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LÁSZLÓ LEINDLER
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Abstract. In this note we prove an embedding theorem on the interrelation between the class
WrHω

β and the class H(�, p,r,ω) , defined by strong means of Fourier series, continuing the
recent investigations due to S. Tikhonov [5] and R. J. Le and S. P. Zhou [1].

1. Introduction

The aim of this paper is to continue the recent investigations made by S. Tikhonov
[5] and R. J. Le and S. P. Zhou [1] pertaining to the strong approximation of Fourier
series and embedding theorems. For a short historical survey on this theme we refer to
Introduction of Tikhonov’s paper.

In order to recall the theorems due to the authors cited above and formulate our
new theorem we have to enroll some notions and notations.

Let f (x) be an odd continuous and 2π -periodic function, and let

f (x) ∼
∞

∑
n=1

bn sinnx (1.1)

be its Fourier series. Let sn(x) = sn( f ,x) denote the n th partial sum of (1.1). We denote
by ‖.‖ the usual supremum norm.

Let ω(δ ) be a modulus of continuity function, in symbol ω ∈Ω .
The modulus of smoothness of order β , β > 0, is defined by

ωβ ( f ,t) := sup
|h|�t

∥∥∥∥∥ ∞

∑
ν=0

(−1)ν
(
β
ν

)
f (x+(β −ν)h)

∥∥∥∥∥ .

We shall use the notion L � R (L � R) at inequalities if there exists a positive
constant K such that L � KR (KL � R) holds, not necessarily the same at each occur-
rence.

A sequence c := {cn} of positive terms will be called almost monotone increasing
(c ∈ AMS) if there exists a constant K(c) � 1 such that K(c)cn � cm holds for any
n � m .
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A nonnegative sequence c is said to be classical quasimonotone (in symbol c ∈
CQMS ) if, for some α � 0, the sequence {cnn−α} is nonincreasing.

A null-sequence c := {cn} (cn → 0) satisfying the inequalities

∞

∑
n=m

|Δcn| � K(c)cm (Δcn := cn − cn+1)

with a positive constant K(c) is said to be a rest bounded variation sequence (in symbol
c ∈ RBVS) .

In [4] we showed that the classes CQMS and RBVS are not comparable.
Recently S. P. Zhou, P. Zhou and D.S. Yu [6] defined a new class of sequences,

called mean value bounded variation sequence (MVBVS) as follows:
A nonnegative sequence c := {cn} is said to be a mean value bounded variation

sequence (c ∈ MVBVS) if there is a λ � 2 such that

2n

∑
k=n

|Δcn| �
K(c)

n

[λn]

∑
k=[λ−1n]

ck

holds, where [y] means the integral part of y .
In [6] it is shown that the class MVBVS contains both the classes CQMS and

RBVS , among others.
Let � := {λn} be a sequence of positive terms and set

Λn :=
n

∑
k=1

λk,

furthermore denote

h( f ,�, p) :=

∥∥∥∥∥∥
(
Λ−1

n

n

∑
k=1

λk| f (x)− sk( f ,x)|p
)1/p

∥∥∥∥∥∥ , p > 0.

Finally we define the classes of continuous functions to be considered later on:

H(�, p,r,ω) := { f ∈C2π : hn( f ,�, p) = O(n−rω(n−1))},
WrHω

β := { f ∈C2π : ωβ ( f (r),δ ) = O(ω(δ ))},

C1 :=

{
f ∈C2π : f (x) =

∞

∑
n=1

bn sinnx, b ∈CQMS

}
,

C2 :=

{
f ∈C2π : f (x) =

∞

∑
n=1

bn sinnx, b ∈ RBVS

}
,

C3 :=

{
f ∈C2π : f (x) =

∞

∑
n=1

bn sinnx, b ∈ MVBVS

}
,

where C2π denotes the class of continuous functions of period 2π .
Now we can recall the theorems stimulating our new version.
Tikhonov [5] proved his theorem for the classes C1 and C2 .
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THEOREM T. Let β , p > 0, r � 0, ω ∈ Ω, � be a positive sequence satisfying
the conditions:

Λ2n � Λn, (1.2)

and
Λn � nλn. (1.3)

If
λnω p(1/n)n1−rp ∈ AMS, (1.4)

then
WrHω

β ∩Cj ⊂ H(�, p,r,ω), j = 1,2.

Le and Zhou [1] generalized Tikhonov’s theorem to class C3 , namely it is clear
that C1∪C2 ⊂C3 subsequent to the fact that the class MVBVS is wider than either C1

or C2 .

THEOREM LZ. Under the assumptions of Theorem T

WrHω
β ∩C3 ⊂ H(�, p,r,ω). (1.5)

In this work we show that the embedding relation (1.5) holds under two modified
assumptions, as well. One of our assumption is weaker than (1.3), and it will be required
only if p > 1, the other one will be an altered version of (1.4).

2. New theorem

Our theorem reads as follows:

THEOREM. Let β , p > 0, r � 0, ω ∈Ω, � be a positive sequence satisfying (1.2),
and if p > 1 then additionally

m

∑
n=1

(
Λn

λn

)p−1

� mp. (2.1)

If
Λnω p(1/n)n−rp ∈ AMS, (2.2)

then (1.5) maintains.

REMARKS. 1. We emphasize that condition (2.1) instead of (1.3) is required only
if p > 1; moreover (1.3) implies (2.1), but it is not true conversely.

2. Condition (2.1) gives greater freedom for the sequence � , namely certain terms
of � can be ”small” if they appear rarely. E.g. if 0 < α < 1/p and

λn :=

{
nk, if n �= 2k,

1, if n = 2k,
(k = 1,2, . . .) (2.3)

then (2.1) holds, but (1.3) fails.

3. Condition (2.2) in a certain sense claims more then (1.4) does, but {Λn} is
always an increasing sequence on the contrary {n λn} , see e.g. the case given by (2.3).
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3. Lemmas

LEMMA 3.1. ([2]) Let an � 0, λn > 0 . If p � 1 , then

∞

∑
n=1

λn

( ∞

∑
ν=n

aν

)p

�
∞

∑
n=1

λ 1−p
n ap

n

(
n

∑
ν=1

λν

)p

. (3.1)

If 0 < p < 1, an ↓ , then

∞

∑
n=1

λn

( ∞

∑
ν=n

aν

)p

�
∞

∑
n=1

np−1ap
n

(
nλn +

n−1

∑
ν=1

λν

)
. (3.2)

LEMMA 3.2. If f ∈WrHω
β , then

ω(1/n)� n−(β+1)
n

∑
ν=1

νr+β+1bν .

This lemma is proved in [5] implicitly.

LEMMA 3.3. Let p > 0, r � 0, � := {λn} be a positive sequence satisfying (1.2),
and if p > 1, then the sequence satisfies both (1.2) and (2.1). Let ω ∈Ω, b := {bn} ∈
MVBVS and bn � n−r−1ω(1/n) , then the Fourier series (1.1) converges to f (x) uni-
formly, i.e.

f (x) =
∞

∑
n=1

bn sinnx.

Furthermore, if Λnω p(1/n)n−rp ∈ AMS, then

f (x) ∈ H(�, p,r,ω). (3.3)

Proof. We shall follow the common method of the authors of [1] and [5] combin-
ing with a procedure used e.g. in [3] by us.

The first part of Lemma 3.3 follows already from the conditions b ∈ MVBVS and
nbn → 0, see Theorem 5 in [6].

Thus we have to prove only (3.3).
Since sk( f ,0) = sk( f ,π) = 0, we may restrict x ∈ (0,π) , say, π

m+1 < x � π
m . Applying

Abel’s transformation, we get for k < m

| f (x)− sk(x)| �
∣∣∣∣∣ m

∑
ν=k+1

bν sinνx

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
ν=m+1

bν sinνx

∣∣∣∣∣
�
∣∣∣∣∣x m

∑
ν=k+1

νbν

∣∣∣∣∣+ ∞

∑
ν=m+1

|bν −bν+1||D̃ν (x)|

� 1
m

m

∑
ν=k+1

νbν +m
∞

∑
ν=m+1

|Δbν |,

(3.4)
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where D̃ν(x) :=
ν
∑

k=1
sinkx , and |D̃ν(x)| = O

(
1
x

)
.

If k � m , then

| f (x)− sk(x)| � m
∞

∑
ν=k+1

|Δbν |.

If n > m , then we have

n

∑
k=1

λk| f (x)− sk(x)|p =

(
m

∑
k=1

+
n

∑
k=m+1

)
λk| f (x)− sk(x)|p =: I1 + I2.

From (3.4) we obtain that

I1 �
m

∑
k=1

λk

(
1
m

m

∑
ν=k+1

νbν

)p

+
m

∑
k=1

λkm
p

(
∞

∑
ν=m+1

|Δbν |
)p

=: I11 + I12.

First, we estimate I11 . If p � 1, then (3.1) (setting aν = νbν for ν � m and aν = 0
for ν > m) gives that

I11 � 1
mp

m

∑
k=1

λ 1−p
k

(
k

∑
ν=1

λν

)p

(kbk)p. (3.5)

Hence, in the special case p = 1, we get that

I11 � 1
m

m

∑
k=1

Λkkbk. (3.6)

By using (2.2), (3.6) and bk � k−r−1ω(1/k) , we obtain that

I11 � Λmm−rω(1/m). (3.7)

If p > 1, (3.5), (2.1), (2.2) and bk � k−r−1ω(1/k) imply that

I11 � 1
mp

m

∑
k=1

λ 1−p
k kpk−(r+1)pω p(1/k)Λp

k

=
1

mp

m

∑
k=1

Λkk
−rpω p(1/k)

(
Λk

λk

)p−1

� Λmm−rpω p(1/m).

(3.8)
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If 0 < p < 1, by using (3.2), (2.2) and bk � k−r−1ω(1/k) , we have

I11 � 1
mp

m

∑
k=1

λk

(
m

∑
ν=k

ν−rω(1/ν)

)p

� 1
mp

m

∑
k=1

kp−1k−rpω p(1/k)

(
kλk +

k−1

∑
ν=1

λν

)

� 1
mp

m

∑
k=1

Λkk
−rpω p(1/k)

(
kp λk

Λk
+ kp−1

)

� Λmm−rpω p(1/m)

(
1+

1
mp

m

∑
k=1

kp λk

Λk

)
.

(3.9)

To estimate the sum
m

∑
k=1

kp λk

Λk

we utilize (1.2). If 2μ < m � 2μ+1 , then, by (1.2),

m

∑
k=1

kp λk

Λk
�

μ

∑
i=0

2i+1

∑
k=2i

kp λk

Λk
�

μ

∑
i=0

2ipΛ2i+1

Λ2i

�
μ

∑
i=0

2ip � mp.

(3.10)

This and (3.9) imply that
I11 � Λmm−rpω p(1/m) (3.11)

holds for 0 < p < 1, too.
Collecting the results (3.7), (3.8) and (3.11) we obtain that

I11 � Λmm−rpω p(1/m) (3.12)

holds for any p > 0.
Before estimating I12 we recall the notable inequality

∞

∑
ν=k

|Δbν | � ω(1/k)k−r−1, (3.13)

verified in the paper [1] for any k � m under the assumptions b ∈ MVBVS and bn �
n−r−1ω(1/n).

By (3.13) it is trivial that

I12 � Λmm−rpω p(1/m).

Summing up we have proved that

I1 � Λmm−rpω p(1/m). (3.14)
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The estimate of I2 is easier. Namely, by (2.2), (3.4) and (3.13), we have

I2 �
n

∑
k=m+1

λkm
pω p(1/k)k−(r+1)p

� mp
n

∑
k=m+1

λk

Λk
Λkω p(1/k)k−rpk−p

� mpΛnω p(1/n)n−rp
n

∑
k=m+1

λk

Λk
k−p.

To estimate the sum we use (1.2) and the method applied in (3.10) as follows:

n

∑
k=m+1

λk

Λk
k−p �

∞

∑
ν=0

2ν+1m

∑
k=2νm

λk

Λk
k−p

�
∞

∑
ν=0

(2νm)−pΛ2ν+1m

Λ2νm
� m−p.

Consequently

I2 � Λnω p(1/n)n−rp. (3.15)

The estimates (3.14) and (3.15) clearly imply that

n

∑
k=1

λk| f (x)− sk(x)|p � Λnω p(1/n)n−rp,

whence

f (x) ∈ H(�, p,r,ω)

follows.
The proof is complete. �

4. Proof of the Theorem

In the proof we shall follow the method of proof due to Le and Zhou [1].
By Lemma 3.2 we know that f (x) ∈WrHω

β implies

ω(1/n)� n−(β+1)
n

∑
ν=1

νr+β+1bν ,

and b ∈ MVBVS follows from f (x) ∈C3 .
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Now put m = [λn]+1. Using these facts we obtain that

ω(1/n) � ω(1/m) � m−(β+1)
m

∑
ν=1

νr+β+1bν

� m−(β+1)
m

∑
ν=1

bν
ν

∑
k=1

kr+β = m−(β+1)
m

∑
k=1

kr+β
m

∑
ν=k

bν

� (λn)(β+1)
[ n
λ ]
∑
k=1

kr+β
[λn]

∑
ν=[ n

λ ]
bν .

(4.1)

Let n � k � 2n , then

bn �
k−1

∑
ν=n

|Δbν |+bk �
2n

∑
ν=n

|Δbν |+bk � K(b)n−1
[nλ ]

∑
ν=[ n

λ ]
bν +bk,

whence

nbn �
2n

∑
k=n

bn � K(b)n−1
2n

∑
k=n

[nλ ]

∑
ν=[ n

λ ]
bν +

2n

∑
k=n

bk � K(b)
[nλ ]

∑
ν=[ n

λ ]
bν .

This and (4.1) imply that

ω(1/n)� n−(β+1)
[ n
λ ]
∑
k=1

kr+βnbn � nr+1bn,

thus
bn � n−r−1ω(1/n) (4.2)

holds. Herewith we verified that if f (x) ∈WrHω
β ∩C3 then (4.2) maintains, this and

the assumptions of Theorem show that every condition of Lemma 3.3 is satisfied, con-
sequently by Lemma 3.3 we know that

f (x) ∈ H(�, p,r,ω),

i.e. the embedding relation (1.5) is proved.
The proof is complete. �
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