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CONVEXITY OF f (A) = (detA)m

FOZI M. DANNAN

(Communicated by S. Puntanen)

Abstract. Sufficient conditions for the convexity of the function f (A) = (detA)m (m � 1) has
been obtained.

1. Introduction

We use conventional notions and notations, as in [1], where Mn denotes the set of
n× n matrices. A matrix X ∈ Mn is said to be positive definite if Re(x∗X x) > 0 for
all nonzero x ∈ Cn . The convex set of positive definite matrices is denoted by M+

n .

DEFINITION 1. A real valued function f defined on M+
n is said to be convex if

f (αA+βB) � α f (A)+β f (B) , and concave if f (αA+βB) � α f (A)+β f (B) for all
0 < α < 1,α +β = 1 and all A,B ∈ M+

n ,A �= B .

It has been proved by Horn, Johnson [1, p. 466] that the function f (A) = log(detA)
is strictly concave function on the convex set of positive definite Hermitian matrices in
Mn . Therefore

logdet(αA+βB) � α logdetA+β logdetB, (1)

for positive definite matrices A, B∈Mn and α, β > 0 with α+β = 1. It is interesting
to notice that the function f (A) = (detA)1/n is also concave on the set of positive
definite Hermitian matrices i.e.

[det(αA+(1−α)B)]1/n � α(detA)1/n +(1−α)(detB)1/n. (2)

This follows directly from the famous Minkowski inequality which states that:
If A,B ∈ Mn(R) are real positive definite matrices, then

[det(A+B)]1/n � (detA)1/n +(detB)1/n. (3)

Although we get from (3) that

det(A+B) � detA+detB, (4)
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it is clear that inequality (4) does not imply that f (A) = detA is concave.
In fact the function f (A) = (detA)m is generally not concave for m �= 1

n . Recently
Zhan [2] obtained some sufficient conditions so that

[det(A+B)]t � (detA)t +(detB)t , (5)

where t ∈ R and t � 2
n

The question of convexity of the function f (A) = detA has not been treated up to
the knowledge of the author. The purpose of this article is to discuss this question.

2. Main results

For the proof of the main results we need the following:

LEMMA 2. If α,β > 0 such that α +β = 1, and λi > 1 for i = 1,2, ...,n or
0 < λi < 1 for i = 1,2, ...,n, then

n

∏
i=1

(α +βλi) � α +β
n

∏
i=1

λi. (6)

Proof. For α,β > 0, and α +β = 1, the identity

(α +βu) (α +βv) = (α +βuv) +αβ (u−1)(1− v) (7)

implies that inequality (6) is true for n = 2.
Assume that (6) is true for n = m, we prove that it is true for n = m+1. Since

(6) holds for n = m we have

m+1

∏
i=1

(α +βλi) = (α +βλm+1)
m

∏
i=1

(α +βλi)

� (α +βλm+1) (α +β
m

∏
i=1

λi). (8)

Applying the identity (7) we obtain

(α +βλm+1) (α +β
m

∏
i=1

λi) = (α +βλm+1

m

∏
i=1

λi)++αβ (λm+1−1)(1−
m

∏
i=1

λi). (9)

Since the second term in (9) is negative for 0 <λ1, ...,λm+1 < 1 or for λ1, ...,λm+1 > 1.
It follows from (8) and (9) that

m+1

∏
i=1

(α +βλi) � (α +βλm+1

m

∏
i=1

λi)

and consequently that inequality (6) holds for n = m+1. �
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THEOREM 3. Let A,B ∈ Mn be positive definite matrices, λ j ( j = 1,2, ...,n) be
the eigenvalues of A−1/2 B A−1/2 . If all λ1, ...,λn > 1 or λ1, ...,λn < 1 , then

det(αA+βB) � α detA+β detB, (10)

where α,β > 0 with α +β = 1 .

Proof. If we multiply both sides of the asserted inequality (10) from the right and
left by detA−1/2 , the desired inequality is then equivalent to

n

∏
i=1

(α +βλi) � α +β
n

∏
i=1

λi

which is true by Lemma 2. �

COROLLARY 4. If all the eigenvalues of A−1/2 B A−1/2 are either > 1 or < 1
for any two positive definite matrices A,B, then f (A) = (detA)m is a convex function
over the set M+

n for m > 1 .

Proof. Since tm is convex over any positive interval for m > 1, it follows (αt +
β s)m � αtm +β sm for α > 0, α +β = 1 and any positive real numbers t and s .
Putting t = detA and s = detB , it follows that

(α detA+β detB)m � α(detA)m +β (detB)m. (11)

From (3) and (11) it follows that

(det(αA+βB))m � α(detA)m +β (detB)m,

and the proof is complete. �
In fact the conditions on λ1, ...,λn in Theorem (3) are essential as the following

example shows.

EXAMPLE 5. Assume that

A =
(

5 −3
−3 2

)
and B =

(
2 2
2 3

)
.

Then

A−1/2 B A−1/2 =
(

1 1
1 2

)
B

(
1 1
1 2

)
=

(
9 14
14 22

)

has the eigenvalues λ1 = 0.06 < 1 and λ2 = 30.94 > 1. From the other side we can
easily verify for α = β = 1

2 that

det
1
2
(A+B) ≮

1
2

detA+
1
2

detB.
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THEOREM 6. Let A, B∈ M+
n , λ j(A) , λ j(B) , j = 1,2, ...,n be the eigenvalues of

A and B ,α,β > 0 with α +β = 1 . Then

det(αA+βB) � α detA+β detB (12)

holds true if one of the following conditions is satisfied

(i) λ j(B) < λmin(A) for j = 1,2, ...,n,

(i) λ j(B) > λmax(A) for j = 1,2, ...,n,

where λmin(A) = min
1� j�n

λ j(A) and λmax(A) = max
1� j�n

λ j(A) .

Proof. It is known from [1, p. 466] that for two positive definite matrices A and
B there exists a nonsingular matrix C such that A = CC∗ and B = CΛC∗ , where
Λ= diag (λ1, ...,λn) . The asserted inequality (12) is then equivalent to

det(α +βΛ) � α+β detΛ

or
n

∏
i=1

(α +βλi) � α+β
n

∏
i=1

λi

which is true by Lemma2 if all λ j > 1 or all λ j < 1 for j = 1,2, ...,n . To complete
the proof, it is sufficient to show that either λ1, ...,λn > 1 or λ1, ...,λn < 1. Observing
that A and CC∗ has the same eigenvalues, it follows from Ostrowski Theorem [1, p.
224] that for each j = 1,2, ...,n, there exists θ j > 0 such that

λmin(A) � θ j � λmax(A) (13)

and
λ j(B) = θ j λ j. (14)

From (13) and (14) we conclude that

λ j(B)
λmax(A)

� λ j � λ j(B)
λmin(A)

. (15)

Therefore λ j < 1 for j = 1,2, ...,n if the condition (i) is satisfied and λ j > 1 for
j = 1,2, ...,n if (ii) is satisfied. The proof is complete. �
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