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ON A WEIGHTED SUM OF DISTANCES FROM
A WELL DISTRIBUTED SET OF POINTS

ARTURAS DUBICKAS

(Communicated by J. Pecari¢)

Abstract. Suppose that & is a complex number, 7 >0 and wy,...,wg > 0. Let A be the modulus
of the product of d(d —1)/2 distances between complex numbers zj,...,z; labelled so that
|z1 —&| > ... > |za — €|. We prove that the sum 52?:1 wilzi — &|" is at least

Ve 1Jd naijd(d—1) j1)(d—1) [ 2d—i)/d(d—1)
e d \2t/d(d=1) g—1/( )l‘[lwi
i=
and show that this inequality is sharp for certain choice of weights w;. This inequality is then
applied to sets of conjugate algebraic integers.

1. Introduction

Let C, R and Q be the sets of complex numbers, real numbers and rational num-
bers, respectively. Given a positive number &, we say that a set of d > 2 numbers
21,22+ -.,24 € C is & -distributed if

[ lz—zl=8.

I1<i<j<d

For example, a full set of d conjugates of an algebraic integer of degree d > 2 over
@ is 1-distributed. For a given collection of non-negative weights wy,...,w; € R and
a positive number ¢, we are interested how small can the sum 52?:1 wilzi — &' be
when & runs through C and the set z,...,z4 is, say, 1-distributed? In particular, for
wi=...=wg =1 and t = 2, we ask the following question of elementary geometry:

QUESTION 1. Let d > 2 be aninteger, and let Ay, ...,Ay be a set of 1-distributed
points on the plane, i.e., [1<i<j<a |AiAj| > 1. Is it true that

|PA||>+ ...+ |PA4|? > g2/
d

ey

for every point P?
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Evidently, the answer to Question 1 is ‘yes’ for d = 2. Equality in (1) is attained
for the midpoint P of the segment A1A, of length 1. Note that inequality (1) if proved

would be the best possible. Indeed, if Ay,...,A; are the vertices of a regular polygon
inscribed into a circle of radius ~'/(¢=1) and center P then [Mi<icj<alAiAj| =1 (see
equality (5) below) and |PA;| = ... = |PAy| = d~ /(@1 5o the left hand side of (1)

equals d—2/(4=1),

The best known lower bound in (1) is with the constant /e/2 — ¢ on the right
hand side of (1) for each sufficiently large d (see [3]). It is quite far from the expected
constant 1 —&. Adding weights w; > 0 and replacing squares by arbitrary powers ¢ > 0,
we prove the following:

THEOREM 2. Let d > 2 be an integer, t >0, wy,...,wg =0, E€Candz,...,z4
€ C are labelled so that |z1 — &| > ... > |zg— &|. Then

_Zw’|zl &> 71/dH /ddl( I1 \Zi—z;")zt/d(d_l)d”/(d*l).

1<i<j<d
(2)

Supposethat y; > ... >y | > 0. Itis easy to see thatif wy,. wd 1 are precisely
d — 1 elements of the multiset yq,...,y;—1 then the product H —i)/d(d=1) is
maximal when w; =y; foreach i=1,...,d — 1 and minimal when w, yq—; for each
i=1,...,d— 1. The same holds for the sum Y% w;|z; — E|’, because |z; — E[f >
|za — EI'.
Let f be a continuous function defined in the interval [0, 1] such that f(x) > 0 for
€10,1). Set

)= [ (12 tog (). @)

For w; = f(i/d), we have

o (Tl 9) = 25 S 0= aos ) = 7).

where R(I(f)) = 1347} (1 —i/d)log f(i/d) the Riemann sum of the integral I(f).
Hence

HW D/dd=1)  2U(f) ,q d— oo,
so Theorem 2 implies the followmg.

COROLLARY 3. For every € > 0, there is a constant dy = dy(€) such that, for
each & € C, each collection of 1-distributed points z1,...,z4 € C, where d > dy(¢),
labelled so that |z1 — &| > ... > |zg — E|, each continuous function f defined on [0, 1],
positive on [0,1), and each t € R satisfying 0 <t < d(logd)~'~¢, we have

(/d)\z _5|t 1/2+2I( ) €.

U=
ﬁM&
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In fact, as it is stated in the proof of Theorem 2, the factor e!/2~1/¢ appears in (2)
from the estimate d ) >4 lilogi<log(d—1)—1/2+1/d for d >2 (see Lemma 5).

Under conditions of the theorem, we will prove the following slightly stronger inequal-
ity:

S d—10 wi \2(a-i/d- ujdd-1)
3;Wi‘2i—€|f> 5 H(ﬁ)z(d )/d(d 1)( I |Zi—Zj|> g-1/d-1)

1

i=1 1<i<j<d
“)
This inequality is sharp. Indeed, select an arbitrary EeC, wi=1-i/d and
=& +4uw' for i=1,...,d, where u is a non-zero complex number and @ is the
primitive dth root of unity. Then
H |Zi_Zj| — ‘u|d(d71)/2dd/2. (5)
1<i< j<d
The left hand side of (4) is
(d—1)uf

—zwl\zl g =3 a1

—1

2 /d(d—1)
Since, by (3), <H1<i<J<d‘Zi—Zj|> d~/\@=1) = |y|f, the right hand side of (4)
is the same:

) —i)/d(d— 1)( H ‘Zi_Zj|>2t/d(d71)d7[/(d71)

(Hd —i)/d(d— 1>‘u|[:(d—22)‘u|['

In particular, inequality (4) is sharp for the set of conjugates z; = o,...,zg =
oy of an algebraic number o = V12" of degree d = 2™. The discriminant of the
cyclotomic polynomial ®(x) = x*" 4+ 1= (x — )...(x — &4y) (which is the minimal
polynomial of & over Q) is equal to [T« jca 0 — o> = d? (see, e.g., [1]). In
Section 4 we shall state two corollaries of the theorem to sets of conjugate algebraic
integers.

ion Auxiliary results

The following lemma was proved by Remak [9]. See also [6] for another proof,
[2] for a generalization and [4] for some applications of Remak’s inequality.

Z... 2

LEMMA 4. Let d > 2 be an integer and vy, ... vy € C, where |vi| = |v»
[vy|. Then
IT vi—vil <dPpi | ol 42 v
1<i<j<d

Our next lemma is the following standard estimate:
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LEMMA 5. Forevery d > 2, we have

-l g(d—1)logd—1) (d—1)(d—2)
g‘lzlogzg > — ) .

Lemma 5 follows from the next stronger inequality
al d(d—1)log(d—1) d(d—2) log(d—1)

logi < B
izzlzogz > 1 + B

for d > 2 (see, e.g., [3]).
We shall also need the following identity:

LEMMA 6. Let d > 2 be an integer, £,z1,...,z4 € C, and wy,...,wg € R. Then
5 d d ) d d 2
Y owiwilz—zilP =Y wi Yo wil — &P — | Y wizi— &Y wi|
1<i<j<d i=1 =1 i=1 i=1
In particular; if Y&, w; # 0 then
R 2
N wiwilzi—zi)P =Y, wi Y wilzi — | (6)
1<i<j<d =1 =l
for $=3L wizi/ T wi.
Proof. Note that

‘Zi_Zj‘z = (Zi—f—Zj+§)(Z_i—g_Z_j+g)
=z —&P+5 - &P - @-8)FG-&) - @&z - &)

Hence
d
2N wiwila—zlP =Y, wiwjlzi—z
I<i<j<d ij=1
d J— J—
=Y wiwi(lz—EP+1zj— &P~ (zi—&)FG - &) — @—&)(zj—&))
ij=1

d d 5 d 2
22W,‘2W;‘|Zi_§‘ _2|2Wi(zi_§)}
i=1

=1 =1
d d d d

= ZZWiZwi|zi—’é\2—2| ZwiZi—fzwi| .
i=1 i=1 i=1 i=1

This completes the proof of the lemma. O
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2. Proof of Theorem 2

We will first prove (4). For d = 2, the right hand side of (4) is equal to wy|z; —
2|27 Since |z1 — &| > |22 — €|, by the triangle inequality |z1 — 22| < |z — &| +
|z1 — €|, we have |z1 — &| > |21 — 22|/2. So the left hand side of (4) is

wilzr — &' +walza — & < wilzp — & < wi(lz1 —22]/2)

=wilz — 2|27,

2 - 2 - 2
which is the right hand side of (4). The result is also trivial if at least one of the weights
Wi,...,Wg—1 is equal to zero. This proves (4) for d =2 and for w;...wy_; = 0.
Therefore, we may assume that d > 3 and wy,...,wy_1 > 0.
Put
A= I -zl
1<i<j<d
and u; ;= |z; — &|. We have uy > uy > ... > uy. Note that A = [Tj<icjeqlzi — 2j] =

[Mi<i<j<al(zi—&) —(z; — &)| is the modulus of the Vandermonde determinant consist-
ing of the powers of z; — &,...,z; — €. Hence, by Lemma 4 with v; := z; — & (so that
u; = |v;|) for i=1,...,d, we obtain
A< dd/zu‘f_lug_z UG-
We may assume that uy_; > 0, for otherwise uy_; =uy; =0, s0 zg_1 =z4=&.
Then both (2) and (4) are trivial, because A = 0. Since uy,...,uy_; are all positive,
we have

(d—1)logu; + (d—2)loguy + ...+ loguy_; > logA—

dlogd
>

If this inequality is strict, we can replace each u; by u;/v with some v > 1, so that
equality

(d—1)logu;+ (d —2)logus + ... +loguy_; =logA—

dlogd
5 (M)

holds. In order to minimize the sum 2‘1 | wiu’ with the restriction on the variables
up = ... = ug—1 >0 given by (7) we shall use the method of Lagrange multipliers.
Consider the Lagrange function

d—1 d—1
Flup,...,ug-1,A) = 2 willy — A < 2 (d—1i)logu; — log(Add/2)> .
i=1 =1
Then g—; =0 leads to w,-tui-_l = A(d —i)/u;, giving
b= A(d—i)/wit (8)

fori=1,...,d— 1. Using tlogu; = log((d —i)/w;) +1log(A/t), from (7) we deduce
that

og(8d") =1 3, (i) togus = 3. (4o (a—i) )+ LI L0ERI)

i=1 i=1
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Multiplying this equality by 2/d(d — 1), we obtain

2tlogA tlogd 2 d—l
log(A /1) = i) log(wi/(d —i))-
dd-1) d- 1 1:1
Consequently,
— A2/d(d=1) g=t/(d~1) ﬁ( ) —i)/d(d-1) 9)

i=1

It is easily seen that the point (uy,...,u;_1) given by (8), with A is given by (9),
is the point of the global minimum of the function ¥¢"' w;u!. Thus, using (8) and (9),
we find that

1 d 1 d—1 1 d—1 A d—1
ngt'|zt'—§\t> E;wi\zi—ﬂ’Z yi Zwibé.: = :l(d_i)
)L(d_l) d—1 2 a@-1 (d— 1d_ 2(d—i)/d(d—1)
== > A t/d(d=1) g—t/( 1:[( ) .
This proves (4).
By Lemma 5,
d-1
H(d—l) i)/d(d—1) HlZz/dd 1) C1)e /2 (g 1) /2
i=1
Thus

d—1
@d-1)]]@d- jymAa=/dld=1) 5 1/2-1/d,

i=1
Hence (4) implies (2). O

3. Examples and applications to algebraic integers

Set in Corollary 3 f(x) = 1 —x and assume that z; = o4 (i =1,...,d) is the set of
conjugates of an algebraic integer o over Q. By (3),

I(f):/l(l—x)log(l—x)dx:—l/4,

0
so 1/2+2I(f) =0 and we obtain the following:

COROLLARY 7. For every € > 0, there is a constant di = dy(€) such that, for
each & € C, each algebraic integer a of degree d, where d > d,(€), with conjugates
ay,...,0q labelled so that (o — | > ... = |ag — &, and each t € R satisfying 0 <
t < d(logd)~'"¢, we have

[

1 1
—Z(l—t/d)\az gl >5-e (10)

i=1

&
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The constant 1/2 on the right hand side of (10) is best possible, because if o is
a root of unity of degree degor =d over Q and & =0 then |0y — &| =1 for every
i=1,....d, so

U

LS -ila—gr = LS a1 L
d= ’ - dA 2 2d

By Corollary 7, for every € > 0, every & € C, every algebraic integer o of a
sufficiently large degree d, and every ¢ € (0,d(logd)~'~¢),

d
Y uiloi— &' >1—¢
i=1

for the choice of weights u; = 2(d —i)/d(d — 1) satisfying 3¢, w; = 1.
Applying Lemma 6 to the full set of conjugates of an algebraic integer o and to
t =2 we will derive the following statement:

COROLLARY 8. For every € > 0, there is a constant dy = dy(€) such that, for
each algebraic integer o, of degree d, where d > dy(€), with conjugates ay,...,0y
and each continuous non-decreasing positive function f(x) on [0,1], we have

1/2+421(f)
Y wgles— oyt > ———
1<i<j<d J(f)

where wij = f(i/d)f(j/d)/S, S:=Zi<icjcaf(i/d)f(j/d) and J(f):= [y f(x) dx

Proof. Take w; = f(i/d), zi = o; and { = (2?:1f(i/d)ai)/(Zilf(i/d)) in
Lemma 6. Then, by (6),

_8’

d

d
Y, S/ f(i/d)los— oy =¥ f(i/d) Y, f(i/d)]os — . (11)

1<i<j<d i=1 i=1

Let o be a permutation of the set {1,...,d} such that |ag() — & > ... = [0 (q) — C].
By Theorem 2 with t = 2, for each € > 0 and each sufficiently large d, the sum

d

Y fli/d)|os— P = Zf (0)/d) ety — £

i=1
is at least (1 — £)d§ M4} f(o(i)/d)?4=0/4@=1) Since f(x) is non-decreasing and
f(0) >0, we have

ﬁ Flo(i)jay* =D = ﬁ Flo(i)jay? D@
i=1

i=1

f( /d) —i)/d(d—1) H (/d) —i)/d(d— I)NeZI(f)

i=1

:1&

Il
—_



452 ARTURAS DUBICKAS

as d — oo, by (3). Note that S/d*> ~ LJ(f)* and 132, f(i/d) ~J(f) as d — oo.
Hence, by (11),

> ) o1/2421(f)
wijlog —aj|” > (1 —2€)————
1<i<j<d e J(f)

This completes the proof. [l

The sum of weights p;; in Corollary 8 is equal to 1, i.e., 1< j<q Mij = 1. Taking
f(x) =1, by (3), we obtain I(f) =0 and J(f) = folf(x) dx = 1. This recovers our
earlier result [3] stating that, for each € > 0 and each algebraic integer o of degree
d > ds(&) with conjugates o, ..., 0y,

2 d
Y oi—oF > Ve—e. (12)

A corresponding problem for the conjugates of a totally real algebraic integer have been
considered by Schur [10]. See also [8] for a solution of another Schur’s problem from
[10].

Unlike the constant 1/2 in (10), it seems likely that the constant e'/2+2/(/) /J( f)
of Corollary 8 is not optimal. Moreover, with this method, we cannot get anything
better than +/e. Indeed, for example, by considering two Riemann sums

1 N—1 1 N—1 N-1
R(I(f) =5 X (L=i/N)log(i/N), RU(f) = ¥ f/N)= ] r/n)"™
i=0 i=0 i=0

of the integrals I(f) = fol(l —x)log f(x)dx and J(f) = fol f(x)dx, respectively, and
letting N — oo, one can show that ¢2/(/) < J(f) for each continuous non-decreasing
positive function f(x) on [0, 1], so that e'/2+2/(/) /J( f) < \/e. For any positive function
f(x) on [0,1), one can show that ¢!/2+2/(f) /j(f) < 2.

The expected constant in (12) instead of /e is 2. This constant would be the best
possible, because if u;j =2/d(d — 1) for every pair i, j satisfying 1 <i< j <d and if
o is a root of unity of trace zero, i.e., ) + ...+ oz =0, then, by (6) with { =0 and
w; = 1, we have ﬁz‘zlékjéd |OCi — OCj‘z =2.

Langevin [5] proved earlier that, for every € and every algebraic integer o of
degree d > d4(¢€), the inequality max ;< j<q|0 — 0¢j| > 2 — € holds. This solved an
old 1928 problem of Favard; see also [7]. In this context, the natural expected constant
in the lower bound

(d(dzi_l) Y Joi— oc,-|’>1/t >C(t)—¢

1<i<j<

for the ‘average’ mean (at least for ¢ > 2) taken over the conjugates of an algebraic
integer o of degree d > ds(&,t) is

C(t) =2n"*T(t/2+1/2)"'T(t/2+ 1)/,
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where I'(z) stands for the Euler gamma function. One can check easily on roots of
unity o that then the constant C(¢) would be the best possible.

Since Corollary 7 appears to be the only result of this kind with the optimal con-

stant in (10), it would be of interest to obtain a sharp version of (10) for some other
choice of weights wy,...,w;.
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