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ON A WEIGHTED SUM OF DISTANCES FROM

A WELL DISTRIBUTED SET OF POINTS

ARTŪRAS DUBICKAS

(Communicated by J. Pečarić)

Abstract. Suppose that ξ is a complex number, t > 0 and w1, . . . ,wd � 0. Let Δ be the modulus
of the product of d(d − 1)/2 distances between complex numbers z1, . . . ,zd labelled so that
|z1 −ξ | � . . . � |zd −ξ |. We prove that the sum 1

d ∑
d
i=1 wi|zi −ξ |t is at least

√
e

2
e−1/dΔ2t/d(d−1)d−t/(d−1)

d−1

∏
i=1

w2(d−i)/d(d−1)
i

and show that this inequality is sharp for certain choice of weights wi. This inequality is then
applied to sets of conjugate algebraic integers.

1. Introduction

Let C, R and Q be the sets of complex numbers, real numbers and rational num-
bers, respectively. Given a positive number δ , we say that a set of d � 2 numbers
z1,z2, . . . ,zd ∈ C is δ -distributed if

∏
1�i< j�d

|zi − z j| � δ .

For example, a full set of d conjugates of an algebraic integer of degree d � 2 over
Q is 1-distributed. For a given collection of non-negative weights w1, . . . ,wd ∈ R and
a positive number t, we are interested how small can the sum 1

d ∑
d
i=1 wi|zi − ξ |t be

when ξ runs through C and the set z1, . . . ,zd is, say, 1-distributed? In particular, for
w1 = . . . = wd = 1 and t = 2, we ask the following question of elementary geometry:

QUESTION 1. Let d � 2 be an integer, and let A1, . . . ,Ad be a set of 1 -distributed
points on the plane, i.e., ∏1�i< j�d |AiA j| � 1. Is it true that

|PA1|2 + . . .+ |PAd|2
d

� d−2/(d−1) (1)

for every point P?
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Evidently, the answer to Question 1 is ‘yes’ for d = 2. Equality in (1) is attained
for the midpoint P of the segment A1A2 of length 1. Note that inequality (1) if proved
would be the best possible. Indeed, if A1, . . . ,Ad are the vertices of a regular polygon
inscribed into a circle of radius d−1/(d−1) and center P then ∏1�i< j�d |AiA j| = 1 (see
equality (5) below) and |PA1| = . . . = |PAd| = d−1/(d−1), so the left hand side of (1)
equals d−2/(d−1).

The best known lower bound in (1) is with the constant
√

e/2− ε on the right
hand side of (1) for each sufficiently large d (see [3]). It is quite far from the expected
constant 1−ε. Adding weights wi � 0 and replacing squares by arbitrary powers t > 0,
we prove the following:

THEOREM 2. Let d � 2 be an integer, t > 0, w1, . . . ,wd � 0, ξ ∈C and z1, . . . ,zd

∈ C are labelled so that |z1 − ξ |� . . . � |zd − ξ |. Then

1
d

d

∑
i=1

wi|zi − ξ |t �
√

e
2

e−1/d
d−1

∏
i=1

w2(d−i)/d(d−1)
i

(
∏

1�i< j�d

|zi − z j|
)2t/d(d−1)

d−t/(d−1).

(2)

Suppose that y1 � . . . � yd−1 > 0. It is easy to see that if w1, . . . ,wd−1 are precisely

d − 1 elements of the multiset y1, . . . ,yd−1 then the product ∏d−1
i=1 w2(d−i)/d(d−1)

i is
maximal when wi = yi for each i = 1, . . . ,d−1 and minimal when wi = yd−i for each
i = 1, . . . ,d−1. The same holds for the sum ∑d

i=1 wi|zi−ξ |t , because |z1−ξ |t � . . . �
|zd − ξ |t .

Let f be a continuous function defined in the interval [0,1] such that f (x) > 0 for
x ∈ [0,1) . Set

I( f ) :=
∫ 1

0
(1− x) log f (x)dx. (3)

For wi = f (i/d), we have

log
( d−1

∏
i=1

w(d−i)/d(d−1)
i

)
=

1
d−1

d−1

∑
i=1

(1− i/d) log f (i/d) =
d

d−1
R(I( f )),

where R(I( f )) = 1
d ∑

d−1
i=0 (1− i/d) log f (i/d) the Riemann sum of the integral I( f ).

Hence
d−1

∏
i=1

w2(d−i)/d(d−1)
i ∼ e2I( f ) as d → ∞,

so Theorem 2 implies the following:

COROLLARY 3. For every ε > 0, there is a constant d0 = d0(ε) such that, for
each ξ ∈ C, each collection of 1 -distributed points z1, . . . ,zd ∈ C, where d � d0(ε),
labelled so that |z1−ξ |� . . . � |zd −ξ |, each continuous function f defined on [0,1],
positive on [0,1), and each t ∈ R satisfying 0 < t < d(logd)−1−ε , we have

1
d

d

∑
i=1

f (i/d)|zi − ξ |t >
1
2
e1/2+2I( f )− ε.
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In fact, as it is stated in the proof of Theorem 2, the factor e1/2−1/d appears in (2)
from the estimate 2

d(d−1) ∑
d−1
i=1 i log i � log(d−1)−1/2+1/d for d � 2 (see Lemma 5).

Under conditions of the theorem, we will prove the following slightly stronger inequal-
ity:

1
d

d

∑
i=1

wi|zi − ξ |t � d−1
2

d−1

∏
i=1

( wi

d− i

)2(d−i)/d(d−1)
(

∏
1�i< j�d

|zi − z j|
)2t/d(d−1)

d−t/(d−1).

(4)
This inequality is sharp. Indeed, select an arbitrary ξ ∈ C, wi = 1− i/d and

zi = ξ + uω i for i = 1, . . . ,d , where u is a non-zero complex number and ω is the
primitive d th root of unity. Then

∏
1�i< j�d

|zi − z j| = |u|d(d−1)/2dd/2. (5)

The left hand side of (4) is

1
d

d

∑
i=1

wi|zi − ξ |t =
1
d

d

∑
i=1

(1− i/d)|u|t =
(d−1)|u|t

2d
.

Since, by (5) ,
(
∏1�i< j�d |zi− z j|

)2t/d(d−1)
d−t/(d−1) = |u|t , the right hand side of (4)

is the same:

d−1
2

d−1

∏
i=1

( wi

d− i

)2(d−i)/d(d−1)
(

∏
1�i< j�d

|zi − z j|
)2t/d(d−1)

d−t/(d−1)

=
d−1

2

( d−1

∏
i=1

d−2(d−i)/d(d−1)
)
|u|t =

(d−1)|u|t
2d

.

In particular, inequality (4) is sharp for the set of conjugates z1 = α1, . . . ,zd =
αd of an algebraic number α = eπ

√−1/2m
of degree d = 2m. The discriminant of the

cyclotomic polynomial Φ(x) = x2m
+ 1 = (x−α1) . . . (x−αd) (which is the minimal

polynomial of α over Q ) is equal to ∏1�i< j�d |αi −α j|2 = dd (see, e.g., [1]). In
Section 4 we shall state two corollaries of the theorem to sets of conjugate algebraic
integers.

ion Auxiliary results
The following lemma was proved by Remak [9]. See also [6] for another proof,

[2] for a generalization and [4] for some applications of Remak’s inequality.

LEMMA 4. Let d � 2 be an integer and v1, . . . ,vd ∈ C, where |v1| � |v2| � . . . �
|vd |. Then

∏
1�i< j�d

|vi − v j| � dd/2|v1|d−1|v2|d−2 . . . |vd−1|.

Our next lemma is the following standard estimate:



448 ARTŪRAS DUBICKAS

LEMMA 5. For every d � 2, we have

d−1

∑
i=1

i log i � d(d−1) log(d−1)
2

− (d−1)(d−2)
4

.

Lemma 5 follows from the next stronger inequality

d−1

∑
i=1

i log i � d(d−1) log(d−1)
2

− d(d−2)
4

+
log(d−1)

12

for d � 2 (see, e.g., [3]).
We shall also need the following identity:

LEMMA 6. Let d � 2 be an integer, ξ ,z1, . . . ,zd ∈ C, and w1, . . . ,wd ∈ R. Then

∑
1�i< j�d

wiwj|zi − z j|2 =
d

∑
i=1

wi

d

∑
i=1

wi|zi − ξ |2− ∣∣ d

∑
i=1

wizi − ξ
d

∑
i=1

wi
∣∣2.

In particular, if ∑d
i=1 wi �= 0 then

∑
1�i< j�d

wiwj|zi − z j|2 =
d

∑
i=1

wi

d

∑
i=1

wi|zi − ζ |2 (6)

for ζ = ∑d
i=1 wizi/∑d

i=1 wi .

Proof. Note that

|zi − z j|2 = (zi − ξ − z j + ξ )(zi− ξ − z j + ξ )

= |zi − ξ |2 + |z j − ξ |2− (zi− ξ )(z j − ξ )− (zi− ξ)(z j − ξ ).

Hence

2 ∑
1�i< j�d

wiwj|zi − z j|2 =
d

∑
i, j=1

wiwj|zi − z j|2

=
d

∑
i, j=1

wiwj(|zi − ξ |2 + |z j − ξ |2− (zi− ξ )(z j − ξ )− (zi− ξ)(z j − ξ ))

= 2
d

∑
i=1

wi

d

∑
i=1

wi|zi − ξ |2−2
∣∣ d

∑
i=1

wi(zi − ξ )
∣∣2

= 2
d

∑
i=1

wi

d

∑
i=1

wi|zi − ξ |2−2
∣∣ d

∑
i=1

wizi − ξ
d

∑
i=1

wi
∣∣2.

This completes the proof of the lemma. �
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2. Proof of Theorem 2

We will first prove (4). For d = 2, the right hand side of (4) is equal to w1|z1 −
z2|t2−1−t. Since |z1 − ξ | � |z2 − ξ |, by the triangle inequality |z1 − z2| � |z2 − ξ |+
|z1− ξ |, we have |z1 − ξ |� |z1 − z2|/2. So the left hand side of (4) is

w1|z1− ξ |t +w2|z2− ξ |t
2

� w1|z1 − ξ |t
2

� w1(|z1 − z2|/2)t

2
= w1|z1 − z2|t2−1−t,

which is the right hand side of (4) . The result is also trivial if at least one of the weights
w1, . . . ,wd−1 is equal to zero. This proves (4) for d = 2 and for w1 . . .wd−1 = 0.
Therefore, we may assume that d � 3 and w1, . . . ,wd−1 > 0.

Put
Δ := ∏

1�i< j�d

|zi − z j|

and ui := |zi − ξ |. We have u1 � u2 � . . . � ud . Note that Δ = ∏1�i< j�d |zi − z j| =
∏1�i< j�d |(zi−ξ )− (z j −ξ )| is the modulus of the Vandermonde determinant consist-
ing of the powers of z1 − ξ , . . . ,zd − ξ . Hence, by Lemma 4 with vi := zi − ξ (so that
ui = |vi|) for i = 1, . . . ,d, we obtain

Δ� dd/2ud−1
1 ud−2

2 . . .ud−1.

We may assume that ud−1 > 0, for otherwise ud−1 = ud = 0, so zd−1 = zd = ξ .
Then both (2) and (4) are trivial, because Δ = 0. Since u1, . . . ,ud−1 are all positive,
we have

(d−1) logu1 +(d−2) logu2 + . . .+ logud−1 � logΔ− d logd
2

.

If this inequality is strict, we can replace each ui by ui/ν with some ν > 1, so that
equality

(d−1) logu1 +(d−2) logu2 + . . .+ logud−1 = logΔ− d logd
2

(7)

holds. In order to minimize the sum ∑d−1
i=1 wiut

i with the restriction on the variables
u1 � . . . � ud−1 > 0 given by (7) we shall use the method of Lagrange multipliers.

Consider the Lagrange function

F(u1, . . . ,ud−1,λ ) =
d−1

∑
i=1

wiu
t
i −λ

(d−1

∑
i=1

(d− i) logui− log(Δd−d/2)
)

.

Then ∂F
∂ui

= 0 leads to witu
t−1
i = λ (d− i)/ui, giving

ut
i = λ (d− i)/wit (8)

for i = 1, . . . ,d− 1. Using t logui = log((d − i)/wi)+ log(λ/t), from (7) we deduce
that

t log(Δd−d/2) = t
d−1

∑
i=1

(d− i) logui =
d−1

∑
i=1

(d− i) log((d− i)/wi)+
d(d−1) log(λ/t)

2
.
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Multiplying this equality by 2/d(d−1), we obtain

log(λ/t) =
2t logΔ
d(d−1)

− t logd
d−1

+
2

d(d−1)

d−1

∑
i=1

(d− i) log(wi/(d− i)).

Consequently,

λ
t

= Δ2t/d(d−1)d−t/(d−1)
d−1

∏
i=1

( wi

d− i

)2(d−i)/d(d−1)
. (9)

It is easily seen that the point (u1, . . . ,ud−1) given by (8), with λ is given by (9),
is the point of the global minimum of the function ∑d−1

i=1 wiut
i. Thus, using (8) and (9) ,

we find that

1
d

d

∑
i=1

wi|zi − ξ |t � 1
d

d−1

∑
i=1

wi|zi − ξ |t � 1
d

d−1

∑
i=1

wiu
t
i =

λ
dt

d−1

∑
i=1

(d− i)

=
λ (d−1)

2t
=

d−1
2

Δ2t/d(d−1)d−t/(d−1)
d−1

∏
i=1

( wi

d− i

)2(d−i)/d(d−1)
.

This proves (4) .
By Lemma 5,

d−1

∏
i=1

(d− i)2(d−i)/d(d−1) =
d−1

∏
i=1

i2i/d(d−1) � (d−1)e−(d−2)/2d = (d−1)e−1/2+1/d.

Thus

(d−1)
d−1

∏
i=1

(d− i)−2(d−i)/d(d−1) � e1/2−1/d.

Hence (4) implies (2) . �

3. Examples and applications to algebraic integers

Set in Corollary 3 f (x) = 1− x and assume that zi = αi ( i = 1, . . . ,d ) is the set of
conjugates of an algebraic integer α over Q . By (3),

I( f ) =
∫ 1

0
(1− x) log(1− x)dx = −1/4,

so 1/2+2I( f ) = 0 and we obtain the following:

COROLLARY 7. For every ε > 0, there is a constant d1 = d1(ε) such that, for
each ξ ∈ C, each algebraic integer α of degree d, where d � d1(ε), with conjugates
α1, . . . ,αd labelled so that |α1 − ξ | � . . . � |αd − ξ |, and each t ∈ R satisfying 0 <
t < d(logd)−1−ε , we have

1
d

d

∑
i=1

(1− i/d)|αi− ξ |t >
1
2
− ε. (10)
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The constant 1/2 on the right hand side of (10) is best possible, because if α is
a root of unity of degree degα = d over Q and ξ = 0 then |αi − ξ | = 1 for every
i = 1, . . . ,d, so

1
d

d

∑
i=1

(1− i/d)|αi− ξ |t =
1
d

d

∑
i=1

(1− i/d) =
1
2
− 1

2d
.

By Corollary 7, for every ε > 0, every ξ ∈ C, every algebraic integer α of a
sufficiently large degree d, and every t ∈ (0,d(logd)−1−ε),

d

∑
i=1

μi|αi − ξ |t > 1− ε

for the choice of weights μi = 2(d− i)/d(d−1) satisfying ∑d
i=1 μi = 1.

Applying Lemma 6 to the full set of conjugates of an algebraic integer α and to
t = 2 we will derive the following statement:

COROLLARY 8. For every ε > 0, there is a constant d2 = d2(ε) such that, for
each algebraic integer α of degree d, where d � d2(ε), with conjugates α1, . . . ,αd

and each continuous non-decreasing positive function f (x) on [0,1] , we have

∑
1�i< j�d

μi j|αi −α j|2 >
e1/2+2I( f )

J( f )
− ε,

where μi j := f (i/d) f ( j/d)/S, S := ∑1�i< j�d f (i/d) f ( j/d) and J( f ) :=
∫ 1
0 f (x)dx.

Proof. Take wi = f (i/d), zi = αi and ζ =
(
∑d

i=1 f (i/d)αi
)
/
(
∑d

i=1 f (i/d)
)

in
Lemma 6. Then, by (6) ,

∑
1�i< j�d

f (i/d) f ( j/d)|αi −α j|2 =
d

∑
i=1

f (i/d)
d

∑
i=1

f (i/d)|αi − ζ |2. (11)

Let σ be a permutation of the set {1, . . . ,d} such that |ασ(1) − ζ | � . . . � |ασ(d)− ζ |.
By Theorem 2 with t = 2, for each ε > 0 and each sufficiently large d, the sum

d

∑
i=1

f (i/d)|αi − ζ |2 =
d

∑
i=1

f (σ(i)/d)|ασ(i) − ζ |2

is at least (1− ε)d
√

e
2 ∏d−1

i=1 f (σ(i)/d)2(d−i)/d(d−1). Since f (x) is non-decreasing and
f (0) > 0, we have

d−1

∏
i=1

f (σ(i)/d)2(d−i)/d(d−1) =
d

∏
i=1

f (σ(i)/d)2(d−i)/d(d−1)

�
d

∏
i=1

f (i/d)2(d−i)/d(d−1) =
d−1

∏
i=1

f (i/d)2(d−i)/d(d−1) ∼ e2I( f )
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as d → ∞ , by (3) . Note that S/d2 ∼ 1
2J( f )2 and 1

d ∑
d
i=1 f (i/d) ∼ J( f ) as d → ∞.

Hence, by (11) ,

∑
1�i< j�d

μi j|αi −α j|2 > (1−2ε)
e1/2+2I( f )

J( f )
.

This completes the proof. �

The sum of weights μi j in Corollary 8 is equal to 1, i.e., ∑1�i< j�d μi j = 1. Taking

f (x) = 1, by (3), we obtain I( f ) = 0 and J( f ) =
∫ 1
0 f (x) dx = 1. This recovers our

earlier result [3] stating that, for each ε > 0 and each algebraic integer α of degree
d � d3(ε) with conjugates α1, . . . ,αd ,

2
d(d−1)

d

∑
1�i< j�d

|αi −α j|2 >
√

e− ε. (12)

A corresponding problem for the conjugates of a totally real algebraic integer have been
considered by Schur [10]. See also [8] for a solution of another Schur’s problem from
[10].

Unlike the constant 1/2 in (10) , it seems likely that the constant e1/2+2I( f )/J( f )
of Corollary 8 is not optimal. Moreover, with this method, we cannot get anything
better than

√
e. Indeed, for example, by considering two Riemann sums

R(I( f )) =
1
N

N−1

∑
i=0

(1− i/N) log f (i/N), R(J( f )) =
1
N

N−1

∑
i=0

f (i/N) �
N−1

∏
i=0

f (i/N)1/N

of the integrals I( f ) =
∫ 1
0 (1− x) log f (x) dx and J( f ) =

∫ 1
0 f (x) dx , respectively, and

letting N → ∞, one can show that e2I( f ) � J( f ) for each continuous non-decreasing
positive function f (x) on [0,1] , so that e1/2+2I( f )/J( f )�√

e. For any positive function
f (x) on [0,1), one can show that e1/2+2I( f )/J( f ) � 2.

The expected constant in (12) instead of
√

e is 2. This constant would be the best
possible, because if μi j = 2/d(d−1) for every pair i, j satisfying 1 � i < j � d and if
α is a root of unity of trace zero, i.e., α1 + . . .+αd = 0, then, by (6) with ζ = 0 and
wi = 1, we have 2

d(d−1) ∑1�i< j�d |αi −α j|2 = 2.

Langevin [5] proved earlier that, for every ε and every algebraic integer α of
degree d � d4(ε), the inequality max1�i< j�d |αi −α j| > 2− ε holds. This solved an
old 1928 problem of Favard; see also [7]. In this context, the natural expected constant
in the lower bound

( 2
d(d−1) ∑

1�i< j�
|αi −α j|t

)1/t
> C(t)− ε

for the ‘average’ mean (at least for t � 2) taken over the conjugates of an algebraic
integer α of degree d � d5(ε,t) is

C(t) = 2π1/2tΓ(t/2+1/2)1/tΓ(t/2+1)−1/t,
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where Γ(z) stands for the Euler gamma function. One can check easily on roots of
unity α that then the constant C(t) would be the best possible.

Since Corollary 7 appears to be the only result of this kind with the optimal con-
stant in (10) , it would be of interest to obtain a sharp version of (10) for some other
choice of weights w1, . . . ,wd .
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