argument of coefficients.
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390 J. DzIoK

We say that a function f € 4&7/ is subordinate to a function F € 4&7/, and write
f(z) < F(z) (orsimply f < F),if and only if there exists a function € &, |0(z)| <
lz| (z€ %), such that

f@)=F(o@) (€ %).
In particular, if F is univalentin % , we have the following equivalence
f(2) <F(z) <= f(0)=F(0) and f( %) CF( ).

For functions f,g € o/ of the form

2 a,7" and g(z 2 b7,

by f*g we denote the Hadamard product (or convolution) of f and g, defined by
(f+g)( Z anby ' (z€U).

Let A,B be real parameters, —1 <A< B< 1, andlet ¢,¢ € o/ be functions of
the form

(p(z)=z+ianz”, ¢(z)=z+iﬁnz" (ze¥), 3)
n=2

n=2

where the sequences {0}, {f,} are real and
0<o<B, (n=2,3,...).

Moreover, let us put

dyi=(1+B)B—(1+A) e, (n=2,3,...). 4)
By # (¢, ¢;A,B) we denote the class of functions f € ./ such that
*f)(z 1+Az
(0+1)(2) 5

(0+f)(2)  1+Bz

In particular, the classes

b4 Z
=W ,—1,—1],
((l—z)2 l—z )

Sy z(z+1) R
' (1-27° (1-2*"" 7

are the well-known classes of starlike functions and convex functions, respectively.
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Now, we define the classes of functions with varying argument of coefficients
related to the class # (¢, @;A,B). Let us denote
TW(¢,9:A,B) := TNW (¢,9:A,B),
TWn(9,0:A,B) := Ty W (¢,9:A,B).
The object of the present paper is to investigate the coefficients estimates, dis-
tortion properties subordination theorems and integral means inequalities for the class

TWy(0,9;A,B). Some remarks depicting consequences of the main results are also
mentioned.

2. Coefficients inequalities

We first mention a sufficient condition for a function to belong to the class # (¢, ¢;
A,B).

THEOREM 1. Let {d,} be defined by (4), —1 <A < B < 1. If a function f of
the form (1) satisfies the inequality

N dylan| <B-A, (6)
n=2
then f belongs to the class W (¢,@;A,B).

Proof. A function f of the form (1) belongs to the class # (¢, ¢;A,B) if and only
if there exists a function o, |@(z)| <|z| (z€ %), such that

(9+f)(z) _ 1+A0(z)

(pxf)(z) 14+Bow(z) (ze),
or equivalently
(0% f)(2)— (o f)(z)
B(¢*f)(z)—A((p*f)(Z)‘<1 (ze%). 7

Thus, it is sufficient to prove that

[(0%1) (@) = (@ /) (D) = [B(¢+f)(2) —A(@*[f) ()| <O (z€ Z\{0}).

Indeed, letting |z] =7 (0 < r < 1) we have

(9% f)(2) = (@*f) ()| = [B(¢+f)(2) =A@ f) (2)]

oo

2 (Bn - an) ap?"

oo

(B—A)z— Y, (BBy—Acty) an?"

n=2 n=2
<r (i (ﬁn - an) ‘an|’”}171 - (B_A)+ i (Bﬁn —Aoz,,) |anr"1>
n=2 n=2

< Y dy lan| "t — (B—A) <0,
n=2

whence f € % (¢,9;A,B). O
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THEOREM 2. Let f be a function of the form (1), with (2). Then f belongs to the
class TW y (9, 0;A,B) if and only if the inequality (6) holds true.

Proof. In view of Theorem 1 we need only show that each function f from the
class 7% 1 (¢, ;A,B) satisfies the coefficient inequality (6). Let f € T# 1, (¢, ¢0;A,B).
Then, by (7) and (1), we have

E (ﬁn_an)anzn71
n=2_ <1 (zew).
B—A—Y (BB, —Ao,) a7+ !
n=2

Therefore, putting z = re (0 < r < 1), and applying (2) we obtain

2(Bn— Q) |an| P!

08

n

B—A— % (BB, —Aowy)|a,| !
n=2

<1

It is clear that the denominator of the left hand said cannot vanish for r € (0,1). More-
over, it is positive for » = 0, and in consequence for r € (0, 1). Thus, we have

oo

D (1+B)By— (1 +A) o] an| "' < B—A4,
n=2

which, upon letting r — 1 —, readily yields the assertion (6). U

Since the condition (6) is independent of 1, Theorem 2 yields the following theo-
rem.

THEOREM 3. Let f be a function of the form (1), with (2). Then f belongs to the
class TW (¢,0;A,B) if and only if the condition (6) holds true.

From Theorems 2 and 3 we obtain coefficients estimates for the classes .7 % (9, @;
A,B) and I (¢,¢;A,B), respectively.

COROLLARY 1. Ifa function f of the form (1) belongs to the class T W (9, ®;
A,B) , then

B—A
|Cln‘<— (n:2737"')a (8)
dy
where d,, is defined by (4). The result is sharp. The functions f, n of the form
B—A ;
fan(@) =z2—— TN (zeWin=23,..)) 9)

are the extremal functions.

COROLLARY 2. Ifafunction f of the form (1) belongs to the class T W (¢,9;A,B),
then the coefficients estimates (8) holds true. The result is sharp. The functions f, n of
the form (9) (n € R) are the extremal functions.
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3. Distortion bounds
From Theorem 2 we have the following lemma.

LEMMA 1. Letafunction f of the form (1) belong to the class TW v (¢, 9;A,B).
If the sequence {d,} defined by (4) satisfies the inequality

d<d, (n=23,..), (10)
then
ia < B-A
n < .
n=2 dé
Moreover, if
ndy <2d, (n=2,3,...), (11D
then
it 2(B—A)
2 na, < ——=.
n=2 d2

THEOREM 4. Let a function f belong to the class TW v (¢, 0;A,B). If the se-
quence {d,} defined by (4) satisfies (10), then

B—A B—A
r— PL|f@) <r+——=r* (zl=r<1). (12)
d2 d2
Moreover, if (11) holds, then
2(B—A 2(B—A
1= 2B o) <1+ 282 = c. (13)
d> d>

The result is sharp, with the extremal function f> y of the form (9).

Proof. Letafunction f of the form (1) belong to the class 7%y, (¢,9;A,B), |z| =
r < 1. Since

f@)] =24+ Y and'| <r+ Y, |ag| "
n=2 n=2
:r+r22|an\r"72<r+r22\an|
n=2 n=2
and
@I = et 3 and| 27— 3 Janl
n=2 n=2

=r—7r 2 \an\r"*2 > r—r? 2 |an],
n=2 n=2

then by Lemma 1 we have (12). Analogously we prove (13). O

Theorem 4 implies the following corollary.
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COROLLARY 3. Let a function f belong to the class TW (¢,¢;A,B) . If the se-
quence {d,} defined by (4) satisfies (10), then the assertion (12) holds true. Moreover,
if we assume (11), then then the assertion (12) holds true. The result is sharp, with the
extremal functions f>y (N € R) of the form (9).

4. Subordination results

Before stating and proving our subordination theorems for the classes 7% 1 (¢, @;
A,B) and I (¢,9;A,B) we need the following definition and lemma:

DEFINITION 1. A sequence {b,} of complex numbers is said to be a subordi-
nating factor sequence if for each function f of the form (1) from the class .¢ we
have

N bpapd < f(z) (a1 =1). (14)
n=1
LEMMA 2. [23] The sequence {b,} is a subordinating factor sequence if and only
if
Re{1+22bnzn}>0 (ze¥). (15)
n=1

THEOREM 5. Let the sequence {d,}, defined by (4), satisfy the inequality (10).
Ifg e S and f € TWy(¢,0;A,B), then

e(f*8)(2) < g(2) (16)
and |
Ref(z)>—% (ze), (17)
where 0
= B AT (18)

The constant factor € cannot be replaced by a larger number.

Proof. Let a function f of the form (1) belong to the class 7%y (¢, ¢;A,B) and
suppose that

g(z)=z+ icnz" (zeW)
n=2

belongs to the class .#¢. Then

e(f*g)(z) =ez+ i (ean) ca".

n=2

Thus, by Definition 1 the subordination result (16) holds true if

{eank, = (@ =1)
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is a subordinating factor sequence. In view of Lemma 2, this is equivalent to the fol-
lowing inequality

n=1

Re{l+2§:£anz"}>0 (ze). (19)

Thus, by (10) for |z| = r < 1 we have

it d>
Re<1+4+2 & Re<1+2 ——a,7"
e{—i— Zeanz} e{+€z+zB AT }

n=1
;
>1-2er—— N dy|a,| 71,
B—A+d2n§=:2 ]

and consequently by using Theorem 2 we obtain

- & B—A
Red14+2Y eand b1 - 0.
e{ 2y ‘”} B-Atdy B-A+dy

n=1

This evidently proves the inequality (19) and hence the subordination result (16). The
inequality (17) follows from (16) by taking

g():T—Z"FZZ ZE%

Next we observe that the function f> ; of the form (9) belongs to the class .7 # (¢, @;
A,B). 1t is easily verified that

min {Re (ef2,5 (2))} = —% (zeX).
This shows that the constant (18) cannot be replaced by any larger one. [
Directly from Theorem 5 we obtain
THEOREM 6. Let the sequence {d,}, defined by (4), satisfy the inequality (10).

Ifg € Y and fe TW(9,0,A,B), then conditions (16) and (17) hold true. The
constant factor € in (16) cannot be replaced by a larger number.

5. Integral means inequalities

Due to Littlewood [10] we obtain integral means inequalities for the functions
from the class T # y (¢,9;A,B).

LEMMA 3. [10]. Let f,g € /. If f < g, then

2n 2r

/)f(reie))ndeg/‘g(reie)‘nde O<r<1,n>0). 20)
0 0
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Silverman [15] found that the function

2

s0)=2-% (ze),

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [17] and settled in
[18], that (20) holds true for all functions f with negative coefficients. In [18] he also
proved his conjecture for some subclasses of 7.

Applying Lemma 3 and Theorem 2 we prove the following result.

THEOREM 7. Let the sequence {d,} defined by (4) satisfy the inequality (10). If
f€ITWy(9,0;A,B) then

7’f(rei6)’kd6 < 7’f27n(rei9)’kd6 O<r<1,1>0), 1)
0 0

where f> n(z) be defined by (9).

Proof. For function f of the form (1), the inequality (21) is equivalent to the

following
2n -
/ 1+ and"™ L /'H— 67”12 do.
n=2
0
By Lemma 3, it suffices to show that
- B—A _.
N a < - e Mz (22)
- dz
Setting
< dzei” n—1
= —_— IS4
w(z) }Z‘zA—Ba" z (z )
and using (10) and Theorem 2 we obtain
© 4 oo
- ,ZzA—zB“” 27 < §=) Slan| <l (z€%).
Since
- B—A _.
2 Cann71 = —d—ef’”w(z) (Z S %) s
= 2

by definition od subordination we have (22) and this completes the proof. [
We can write Theorem 7 in the following form:

THEOREM 8. Let the sequence {d,} defined by (4) satisfy the inequality (10). If
a function f of the form (1), with (2) belongs to the class TW (¢,@;A,B), then the
integral means inequality (21) holds true.
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6. Remarks

Choosing the functions ¢ and ¢ in the condition (4) we can define new classes of
functions. In particular, the class

n—1
Wy (0;A,B) =W (z(p’ (@), ¢ (ka> ;A,B) (xX"=1)

contains functions f € A, such that

2(@*f) (2) PR
S (@*f)(xkz)  14+Bz

It is related to the well-known class of starlike functions with n-symmetric points.
Moreover, putting n = 1 we obtain the class # (¢;A,B) = # (¢;A,B) defined by the
following condition

29+ f)'(2) | 1+Az
(o*f)(2) 1+Bz

The class is related to the class of starlike functions.
Let A be a convex parameter. A function f € A belongs to the class

Vi (0:AB) =T (k@ﬂl —/l)(P/(Z%z;A,B)

if it satisfies the condition

(= [)(2) ' 1+Az

Moreover, a function f € A belongs to the class
%948 =V (l@ +(1-2)¢' () ;A,B)

if it satisfies the condition

2o f) @+ -2)Z (/)" (2) PR
A@xf)@)+(1-A)z(e*f)(z) 1+Bz

(23)

The classes #;, (¢;A,B), %, (¢;A,B) and ¥), (¢;A,B) generalize well-known impor-
tant classes, which were investigated in earlier works, see for example [1]-[21]. Most
of these classes were defined by using linear operators and special functions.

If we apply the results presented in this paper to the classes discussed above, we
can obtain a lot of partial results. Some of these results where obtained in earlier works.
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