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ORDER MATTERS WHEN CHOOSING SETS

WARREN B. MOORS AND JULIA C. NOVAK

(Communicated by N. Elezović)

Abstract. Given natural numbers t,w and v we show, using high school algebra, that if 1 � w � t < v
then ((v ch t) ch w) � ((v ch w) ch t) . Here we denote “n choose r ” by (n ch r) .

In this paper we show, using high school algebra, that if 1 < w < t < v are natural
numbers then ((v

w

)
t

)
>

w!(t!)w

t!(w!)t

((v
t

)
w

)
.

Our original interest in this inequality arose from the study of incidence structures.
Specifically, in regard to the assignment of keys/sub-keys to users in a network in order
to ensure that certain specified security conditions are fulfilled (i.e., Key Distribution
Patterns). For further information on this see [2, Chapter 4]. However, as this inequality
is somewhat natural, not surprisingly, variations on this inequality have been studied
before e.g. in [1]. In fact, the special case of our inequality when w = 2 and t = 3 was
considered in [1, Theorem 5].

LEMMA 1. If 1 � j � w < v are natural numbers then,

[v(v−1) · · ·(v−w+1)− jw!][v−w+ j]� v(v−1) · · ·(v−w+1)(v−w).

Proof. Fix 1 � j � w then,

[v(v−1) · · ·(v−w+1)− jw!][(v−w)+ j]
= v(v−1) · · ·(v−w+1)(v−w)

+
[
jv(v−1) · · ·(v−w+1)− j2w!− jw!(v−w)

]
.

We claim that

jv(v−1) · · ·(v−w+1)− j2w!− jw!(v−w) � 0.
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To see this, we simply do more algebra.

jv(v−1) · · ·(v−w+1)− j2w!− jw!(v−w) � 0

⇐⇒ jv(v−1) · · ·(v−w+1) � j2w!+ jw!(v−w)

⇐⇒
(

v
w

)
� j +(v−w).

Now, j +(v−w) � v . On the other hand, because 1 � w < v ,
(v
w

)
� v . Therefore,

[v(v−1) · · ·(v−w+1)− jw!][v−w+ j]� v(v−1) · · ·(v−w+1)(v−w). �

LEMMA 2. If 1 < w < v, 1 � j < v and j,w,v ∈ N then,

[v(v−1) · · ·(v−w+1)− jw!] � (v−1)(v−2) · · ·(v−w+1)(v−w) � (v−w)w.

Proof. To prove this, we again do some algebra.

[v(v−1) · · ·(v−w+1)− jw!]− (v−w)(v−1)(v−2) · · ·(v−w+1) � 0

⇐⇒ − jw!+w(v−1)(v−2) · · ·(v−w+1) � 0

⇐⇒ (v−1)(v−2) · · ·(v−w+1) � j(w−1)!

⇐⇒
[
v−1

j

][
v−2
w−1

]
· · ·
[
v−w+1

2

]
� 1;

which is true since 1 � j < v and w < v . �

LEMMA 3. If 1 � w < v are natural numbers then,[
w

∏
j=1

[v(v−1) · · ·(v−w+1)− jw!]

]
[v(v−1) · · ·(v−w+1)] � [v(v−1) · · ·(v−w)]w.

Proof. This follows directly from Lemma 1 and the fact that:[
w

∏
j=1

[v(v−1) · · ·(v−w+1)− jw!]

]
[v(v−1) · · ·(v−w+1)]

=
w

∏
j=1

[v(v−1) · · ·(v−w+1)− jw!][v−w+ j].

At last we are ready to prove our inequality which generalises [1, Theorem 5].

THEOREM 1. If 1 < w< t < v are natural numbers then

((v
w

)
t

)
>

w!(t!)w

t!(w!)t

((v
t

)
w

)
.
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Proof. Suppose that 1 < w < t < v are natural numbers then((v
w

)
t

)
=

1
t!

[
t−1

∏
j=0

[v(v−1) · · ·(v−w+1)− jw!]
w!

]

� 1
t!(w!)t

[
w

∏
j=0

[v(v−1) · · ·(v−w+1)− jw!]

]
[(v−w)w]t−w−1 by Lemma 2

=
1

t!(w!)t

[
v(v−1) · · ·(v−w+1)

w

∏
j=1

[v(v−1) · · · (v−w+1)− jw!]

]
[(v−w)t−w−1]w

� 1
t!(w!)t

(
[v(v−1) · · ·(v−w)]w · [(v−w)t−w−1]w

)
by Lemma 3

=
1

t!(w!)t
(
[v(v−1) · · ·(v−w)(v−w)t−w−1]w

)
� 1

t!(w!)t
(
[v(v−1) · · ·(v−w) · · ·(v− t +1)]w

)

>
w!(t!)w

t!(w!)t

[
1
w!

w−1

∏
j=0

[v(v−1) · · ·(v− t +1)− jt!]
t!

]

=
w!(t!)w

t!(w!)t

((v
t

)
w

)
. �

PROPOSITION 1. If 1 < w < t are natural numbers then

lim
v→∞

((v
w)
t

)
((v

t)
w

) =
w!(t!)w

t!(w!)t
.

Proof. Define P : R → R and Q : R → R by, P(x) := ∏t−1
j=0[(x(x−1) · · ·(x−w+

1)− jw!] and Q(x) := ∏w−1
j=0 [(x(x− 1) · · ·(x− t + 1)− jt!] . Then P and Q are monic

polynomials of degree wt . Therefore, lim
x→∞

P(x)
Q(x)

= 1. It now follows that,

lim
v→∞

((v
w)
t

)
((v

t)
w

) = lim
v→∞

1
t!(w!)t P(v)

1
w!(t!)w Q(v)

=
w!(t!)w

t!(w!)t
· lim
v→∞

P(v)
Q(v)

=
w!(t!)w

t!(w!)t
. �

Together Proposition 1 and Theorem 1 yield the fact that for any natural numbers
1 � w � t

inf
v∈{t+1,t+2,...}

((v
w)
t

)
((v

t)
w

) =
w!(t!)w

t!(w!)t
.

To understand this inequality better we need the following crude estimate.
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PROPOSITION 2. If 1 � w � t are natural numbers then

w!(t!)w

t!(w!)t
�
(

w+1
2

)(t−w)

� 1.

Proof. We need only consider the case when 1 < w < t .

w!(t!)w

t!(w!)t
=

(t!)(w−1)

(w!)(t−1) =
(t!)(w−1)

(w!)(t−w)(w!)(w−1) =
[t(t−1) · · ·(w+1)](w−1)

(w!)(t−w)

=

(
t(w−1)

w!

)(
(t −1)(w−1)

w!

)
· · ·
(

(w+1)(w−1)

w!

)
︸ ︷︷ ︸

(t−w)−factors

.

Now,
j(w−1)

w!
� w+1

2
for all (w+1) � j since,

j(w−1)

w!
=
(

j
w

)(
j

w−1

)
· · ·
(

j
3

)(
j
2

)
︸ ︷︷ ︸

(w−1)−times

�
(

j
w

)(
j

w−1

)
· · ·
(

j
3

)(
w+1

2

)
︸ ︷︷ ︸

(w−1)−factors

� w+1
2

. �

Given a natural number v > 1 and natural numbers a1,a2, . . . ,an smaller than v
we may inductively define the following notation. Nv(a1) :=

( v
a1

)
. If Nv(a1,a2, . . . ,ak)

has been defined for 1 � k < n then we define Nv(a1,a2, . . . ,ak+1) :=
(Nv(a1,a2,...,ak)

ak+1

)
.

With this notation we may state the following generalisation of the previous theo-
rem.

COROLLARY 1. Given natural numbers a1 � a2 � · · · � an < v,

Nv(a1,a2, . . . ,an) = max
{
Nv(aπ(1),aπ(2), . . . ,aπ(n)) : π is a permutation of the set

{1,2, . . . ,n}}.
Proof. Let Sn denote the set of all permutations on {1,2, . . . ,n} and let σ ∈ Sn

be chosen so that

Nv(aσ(1),aσ(2), . . . ,aσ(n)) = max
π∈Sn

Nv(aπ(1),aπ(2), . . . ,aπ(n)).

If aσ( j) = 1 for some 1 < j � n then

Nv(aσ(1), . . . ,aσ( j−1),aσ( j), . . . ,aσ(n)) = Nv(aσ(1), . . . ,aσ( j),aσ( j−1), . . . ,aσ(n)).
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Hence, if for some 1 � k � n , a j = 1 for all 1 � j � k then we may assume without
loss of generality that aσ( j) = 1 for all 1 � j � k . That is, we can shuffle all the 1’s to
the front of the queue without altering the value of Nv(aσ(1),aσ(2), . . . ,aσ(n)) .

Thus, in this case, we have that 1 = a j = aσ( j) for all 1 � j � k and so

Nv(a1,a2, . . . ,ak,ak+1, . . . ,an) < Nv(aσ(1),aσ(2), . . . ,aσ(k),aσ(k+1), . . . ,aσ(n))
⇐⇒ Nv(ak+1,ak+2, . . . ,an) < Nv(aσ(k+1),aσ(k+2), . . . ,aσ(n)).

In this way, we see that we can restrict our attention to the case where 1 < a1 � a2 �
· · · � an < v .

Next we show that aσ(i) � aσ(i+1) for all 1 � i < n . So let us suppose, in order to
obtain a contradiction that for some 1 � j < n , aσ( j) > aσ( j+1) . We consider 3 cases
(mainly for notational reasons):

(i) j = 1; (ii) 1 < j = n−1 and (iii) 1 < j < n−1.

Case (i) If j = 1 then by Theorem 1, Nv(aσ(1),aσ(2)) < Nv(aσ(2),aσ(1)) and so

Nv(aσ(1),aσ(2),aσ(3), . . . ,aσ(n)) < Nv(aσ(2),aσ(1),aσ(3), . . . ,aσ(n));

which contradicts the maximality of Nv(aσ(1),aσ(2), . . . ,aσ(n)) .

Case (ii) If 1 < j = n−1, let v∗ := Nv(aσ(1),aσ(2), . . . ,aσ( j−1)) . Then,

Nv(aσ(1), . . . ,aσ( j−1),aσ( j),aσ(n)) = Nv∗(aσ( j),aσ(n)) < Nv∗(aσ(n),aσ( j)) by Theorem 1

= Nv(aσ(1), . . . ,aσ( j−1),aσ(n),aσ( j));

which again contradicts the maximality of Nv(aσ(1),aσ(2), . . . ,aσ(n)) .

Case (iii) If 2 � j < n−1, let v∗ := Nv(aσ(1),aσ(2), . . . ,aσ( j−1)) . Then,

Nv(aσ(1), . . . ,aσ( j−1),aσ( j),aσ( j+1)) = Nv∗(aσ( j),aσ( j+1)) < Nv∗(aσ( j+1),aσ( j))
by Theorem 1

= Nv(aσ(1), . . . ,aσ( j−1),aσ( j+1),aσ( j))

and so Nv(aσ(1), . . . ,aσ( j),aσ( j+1), . . . ,aσ(n)) < Nv(aσ(1), . . . ,aσ( j+1),aσ( j), . . . ,aσ(n)) ;
which as before, contradicts the maximality of Nv(aσ(1),aσ(2), . . . ,aσ(n)) . Hence, aσ(i)
� aσ(i+1) for all 1 � i < n .

Now, since both (ai : 1 � i � n) and (aσ(i) : 1 � i � n) are non-decreasing and
re-arrangements of each other, it follows that ai = aσ(i) for all 1 � i � n . Therefore,

Nv(a1,a2, . . . ,an) = Nv(aσ(1),aσ(2), . . . ,aσ(n)) = max
π∈Sn

Nv(aπ(1),aπ(2), . . . ,aπ(n)). �

From the proof of the Corollary we see that if 1 < a1 < a2 < · · · < an < v then

Nv(aσ(1),aσ(2), . . . ,aσ(n)) = max
π∈Sn

Nv(aπ(1),aπ(2), . . . ,aπ(n))

if, and only if, σ is the identity mapping.

QUESTION 1. Is there a simple combinatorial proof of Theorem 1?
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