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ON THE EXISTENCE OF LINEAR AND
BILINEAR MULTIPLIERS ON LORENTZ SPACES

ENIJI SATO

(Communicated by J. Pecaric)

Abstract. First we show that any translation invariant bounded linear operator from LP(R) the
Lorentz space on R to LP*(R) (1 < p < oo, 1 <5 <t <o) is trivial, whose result improves
Blozinski’s result [4]. Next let ¢ be a bounded continuous function on R?, and

T80 = [ [6(Emi@ameEazan

the bilinear operator on Lorentz spaces. Then, we prove that the bounded bilinear operator 7 is
trivial in some cases of Lorentz spaces.

1. Introduction

Let (X,v) be a measure space. Given a complex valued measurable function
f we shall denote the distribution function of f by v,(t) = v(E;) for t > 0, where
E; = {x:| f(x) |> }. The nonincreasing rearrangement of f is denoted by f*(r) =
inf{y > 0:vy(y) <t}.

The Lorentz space LP4(X) consists of those measurable function f such that
| 711 pg < o, where

LP4(X) ={f: fis measurable, || f |, )<<},

and
VP e d @7 @)1} 0<p<en 0<g e
pa(X) sup,-o /7 f* (1) 0< p<oo,q=oo.

It is well known that if 0 < p,q < o and f a measurable function, then

~ dr\ V4
HfH;q()Q: (q/o (f\/f(t)l/l’)‘ITt> .

Let recall some facts about these spaces for (X,v) = (R",u = (Q‘ZT)‘),,) or (X,v)=

(T",m = (2‘17’6),,) Simple functions are dense in LP9(X) for g # e, and we have
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482 ENJI SATO

(LPYY* = LV for 1 < g < o, and (LP9)* = LP'4 for 1 < p,q < . The reader
is referred to [9] for basic 1mf0rmat10n on Lorentz spaces. When p = g, we denote
11100 = I1F1[5 4 x) - ince LP4(X) = LP(X).

Now let T be any bounded linear translation invariant operator from L”*(R) to
LP*(R) for 1 < p <eo and 1 < s <t < eo. Then, Blozinski [4] proved that T = 0 if
Tf >0 for f > 0. We will remove the condition Tf > 0 for f > 0 by the idea of
Kaneko-Sato [10]. Our result is as follows:

THEOREM 1.1. Let 1 <p <o, 1 <5<t <o, and T be a bounded linear
translation invariant operator from LP: : (R) to LP*(R). Then we have T = 0.

Also let ¢(&,7) be a bounded continuous function on R?, and

0= [ [oEmi@eme e azan (fgeci®). W

where C2°(R) consists of all infinitely differentiable functions with compact support.
Lacey and Thiele [11] studied those operators when they solved A. P. Calderon’s con-
jecture. They showed that || T5(f.8) l4< C || f lI,ll g [l for ¢(£,n) = sign(& +
on) (e R\{0,1}) (¢>2/3, 1/p+1/r=1/q, 1 < p,r <o), where C is a con-
stant. After that, there are many papers with respect to the multilinear operators ([5],
[6], etc.). Let 0 < pj,q; <o (j=1,2,3), and Ty(f,g) a bilinear operator from

L7141 (R) x LPP2(R) to L(R) such that || To(f.8) 5, < € I 1 15,410

g H;zm(R), where C is a constant. Then, Grafakos and Torres [6] proved that Ty =0
when we have 1/p3 > 1/p1+1/p2, 1 < pi,ps <eoo with pj =¢g; (j=1,2,3). This
result is an analogy of Hormander’s result [8], in which it is proved that any translation
invariant bounded linear operator from L”(R) to L4(R) is trivial for 1 <g < p <eo. In
this paper, we will show a generalization of [6; Proposition 5] which we stated before

(cf. [14]). Our results are as follows:
THEOREM 1.2. Let 0 < pj,q; << (j=1,2,3) such that 1/p\+1/ps < 1/p3,

and ¢ be a bounded continuous function on R*. If we have

1T (f38) sy S C IS gry Nl € s m) (8 € CE(R)), 2

where C is a constant, then Ty = 0.

THEOREM 1.3. Let 1 < pj,qj <o (j=1,2) such that 1/p1+1/p> =1/p3,
1/q1+1/q2 < 1/q3, and ¢ be a bounded continuous function on R*. If we have

1 To(£,8) [y < C I F I a1 € [y (Fr8 €CTRY,  (3)

where C is a constant, then Ty = 0.

In §2, we will give the proof of Theorem 1.1 by Kaneko-Sato [10] to Fourier
multiplier operators for Lorentz spaces on the real line. This result is a generalization
of Blozinski [4]. In §3, we will give the proof of Theorem 1.2 and Theorem 1.3 by
applying the idea of Kaneko-Sato [10] (cf. [15]). Also we will show Theorem 1.3 by
using Blasco-Villarroya [3] (cf. [5], [10]) and Hare-Sato [7]. Throughtout this paper,
we may use varying a constant C.
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2. On Blozinski’s result

Let 1 <pj,q;j<e (j=1,2),and T abounded linear operator from L"191(R) to
LP>%2(R), and M(p1,q1;p2,92)(R) the set of all translation invariant bounded linear
operator T. Then, it is called Fourier multiplier operator, and it is known that there
exist @ € L=(R) such that Tf(E) = (&) F(E)(f € C2(R)) ([12]). Kaneko-Sato [10]
remarks that T =0, if p; > p,. In 1972, Blozinski [4] showed that T = 0, if a Fourier
multiplier operator T from LP191(R) to LP2%2(R)(p; = p2, g2 < q1) has Tf(x) >0
for f(x) > 0. In this section, we show that we can remove the condition Tf >0 (f > 0)
in Blozinski’s result by using the idea of Kaneko-Sato [10].

DEFINITION 2.1. For ¢ € L”(R), we define

A ed .
T/ = [@7@H % (recim)). @
Also for a bounded continuous function ¢, ng is defined by
T.F(x) = Y ¢(ek)F (k)™ (¢ > 0, F € C*(T)), (5)

where £(k) = [57 F(x)e"* & and

IT pepsywy=sup [ Tf I ) - (6)
fH;t(R)gl
Similarly, we define
|| i HM(p,t;p,.\')(T): sup H TF H;,x(T) . ™)
I, ery <1

Then, by Kaneko-Sato [10] (cf. [1], [13], [15]), we can show the following:

PROPOSITION 2.2. Let 1 < p<oo, 1 <5<t <o, and ¢ be a bounded continu-
ous function on R. Then we have

I T m(paps) < C I T Nst(pposymy (€8> 0),
where C is a constant.
It is easy to see the following proposition, and we omit the proof (cf. [2]).
PROPOSITION 2.3. Let 1 < p<oo, 1 <5<t< o, and 4 € M(R), where M(R)
is the bounded regular Borel measures on R. Then we have
| Tuso Iae(pasp.s) < C 1 To ar(paspsy®yll 1 |l
for Ty € M(p,t;p,s)(R), where || u || is the total variation of u, and C is a constant.

The proof of Theorem 1.1. First suppose that ¢ is bounded continuous. Then we
assume that there exists &y € R such that ¢ (&) # 0, and define

Tof(x) = [ 9(E+EF(E)eSdx (f € CT(R).
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Since || To [lm(pup,s) )=l T | M(p.sip.s)R)» We may assume ¢(0) # 0. Moreover, we
may assume that supp ¢ is a compact subset. Then, by Proposition 2.2 there exists a
constant C such that

H Tg ”M(p,t;p,s)(T)g C H T ”M(p,t;p,s)(R) (8 > 0)

Now let P,Q be any trigonometric polynomials on T, and N = max(deg of P, deg of Q).
Since

[1:2©)0(6)5 =X yo(emp(mdin), ®

we have
do

21

tim | T;pw)Q(e)g ~9(0) [ P(0)0(6) ©)

by Parseval’s equality. By (8), (9) and the duality, we have
10(0) [ P(0)0(6)5 | < Climsup | TP )| © Iy
om e pss(T) P's'(T)
SCIT Impapsy @) P syl @ gy -
Then, for any trigonometric polynomial P we get
[0 1P 100 < C L T lattpaspywoll P 1L -

Therefore, we obtain LP*(T) = LP'(T) by ¢(0) # 0. This is a contradiction. So we
get ¢(x) =0. Nextlet ¢(x) bein L*(R). Also let

o sin({ELx) ?
Kv) = oD ( (1

the Fejer kernel of degree N on R. Then we have that Tj.k,, is a bounded linear operator
from LP'(R) to L”*(R) by Proposition 2.3. Here, we may assume that supp ¢ is a
compact subset. Hence, for f,g € C°(R) we have

1/2
T N0 -0 < ([ T02Ku(@) - 0@ Paz ) 11712
— 0 (N — o0).

On the other hand, we remark that ¢ * Ky is bounded continuous. Therefore, by the
former half we obtain that 7,7, = 0, and the desired result 7 = 0. [

3. The proofs of Theorems 1.2 and 1.3

The proof of Theorem 1.2. According to Kaneko-Sato [10] (cf. [5]), we introduce
some notations. Let T define

Ty(P,Q)(x) = X, ¢ (n,m)P(n)Q(m)e™ "+ (11)

n,m
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for trigonometric polynomials P and Q on T, where ) a non-negative smooth even
function bounded by 1 from above on R with compact support such that x (x) =1 (Jx| <
2m), x(x) =0 (|x| > 4m), and x%(x) = x(ex). Then we set

Ye(x) = (X (0)* Ty (P,Q) (x) — Ty (x*P. 2 Q) () (12)

for trigonometric plynomials P and Q on T. By the Fourier transform, we have

) = Smow | [ 2(2) ()

Xetx(§+n)eix(77+m) (¢(n7m) — ¢(5 +n,n+ m))déd?%

and

I o< 3 PO [ [ 2(E)7) (@ nm) — 9(eE -+ mem+m))dEdn].

n,m
13)
Here, for any 8’ > 0 we choose the compact interval I such that

[ 210 1-1z@)lamagan <
(Ix1)c

Then, we get
| ¥e [l < Z n)||Q(m)|8’

+§// E)Z)10(0m) — 0(& +n.en-+m))ldEdn.

By the continuity of ¢ on R?, for any § > 0 we get the compact interval I and & > 0
such that for 0 < & < & we have || ¥ |l.< 8. So when we put Az =|| ¥¢ ||, we have
limgHQ Ag =0.

Now let Ap(r) =m({x € T: |F(x)| >t}) be a distribution function of a function
FonT,and As(t) = u({x e R:|f(x)| >t}) adistribution function of a function f on
R. For > 0, suppose € > 0 such that A; <¢. By (12), we have

(R T (X PA QW] > 1A} D freR: [(F (W) T (PO > 1), (14)

Therefore,
oo dt 1/513
1
(/u (M.( 2T¢(PQ)()/p3) t)
o dt 1/q3
< (/ (121, (gep o) (1 = Ae) /P2)® t)

oo 1 dt 1/q3
< ([ 20no0rd)

00 dt 1/113
<2 (/0 (I)LT(Z,(XSRXSQ)( )l/p3) ; )
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for any @ and & such that % > A¢, and

) 1 dt 1/q3
<20 x°P ||p1 aml XEQ 1 s.ao(R)

by the assumption. By the way, we have 0 < x* <1 and supp x° C [—4r/€,4m/¢].
The number of the indices m satisfying [2mm,2(m+ 1)z N [—4n/e, 4 /€] £ ¢ is
less or equal than 2[2/e + 1]. Hence we obtain {x € R: [x®(x)P(x)| >t} C Up{x €
2mm,2(m+ 1)m): |P(x)| > t,[2mm,2(m+ 1)m)N[—4n/e, 47 /€] # ¢}, and, we have

“ dr\ YV
I x° ”Phth (‘II/O (IAXSP([)I/PI)lhT)
2 1/171 2 dt l/ql
{2 (g + 1) } <q1/0 (tAp() /Py ?)
2 1/py
=)} 1

S 2 1/p2 .
Iz e ”sz(R)< 2 c +1 e ”sz(T)’ (15)
)

similarly. On the other hand, since x*(x) =1 on [-27/€,27/¢], the number of the in-
dices m satisfying [2mm,2(m+1)m) C [-271/€,2m/€] is atleast (2/€ —2). Therefore,
by the periodicity of Ty (P, Q) we have

) 1/p3 27 dr\ Vo
{G-2)} o ([ oanagrm)

<{202/e+ DYV {202/e+ DY P2C | P

and

P11 (T )H Q0 Hmm(T)

After we divide the both side of the above inequality by {2(1/e — 1)}'/%3, we get

2n dt 1/q3
(%/a (tAf¢(RQ)( )l/m) P )

< {22+ e)} VP {2(2+ ) /P2 {2(1 — )} Vpsgl/ps=l/m=1/m

x2C| P ”m q1(T )H Q ”sz(T)

Here, by the assumption 1/p3 > 1/p;+1/p>, we have

dt

o 1/p3yq
| gy pgy 0Py =0

for any a > 0, and fd)(P, Q) = 0 for trigonometric polynomials P and Q on T. There-
fore, we have ¢(n,m) =0 on Z?.
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Now let ¢, define ¢:(E,n) = ¢(e&,€en), and

= [ [oc&mi@a(me e azan. (16
Then, by the change of variable we have

1T (F.8) Iy gury< CEVP PP £ ol 8 1oy (58 € C(R)),

where C is a constant which depends only on T, . Hence, after the same process as we
showed ¢ =0 on 772 before, we have

¢(en,em) = e (n,m) =0

on Z? for any £ > 0. Then, we get ¢(&,17) =0 on R? by the continuity of ¢ on
R2. O

Next we show Theorem 1.3. Before the proof, we prove some Lemmas, and intro-
duce some notations for using the idea of Hare-Sato [7], according to [7].

DEFINITION 3.1. Let A be a large integer (A = 1000 will suffice) and for con-
vinenience set My = 24" 4+ 1. Let Dy be the Dirichlet kernel of degree AV . Set
xj=2(j—1)//My for j=1,...,2N and set zx = 3Vk/\/My for k=1,...,N. Define
D;(x) =Dy(x—(xj+z)) and

— Dii(x) ife[-2/My,—2/My]+x;+z
Dj7k(x) - {O 8 else. !

Notice that if N is sufficiently large than the functions B\JJ;C(x) are disjointly supported.
Fy will be defined by

1
Fi(x) = My ——5 2" k/pz 1D (),

andfor 0 < p < oo, 0 <5 L oo

M3
h(x) = TN%[—l/M371/M,%,]’ Gn(x) = Fyxh(x) € C(T).

Then, we have the estimate of the quasi-norm
1 G I )~ My /PN (17)
like [7; Proposition 3.3] and [7; Proposition 3.6].
LEMMA 3.2. Let 0 < pj,q; <oo (j=1,2,3) such that

11 1 11 1
—=—t—, —>—+4— (18)
PP o @
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Then, there is no constant C > O such that

I PO ”;3413 <c|p Hm a1 (T )H Q Hmm(T) (19)
for all trigonometric polynomials P and Q onT.
Proof. Assume (19) holds for some constant C > 0. Then, we have
HFGHp3q3 <CHFleql HGHquZT (F7G6C(T))7 (20)

where C(T) denotes the set of all continuous functions on T. In fact, for F,G € C(T)
and € > 0, there exist trigonometric polynomials P and Q on T such that || F — P ||<
€ and || G—Q |~< €. Since we have

IFG [, n +I1PQI,

+8)(HGH

3, q3 \ (” (F P)G Hp3 q3 + || P(G Q) H
< CE(I\GI\oo+8+I\F\Ioo+8)+C(HFH

p3.a3(T))
+£)

p3:93(T
p1,q1(T p2.42(T

we get the above result. On the other hand, by the definition of Gy and (17) we obtain

-1
G35, gumy~ My PN, @1
since we have || G, ”;,:13 —H Gy qu 245(T) - BY GN € C(T) and (20), we have
I1GN -GN [l5.45m< C Il Gy ”m g OGN 1l (1)

for some constant C, and

MIQI/P3N1/113 < CC/MIQI/I?INI/(“Mlgl/ple/qz

for some C’' > 0. This contradicts to 1/p3=1/p1+1/ps and 1/q3 > 1/q1 + 1/q>.
Therefore, we get the desired results. [

Now let T, (P,Q) define

0) =Y, ¢ (n,m)P(n)Q(m)e'Hm= (22)

n,m

for trigonometric polynomials P and Q on T.
Blasco-Villarroya [3] proved the following result (cf. [10]).

PROPOSITION 3.3. Let 0 < pj,qj <o (j=1,2,3), and 1/p3=1/p1+1/ps.
Also let ¢ be a bounded continuous function on R*. If we have

1T (f38) s qsy < C IS My gl € s g0y (fr8 € CZ(R)) (23)

for some constant C > 0, then we get

| Te(P.Q) iy < C P 1yl @ Wi 24)
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for trigonometric polynomials P and Q on T.

The proof of Theorem 1.3. We assume ¢ # O for getting the contradiction. First
let ¢ be a bounded continuous function on R?. We define

Te(f,8)(0) = Zumd (en, em) f (n)(m)e "™ (& > 0).
Then by the assumption of T, and Proposition 3.3, we have

I Te(P.O) I}, g5y < C I P Iy g0 11 Q 1.0y

for trigonometric polynomials P and Q on T, where C is a positive constant which
is independent from P,Q, and €. We may assume that ¢(0,0) # 0 and supp ¢ C
(=8,0) x (—8,0) for some & > 0, since we have that

1 700 (£,8) g5 S C I gl & prgomy (Fr8 € CE(R)) (25)

for ¢o(€,1) = d(& — &0, n — o) ((&0,M0) € R?) and
1 Too(f:8) 1y sy S C I @ Il F 1 i)l € 1mnm) (f58 € CE(R)) (26)

for 9(&,n) = @1(§)p2(n) (@j € CZ(R) j=1,2). Now let P,Q be trigonometric
polynomials on T, and N = max(deg of P, deg of Q). Then there exists & > 0 such
that {(en,em) |n,m =0=+1,---,£N} C (-=9,0) x (—=38,8) for 0 < € < &. So we
obtain that

lim 7, (,0)(0) = 0(0,0)5%,,__yP(n)0(m)e® "+
= $(0.0)P(0)Q(0),
and by Fatou’s lemma we have
600,00 1 PQ 15, puty < C I P Iyl Q1) @7)

On the other hand, we remark that ¢(0,0) #0, C >0, 1/p3 =1/p1+1/p>, and
1/q3 > 1/q1+ 1/q>. This contradicts to Lemma 3.2. We get the desired result. [

Next proposition is similar to Proposition 2.3. we omit the proof.

PROPOSITION 3.4. Let 1 < pj,q; < (j=1,2,3) and p be in M(R?), where
M(R?) denotes the set of all bounded regular Borel measures on R?, and || u || the
total variation of u. If for ¢ € L*(R?), we have

1T (f:8) s qs) S C IS gl & 1,00y (58 € CE(R)) (28)

for some constant C > 0, then we obtain

I T (F:8) 1y qs ) S C N TS gyl 8 s gomy (Fr8 €CE(R)).(29)
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COROLLARY 3.5. Let 1 <pj,qj <o (j=1,2,3) suchthat 1/p3>1/pi+1/ps
or 1/p1+1/py=1/p3 with 1/q3 > 1/q1+ 1/qy. Also let ¢ be in L*(R?), and

190 = [ [oEmAGRmMeE N dgan (g e CZR).  (30)

If we have

1 To(F.8) I e < C I I o)l 8 ) (Fr8 €CTR)), (B
where C is a constant, then Ty = 0.
Proof. Let )
Ky (x) = ! i <(N+Tl)x> (32)
2n(N+1) 3

be the Fejer kernel of degree N on R, and Ly(&,m) = Ky(E)Kn(n). Then we have
that Ty.r, is a bounded bilinear operator from LP1'%1(R) x LP292(R) to LP3%(R) by
Proposition 3.4. Here, we may assume that supp ¢ is a compact subset as we showed
it in Theorem 1.2. Then, for f,g € C°(R) we have

| Towry (f58)(x) = Ty (f,8) (%) |

12
< (//¢*LN<é,n>—¢<é,n>|2d5dn) TANE
— 0 (N — o).

On the other hand, we remark that ¢ x Ly is bounded continuous. Therefore, by
Theorems1.2 and 1.3 we obtain that 7.z, = 0, and the desired result Ty = 0. [
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