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A SUPPORT THEOREM FOR t –WRIGHT–CONVEX FUNCTIONS

ANDRZEJ OLBRYŚ

(Communicated by L. Losonczi)

Abstract. The support theorems play a very important role in the theory of convex functions and
have many consequences. In the present paper we give a necessary and sufficient conditions
under which every t -Wright convex function has at arbitrary point a t -Wright affine support
function.

Introduction and terminology

Let t ∈ (0,1) be a fixed number, and let L(t) be the smallest field containing a
singleton {t} . Throughout the whole paper X will always denote a linear space over
the field K , where L(t) ⊂ K ⊂ R , and, moreover, D ⊂ X will always be a non-empty
t -convex set i.e. such set that tD + (1− t)D ⊂ D , and these assumptions will not be
repeated in the sequel.

A function f : D → R is said to be t -convex if∧
x,y∈D

f (tx+(1− t)y) � t f (x)+ (1− t) f (y);

t -Wright convex if∧
x,y∈D

f (tx+(1− t)y)+ f ((1− t)x+ ty)� f (x)+ f (y). (1)

If inequality (1) is satisfied for t = 1
2 then we say that function f is Jensen-convex and

in this case (1) has the following form

∧
x,y∈D

f
(x+ y

2

)
� f (x)+ f (y)

2
.

If f : D→ R is a function such that − f is t -convex (t -Wright convex, Jensen-convex)
then f is called t -concave (t -Wright concave, Jensen concave), respectively. One can
easily observe that every t -convex function is obviously t -Wright convex but in general
not converse [10]. It has been proved by N. Kuhn [7] and independently, by Z. Daróczy
and Zs. Páles [16] that every t -convex function is Jensen-convex. The connection
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between t -Wright convex and Jensen-convex functions has been investigated in [9].
The authors solved a problem posed by J. Matkowski. In [10] Matkowski asked whether
t -Wright convex function with a t ∈ (0,1) has to be Jensen-convex? In [9] Gy. Maksa,
K. Nikodem and Zs. Páles gave the positive answer to the problem of Matkowski for
all rational t ∈ (0,1) and certain algebraic values of t . However, they have proved that
if t is either transcedental or the distance of some of the algebraic (maybe complex)
conjugate of t from 1

2 is at least 1
2 , then there is a function f : D → R which is

t -Wright convex but not Jensen convex. The function constructed in [9] has many
pathological properties, in particular it must be discontinuous.

A survey of other results concerning t -Wright convex functions may be found in
the papers [2], [10], [11], [14], [15].

In the sequel we will use the following definition

DEFINITION 1. A point x0 ∈ X is termed to be algebraically internal for a set
A ⊂ X if ∧

y∈X\{0}

∨
εy>0

x0 +λy ∈ A, λ ∈ (−εy,εy)∩L(t).

The set of all algebraically internal points of A will be denoted by algintL(t) A .
If f : D → R is at the same time t -Wright convex and t -Wright concave then

we say that f is a t -Wright affine function. Obviously every t -Wright affine function
satisfies the following functional equation∧

x,y∈D

f (tx+(1− t)y)+ f ((1− t)x+ ty)= f (x)+ f (y).

There is known a characterization of t -Wright affine functions. Theorem 1, below has
been proved by K. Lajkó [8] for functions defined on an open interval and was extended
in the paper [13] for functions defined on more general structures.

THEOREM 1. Let D ⊂ X be a s-convex set for all s ∈ L(t)∩ (0,1) , such that
algintL(t) D �= /0 . A function f : D→ R is a t -Wright affine if and only if f has the form

f (x) = a0 +a1(x)+a2(x,x), x ∈ D,

where a0 ∈ R is a constant, a1 : X → R is an additive function, and a2 : X ×X → R is
a biadditive and symetric function and, moreover,

a2(tx,(1− t)x) = 0, x ∈ X .

In the first section we prove a separation theorem for t -Wright convex functions.
An analogical theorem for Jensen convex functions (t = 1

2 ) is well-known (see [5], [12])
and it is a conscequence of an abstract version of Hahn-Banach theorem due to G. Rodé
[18]. In section 2 we prove some lemmas which are useful in the next section. The main
result of the paper are presented in the third section. Using the results from sections 1
and 2 we give a necessary and sufficient condition under which for an arbitrary point
y∈D and a t -Wright convex function f : D→ R there exists a t -Wright affine support
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function of f at y i.e. the function ay : D → R satysfying the following conditions

(i) ay(tx+(1− t)z)+ay((1− t)x+ tz) = ay(x)+ay(z), x,z ∈ D,
(ii) ay(x) � f (x), x ∈ D,
(iii) ay(y) = f (y).

As a special case of our theorem (for t = 1
2 ) we obtain a well-known support theorem

for Jensen-convex functions (see [3], [4]) but our proof is quite diffrent and it seems to
bee easier. Moreover, the support function obtained in this paper may be estimated by
the values of a given function f .

1. The separation theorem for t -Wright convex functions

In the sequel we will use the following notations:

M(x,y) := tx+(1− t)y, N(x,y) := (1− t)x+ ty,

and if f ,g : D → R are arbitrary functions, z ∈ D , then

fz(x) := f (M(x,z))+ f (N(x,z))−g(z), x ∈ D.

LEMMA 1. Let f : D→ R be a t -Wright convex function, and let g : D→ R be a
t -Wright concave function. If ∧

x∈D

(
inf
z∈D

{ fz(x)} > −∞ )
,

then the function h : D → R given by the formula

h(x) := inf
z∈D

{ fz(x)}, x ∈ D, (2)

is t -Wright convex.

Proof. Fix arbitrary u,v ∈ D and ε > 0. According to (2) we can find points
α,β ∈ D such that

h(u)+ ε > fα(u) and h(v)+ ε > fβ (v).

By the t -Wright convexity of the functions f and −g we get

h(u)+h(v)+2ε > fα (u)+ fβ (v)
= f (M(u,α))+ f (N(u,α))−g(α)+ f (M(v,β ))+ f (N(v,β ))−g(β )
� f (M(M(u,α),M(v,β )))+ f (N(M(u,α),M(v,β )))−g(M(α,β ))

+ f (M(N(u,α),N(v,β )))+ f (N(N(u,α),N(v,β )))−g(N(α,β ))
= f (M(M(u,v),M(α,β )))+ f (N(M(u,v),M(α,β )))−g(M(α,β ))

+ f (M(N(u,v),N(α,β )))+ f (N(N(u,v),N(α,β )))−g(N(α,β ))
= fM(α ,β )(M(u,v))+ fN(α ,β )(N(u,v)) � h(M(u,v))+h(N(u,v)).

Letting ε → 0+ we infer that h is a t -Wright convex function so the proof of our
Lemma is finished. �

We apply this lemma to the proof of the following
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THEOREM 2. Let f : D→ R be a t -Wright convex function and let g : D→ R be
a t -Wright concave function. If ∧

x∈D

g(x) � f (x),

then there exists a t -Wright affine function a : D → R such that

g(x) � a(x) � f (x), x ∈ D.

Proof. Without loss of generality we may assume that

α := inf
z∈D

[ f (z)−g(z)] = 0, (3)

otherwise we will consider the function f (x)−α instead of f (x) . Let us define the
following family of functions

H := {h : D → R : h is a t -Wright convex function and g(x) � h(x) � f (x), x ∈ D}.

Observe that H �= /0 , because f ∈ H . The pair (H ,�) yields on partially ordered
set, where the order is defined in the following manner

f1 � f2 ⇐⇒
∧
x∈D

(
f1(x) � f2(x)

)
.

We will show that every chain has a lower bound in H . Let L ⊂ H be an arbitrary
chain. Define the function h̃ : D → R by the formula

h̃(x) := inf{h(x) : h ∈ L }, x ∈ D. (4)

It follows from (4) that
g(x) � h̃(x) � f (x), x ∈ D.

It is suffices to show that h̃ is a t -Wright convex function. To see it fix arbitrary points
x,y ∈ D and a number ε > 0. By the definition of h̃ there exist h1,h2 ∈ L such that

h̃(x)+ ε > h1(x) and h̃(y)+ ε > h2(y).

Hence putting h3 := min{h1,h2} we have

h̃(x)+ h̃(y)+2ε > h1(x)+h2(y) � h3(x)+h3(y)
� h3(M(x,y))+h3(N(x,y))

� h̃(M(x,y))+ h̃(N(x,y)).

Letting ε → 0+ we obtain hence the t -Wright convexity of the function h̃ and on
account of (4) this element is a lower bound of chain L . By Kuratowski-Zorn Lemma
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there exists a minimal element H in H . Observe that, because H ∈ H then the
following inequalities

g(x)+g(z) � g(M(x,z))+g(N(x,z)) � H(M(x,z))+H(N(x,z)) � H(x)+H(z),

holds true for all x,z ∈ D . Therefore

g(x) � g(M(x,z))+g(N(x,z))−g(z) � H(M(x,z))+H(N(x,z))−g(z)
� H(x)+H(z)−g(z).

It follows from (3) that

0 � inf
z∈D

[H(z)−g(z)] � inf
z∈D

[ f (z)−g(z)] = 0,

whence

g(x) � inf
z∈D

[H(M(x,z))+H(N(x,z))−g(z)] � H(x), x ∈ D. (5)

On account of Lemma 1 the function H̃ : D → R given by the formula

H̃(x) := inf
z∈D

[H(M(x,z))+H(N(x,z))−g(z)], x ∈ D,

is a t -Wright convex function and therefore by the inequality (5) it belongs to the family
H . By the minimality of H we get∧

x,z∈D

H(x) � H(M(x,z))+H(N(x,z))−g(z),

and then (replace x and z) by t -Wright convexity of H we get∧
x,z∈D

g(x) � H(M(x,z))+H(N(x,z))−H(z) � H(x).

However, because for an arbitrary fixed point z ∈ D the function Hz : D → R given by
formula

Hz(x) := H(M(x,z))+H(N(x,z))−H(z),

is t -Wright convex then it belongs to the family H and according again to the mini-
mality of H we get ∧

x,z∈D

H(M(x,z))+H(N(x,z)) = H(x)+H(z).

This means that H is a t -Wright affine function and the proof of Theorem 2 is com-
pleted. �
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2. Some lemmas

In this section we prove some lemmas which will be useful in the next section. Let
us define the sequences of means Mn, Nn : D×D→D, n∈ N in the following manner:

M1(x,y) := M(x,y) = tx+(1− t)y, N1(x,y) := N(x,y) = (1− t)x+ ty,

Mn+1(x,y) := M(Mn(x,y),Nn(x,y)),

Nn+1(x,y) := N(Mn(x,y),Nn(x,y)).

Obviously Nn(x,y) = Mn(y,x) and Mn(x,x) = Nn(x,x) = x , for all x,y∈D, n∈N ,
and an easy induction shows that

Mn(x,y) = snx+(1− sn)y, Nn(x,y) = (1− sn)x+ sny, (6)

where sn := (2t−1)n+1
2 , n ∈ N .

Note that, if f : D → R is a t -Wright convex function then for all n ∈ N we have

f (Mn+1(x,y))+ f (Nn+1(x,y)) � f (Mn(x,y))+ f (Nn(x,y)), x,y ∈ D. (7)

For arbitrary y∈D we define Dy by the formula Dy := D∩(2y−D) . Observe that
t -convexity of D implies t-convexity of Dy . Moreover, Dy is symetric with respect to
y .

LEMMA 2. For an arbitrary y ∈ D, x,z ∈ Dy the following formulas

(i′) Mn(M(x,z),2y−M(x,z)) = M(Mn(x,2y− x),Mn(z,2y− z)),
(ii′) Nn(M(x,z),2y−M(x,z)) = M(Nn(x,2y− x),Nn(z,2y− z)),
(iii′) Mn(N(x,z),2y−N(x,z)) = N(Mn(x,2y− x),Mn(z,2y− z)),
(iv′) Nn(N(x,z),2y−N(x,z)) = N(Nn(x,2y− x),Nn(z,2y− z)).

(i′′) M(M(Mn(x,2y− x),Mn(z,2y− z)),N(Nn(x,2y− x),Nn(z,2y− z)))
= Mn+1(x,2y− x),

(ii′′) N(M(Mn(x,2y− x),Mn(z,2y− z)),N(Nn(x,2y− x),Nnz,2y− z)))
= Nn+1(z,2y− z),

(iii′′) M(M(Nn(x,2y− x),Nn(z,2y− z)),N(Mn(x,2y− x),Mn(z,2y− z)))
= Nn+1(x,2y− x),

(iv′′) N(M(Nn(x,2y− x),Nn(z,2y− z)),N(Mn(x,2y− x),Mn(z,2y− z)))
= Mn+1(z,2y− z).
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holds true for all n ∈ N .

Proof. Fix arbitrary y ∈ D , and take x,z ∈ Dy and n ∈ N . Then by (6) we get

Mn(x,2y− x) = y+(2t−1)n(x− y),
Nn(x,2y− x) = y− (2t−1)n(x− y).

Therefore

Mn(M(x,z),2y−M(x,z))
= y+(2t−1)n

(
M(x,z)− y)y+(2t−1)n[tx+(1− t)z− ty− (1− t)y]

= ty+ t(2t−1)n(x− y)+ (1− t)y+(1− t)(2t−1)n(z− y)
= t[y+(2t−1)n(x− y)]+ (1− t)[y+(2t−1)n(z− y)]
= M(Mn(x,2y− x),Mn(z,2y− z)).

This proves (i’).
We have also

M(M(Mn(x,2y− x),Mn(z,2y− z)),N(Nn(x,2y− x),Nn(z,2y− z)))
= tM(Mn(x,2y− x),Mn(z,2y− z))+ (1− t)N(Nn(x,2y− x),Nn(z,2y− z))
= t[tMn(x,2y− x)+ (1− t)Mn(z,2y− z)]

+(1− t)[(1− t)Nn(x,2y− x)+ tNn(z,2y− z)]
= t{t[y+(2t−1)n(x− y)]+ (1− t)[y+(2t−1)n(z− y)]}

+(1− t){(1− t)[y− (2t−1)n(x− y)]+ t[y− (2t−1)n(z− y)]}
= [t2 +2t(1− t)+ (1− t)2]y+[t2− (1− t)2](2t−1)n(x− y)
= y+(2t−1)n+1(x− y)
= Mn+1(x,2y− x).

This shows (i”). We omit the proofs of the remaining equalities because they runs
similarly. �

For a function f : D → R we put

Wf (x,z) := f (x)+ f (z)− f (M(x,z))− f (N(x,z)), x,z ∈ D.

Clearly, the function f is a t -Wright convex (t -Wright concave, t -Wright affine), if

Wf (x,z) � 0 (Wf (x,z) � 0, Wf (x,z) = 0, respectively), for all x,z ∈ D.

LEMMA 3. Let f : D→ R be a t -Wright convex function. If for some x,z ∈D we
have

lim
n→∞

[ f (Mn(x,z))+ f (Nn(x,z))] > −∞, (8)

then
lim
n→∞

Wf (Mn(x,z),Nn(x,z)) = 0.
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Proof. It follows from (7) that the limit (8) (finite or infinite) exists. Assume that

lim
n→∞

[ f (Mn(x,z))+ f (Nn(x,z))] = α > −∞.

For arbitrary positive integer n we have

f (x)+ f (z)− f (Mn+1(x,z))− f (Nn+1(x,z))

= f (x)+ f (z)− f (M1(x,z))− f (N1(x,z))

+∑n
i=1[ f (Mi(x,z))+ f (Ni(x,z)− f (Mi+1(x,z))+ f (Ni+1(x,z))].

Letting n → ∞ we get

0 � f (x)+ f (z)−α = Wf (x,z)+
∞

∑
k=1

Wf (Mk(x,z),Nk(x,z)) < ∞.

Therefore,

lim
n→∞

Wf (Mn(x,z),Nn(x,z)) = 0. �

3. The support theorem

We start with the following

THEOREM 3. Let f : D → R be a t -Wright convex function, and let y ∈ D be a
fixed point. If

∧
x∈Dy

(
lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] > −∞
)
, (�)

then the function Ay : Dy → R given by the formula

Ay(x) := lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] (9)

is a t -Wright affine function.

Proof. Define a sequence of functions gn
y : Dy → R, n ∈ N by the formula

gn
y(x) := f (Mn(x,2y− x))+ f (Nn(x,2y− x)).

It follows from (� ) and (7) that this sequence converges to a finite limit. Let us put

Ay(x) := lim
n→∞

gn
y(x), x ∈ Dy.
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We will show that WAy(x,z) = 0, for all x,z ∈ Dy . Using t -Wright convexity of the
function f and conditions (i’)-(iv’) we get

Wgn
y
(x,z) = f (Mn(x,2y− x))+ f (Nn(x,2y− x))+ f (Mn(z,2y− z))+ f (Nn(z,2y− z))

− f (Mn(M(x,z),2y−M(x,z)))− f (Nn(M(x,z),2y−M(x,z)))
− f (Mn(N(x,z),2y−N(x,z))− f (Nn(N(x,z),2y−N(x,z)))

= f (Mn(x,2y− x))+ f (Mn(z,2y− z))
− f (M(Mn(x,2y− x),Mn(z,2y− z)))− f (N(Mn(x,2y− x),Mn(z,2y− z)))
+ f (Nn(x,2y− x))+ f (Nn(z,2y− z))
− f (M(Nn(x,2y− x),Nnz,2y− z)))− f (N(Nn(x,2y− x),Nn(z,2y− z)))

� 0.

On the other hand by (i”)-(iv”) we obtain

Wgn
y
(x,z) = f (Mn(x,2y− x))+ f (Nn(x,2y− x))+ f (Mn(z,2y− z))+ f (Nn(z,2y− z))

− f (M(Mn(x,2y− x),Mn(z,2y− z)))− f (N(Mn(x,2y− x),Mn(z,2y− z)))
− f (M(Nn(x,2y− x),Nn(z,2y− z)))− f (N(Nn(x,2y− x),Nn(z,2y− z)))

� f (Mn(x,2y− x))+ f (Nn(x,2y− x))+ f (Mn(z,2y− z))+ f (Nn(z,2y− z))
− f (M(M(Mn(x,2y− x),Mn(z,2y− z)),N(Nn(x,2y− x),Nn(z,2y− z))))
− f (N(M(Mn(x,2y− x),Mn(z,2y− z)),N(Nn(x,2y− x),Nn(z,2y− z))))
− f (M(M(Nn(x,2y− x),Nn(z,2y− z)),N(Mn(x,2y− x),Mn(z,2y− z))))
− f (N(M(Nn(x,2y− x),Nn(z,2y− z)),N(Mn(x,2y− x),Mn(z,2y− z))))

= f (Mn(x,2y− x))+ f (Nn(x,2y− x))+ f (Mn(z,2y− z))
+ f (Nn(z,2y− z))− f (Mn+1(x,2y− x))− f (Nn+1(x,2y− x))
− f (Mn+1(z,2y− z))− f (Nn+1(z,2y− z))

=Wf (Mn(x,2y− x),Nn(x,2y− x))+Wf (Mn(z,2y− z),Nn(z,2y− z)).

We have shown that

0 �Wgn
y
(x,z) � Wf (Mn(x,2y−x),Nn(x,2y−x))+Wf (Mn(z,2y−z),Nn(z,2y−z)), n ∈ N.

Letting n → ∞ and using Lemma 3 we infer that

WAy(x,z) = 0, x,z ∈ Dy,

which was to be proved. �

REMARK 1. In the case t = 1
2 we have

Ay(x) = 2 f (y), x ∈ Dy.

Proof. By (6) we put sn = 1− sn = 1
2 , n ∈ N . Consequently

Mn(x,2y− x) = Nn(x,2y− x) = y, n ∈ N. �
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REMARK 2. If, moreover, a point y ∈ algintL(t) D then the function Ay given by
formula (9) is well defined and t -Wright affine on the whole space X .

Proof. Let us define the sequence of functions gn
y : X →R in the following manner

gn
y(x) :=

{
f (Mn(x,2y− x))+ f (Nn(x,2y− x)), Mn(x,2y− x),Nn(x,2y− x) ∈ Dy,

0 , in the former case.

By the above formula and on account of proof of Theorem 3 it is enought to show that∧
x∈X

∨
n(x)∈N

∧
n�n(x)

Mn(x,2y− x),Nn(x,2y− x) ∈ Dy.

To see it fix an arbitrary point x ∈ X . We know that

Mn(x,2y− x) = y+(2t−1)n(x− y), Nn(x,2y− x) = y− (2t−1)n(x− y), n ∈ N.

Since y ∈ algintL(t) D and limn→∞(2t−1)n = 0 then∨
n(x)∈N

∧
n�n(x)

Mn(x,2y− x),Nn(x,2y− x) ∈ Dy. �

THEOREM 4. Let f : D → R be a t -Wright convex function and let y ∈ D be a
fixed point. Then, the existens of a function ay : Dy → R satysfying conditions

(i) ay(tx+(1− t)z)+ay((1− t)x+ tz) = ay(x)+ay(z), x,z ∈ Dy,
(ii) ay(x) � f (x), x ∈ Dy,
(iii) ay(y) = f (y).

is equivalent to the following condition∧
x∈Dy

(
lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] > −∞
)
. (�)

If (�) holds true and, moreover, y ∈ algintL(t) D then the function ay can be extended
to the function fulfilling conditions (i)-(iii) on the whole set D.

Proof. Assume that ay : Dy → R satisfies conditions (i) , (ii) and (iii) . Suppose
that for certain x ∈ Dy we have

lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] = −∞.

According to (i) and (ii) we have

ay(x)+ay(2y− x) = ay(Mn(x,2y− x))+ay(Nn(x,2y− x))

� f (Mn(x,2y− x))+ f (Nn(x,2y− x)),
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and hence
ay(x)+ay(2y− x) = −∞.

Consequently, ay(x) = −∞ or ay(2y− x) = −∞ , a contradiction.
Now assume that

lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] > −∞, x ∈ Dy.

On account of Theorem 3 we infer that a function Ay : Dy → R given by the formula

Ay(x) := lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))],

is a t -Wright affine. Let us define a function gy : Dy → R by formula

gy(x) := Ay(x)− f (2y− x).

Note that gy is a t -Wright concave function (as a sum of t -Wright affine and t -Wright
concave function). Moreover,

gy(x) � f (x), x ∈ Dy, and

gy(y) = f (y).

On account of Theorem 2 there exists a t -Wright affine function ay : Dy → R such that

gy(x) � ay(x) � f (x), x ∈ Dy.

Clearly, ay satisfies conditions (i)-(iii).
Now, assume addtionally that y ∈ algintL(t) D . We will show that ay can be ex-

tended to the support function defined on the whole domain D . Let us define a sequence
of sets in the following manner

H0
t (Dy) := Dy,

Hn+1
t (Dy) :=

{
x ∈ D : M(x,y),N(x,y) ∈ Hn

t (Dy)
}

, n ∈ N.

Observe that {Hn
t (Dy)}n∈N has the following properties

(l) Hn
t (Dy) is a t-convex set , n ∈ N0 := N∪{0},

(ll) Hn
t (Dy) ⊂ Hn+1

t (Dy), n ∈ N0,

(lll)
⋃∞

n=0 Hn
t (Dy) = D.

The simply proof of the properties (l) and (ll) runs by induction. We proof only
the condition (lll) . Without loss of generality we may assume that y = 0. It is easy to
see that the set Hn

t (D0) may be rewriten in the following form

Hn
t (D0) =

{
x ∈ D : tk(1− t)n−kx ∈ D0, k ∈ {0, ...,n}

}
, n ∈ N0.
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We will show that
⋃∞

n=0 Hn
t (D0) = D. Take an arbitrary x ∈ X . Since 0 ∈ algintL(t) D0

then there exists εx > 0 such that

λx ∈ D0, λ ∈ L(t)∩ (−εx,εx). (9)

Put a := max{t,1− t} . Note that a ∈ (0,1) . By definition of a we have∧
n∈N

∧
k∈{0,...,n}

0 < tk(1− t)n−k � an,

and, consequently ∨
n0∈N

∧
n�n0

∧
k∈{0,...,n}

tk(1− t)n−k ∈ L(t)∩ (−εx,εx).

Therefore by (9) we get ∧
n�n0

∧
k∈{0,...,n}

tk(1− t)n−kx ∈ D0,

which implies that

x ∈
∞⋃

n=0

Hn
t (D0),

and finishes the proof of condition (lll) .
Now, we define a sequence of functions an

y : Hn
t (Dy)→R, n∈N0 in the following

way
a0

y(x) := ay(x), x ∈ Dy,

an+1
y (x) := an

y(M(x,y))+an
y(N(x,y))−an

y(y), x ∈ Hn+1
t (Dy).

It is not hard to check that for all n ∈ N0 we have

(a) an
y is t-Wright affine function,

(b) an
y(y) = f (y),

(c) an+1
y (x) = an

y(x), x ∈ Hn
t (Dy),

(d) an
y(x) � f (x), x ∈ Hn

t (Dy).

Finally, let ay : D → R be defined by formula

ay(x) := lim
n→∞

an
y(x), x ∈ D.

By conditions (a)-(d) we infer that the function ay is a t -Wright affine support f at
the point y on the whole domain D . �

REMARK 3. A t -Wright convex function constructed in the paper [9] don’t satisfy
the condition (� ), for all y ∈ R , so the assumption (� ) in our theorems is essential and
can not be omitted.

As a concequence of Theorem 4 we obtain following
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THEOREM 5. Let D be an algebraically open set (i.e. D = algintL(t) D ) and let
f : D → R be a t -Wright convex function. The following conditions are equivalent

(k1)
∨
y∈D

∧
x∈Dy

(
lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] > −∞
)
,

(k2) there exists a t -Wright concave function g : D → R such that∧
x∈D

g(x) � f (x), x ∈ D,

(k3)
∧
y∈D

∧
x∈Dy

(
lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))] > −∞
)
,

(k4) for every y ∈ D there exists a t -Wright affine support function ay : D → R .

Proof. On account of Theorem 4 the implications: (k1 )⇒(k2 ), (k3 )⇒(k4 ),
(k4 )⇒(k1 ) are obvious. We prove only the implication (k2 )⇒(k3 ). Fix an arbitrary
y ∈ D and x ∈ Dy . By (k2 ), for all n ∈ N , we obtain

g(x)+g(2y− x) � g(Mn(x,2y− x))+g(Nn(x,2y− x))
� f (Mn(x,2y− x))+ f (Nn(x,2y− x)),

hence

−∞< g(x)+g(2y− x) � lim
n→∞

[ f (Mn(x,2y− x))+ f (Nn(x,2y− x))].

This completes the proof. �
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[8] K. LAJKÓ, On a functional equation of Alsina and Garcia-Roig, Publ. Math, 52, 3-4 (1998), 507–515.
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