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ON THE EXISTENCE OF LINEAR AND

BILINEAR MULTIPLIERS ON LORENTZ SPACES

ENJI SATO

(Communicated by J. Pečarić)

Abstract. First we show that any translation invariant bounded linear operator from Lp,t(R) the
Lorentz space on R to Lp,s(R) (1 < p < ∞, 1 � s < t < ∞) is trivial, whose result improves
Blozinski’s result [4]. Next let φ be a bounded continuous function on R2 , and

Tφ ( f ,g)(x) =
∫ ∫

φ(ξ ,η) f̂ (ξ )ĝ(η)eix(ξ+η)dξdη

the bilinear operator on Lorentz spaces. Then, we prove that the bounded bilinear operator Tφ is
trivial in some cases of Lorentz spaces.

1. Introduction

Let (X ,ν) be a measure space. Given a complex valued measurable function
f we shall denote the distribution function of f by ν f (t) = ν(Et ) for t > 0, where
Et = {x :| f (x) |> t}. The nonincreasing rearrangement of f is denoted by f ∗(t) =
inf{y > 0 : ν f (y) � t}.

The Lorentz space Lp,q(X) consists of those measurable function f such that
‖ f ‖ pq < ∞ , where

Lp,q(X) = { f : f is measurable, ‖ f ‖∗p,q(X)< ∞},

and

‖ f ‖∗p,q(X)=

{
{ q

p

∫ ∞
0 (t1/p f ∗(t))q dt

t }1/q 0 < p < ∞, 0 < q < ∞
supt>0 t1/p f ∗(t) 0 < p � ∞,q = ∞.

It is well known that if 0 < p,q < ∞ and f a measurable function, then

‖ f ‖∗p,q(X)=
(

q
∫ ∞

0
(tν f (t)1/p)q dt

t

)1/q

.

Let recall some facts about these spaces for (X ,ν) = (Rn,μ = dx
(2π)n ) or (X ,ν) =

(Tn,m = dx
(2π)n ) . Simple functions are dense in Lp,q(X) for q �= ∞ , and we have
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(Lp,1)∗ = Lp′,∞ for 1 � q < ∞ , and (Lp,q)∗ = Lp′,q′ for 1 < p,q < ∞. The reader
is referred to [9] for basic imformation on Lorentz spaces. When p = q , we denote
|| f ||p(X) = || f ||∗p,q(X) , since Lp,q(X) = Lp(X).

Now let T be any bounded linear translation invariant operator from Lp,t(R) to
Lp,s(R) for 1 < p < ∞ and 1 � s < t < ∞ . Then, Blozinski [4] proved that T = 0 if
T f � 0 for f � 0. We will remove the condition T f � 0 for f � 0 by the idea of
Kaneko-Sato [10]. Our result is as follows:

THEOREM 1.1. Let 1 < p < ∞, 1 � s < t < ∞ , and T be a bounded linear
translation invariant operator from Lp,t(R) to Lp,s(R) . Then we have T = 0 .

Also let φ(ξ ,η) be a bounded continuous function on R2 , and

Tφ ( f ,g)(x) =
∫ ∫

φ(ξ ,η) f̂ (ξ )ĝ(η)eix(ξ+η)dξdη ( f ,g ∈C∞
c (R)), (1)

where C∞
c (R) consists of all infinitely differentiable functions with compact support.

Lacey and Thiele [11] studied those operators when they solved A. P. Calderon’s con-
jecture. They showed that ‖ Tφ ( f ,g) ‖q� C ‖ f ‖p‖ g ‖r for φ(ξ ,η) = sign(ξ +
αη) (α ∈ R\{0,1}) (q > 2/3, 1/p+ 1/r = 1/q, 1 < p,r < ∞) , where C is a con-
stant. After that, there are many papers with respect to the multilinear operators ([5],
[6], etc.). Let 0 < p j,q j < ∞ ( j = 1,2,3) , and Tφ ( f ,g) a bilinear operator from
Lp1,q1(R)× Lp2,q2(R) to Lp3,q3(R) such that ‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖
g ‖∗p2,q2(R) , where C is a constant. Then, Grafakos and Torres [6] proved that Tφ = 0
when we have 1/p3 > 1/p1 + 1/p2 , 1 < p1, p2 < ∞ with p j = q j ( j = 1,2,3). This
result is an analogy of Hörmander’s result [8], in which it is proved that any translation
invariant bounded linear operator from Lp(R) to Lq(R) is trivial for 1 � q < p <∞ . In
this paper, we will show a generalization of [6; Proposition 5] which we stated before
(cf. [14]). Our results are as follows:

THEOREM 1.2. Let 0 < p j,q j < ∞ ( j = 1,2,3) such that 1/p1 +1/p2 < 1/p3 ,
and φ be a bounded continuous function on R2 . If we have

‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)), (2)

where C is a constant, then Tφ = 0 .

THEOREM 1.3. Let 1 < p j,q j < ∞ ( j = 1,2) such that 1/p1 + 1/p2 = 1/p3 ,
1/q1 +1/q2 < 1/q3 , and φ be a bounded continuous function on R2 . If we have

‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)), (3)

where C is a constant, then Tφ = 0 .

In §2, we will give the proof of Theorem 1.1 by Kaneko-Sato [10] to Fourier
multiplier operators for Lorentz spaces on the real line. This result is a generalization
of Blozinski [4]. In §3, we will give the proof of Theorem 1.2 and Theorem 1.3 by
applying the idea of Kaneko-Sato [10] (cf. [15]). Also we will show Theorem 1.3 by
using Blasco-Villarroya [3] (cf. [5], [10]) and Hare-Sato [7]. Throughtout this paper,
we may use varying a constant C .
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2. On Blozinski’s result

Let 1 � p j,q j �∞ ( j = 1,2) , and T a bounded linear operator from Lp1,q1(R) to
Lp2,q2(R) , and M(p1,q1; p2,q2)(R) the set of all translation invariant bounded linear
operator T . Then, it is called Fourier multiplier operator, and it is known that there
exist ϕ ∈ L∞(R) such that T̂ f (ξ ) = ϕ̂(ξ ) f̂ (ξ )( f ∈C∞

c (R)) ([12]). Kaneko-Sato [10]
remarks that T = 0, if p1 > p2 . In 1972, Blozinski [4] showed that T = 0, if a Fourier
multiplier operator T from Lp1,q1(R) to Lp2,q2(R)(p1 = p2, q2 < q1) has T f (x) � 0
for f (x) � 0. In this section, we show that we can remove the condition T f � 0 ( f � 0)
in Blozinski’s result by using the idea of Kaneko-Sato [10].

DEFINITION 2.1. For φ ∈ L∞(R) , we define

T f (x) =
∫
φ(ξ ) f̂ (ξ )eixξ dξ

2π
( f ∈C∞

c (R)). (4)

Also for a bounded continuous function φ , T̃εF is defined by

T̃εF(x) =∑
n,m

φ(εk)F̂(k)eikx (ε > 0, F ∈C∞(T)), (5)

where F̂(k) =
∫ 2π
0 F(x)e−ikx dx

2π and

‖ T ‖M(p,t;p,s)(R)= sup
‖ f‖∗p,t(R)�1

‖ T f ‖∗p,s(R) . (6)

Similarly, we define

‖ T̃ε ‖M(p,t;p,s)(T)= sup
‖F‖∗p,t(T)�1

‖ TF ‖∗p,s(T) . (7)

Then, by Kaneko-Sato [10] (cf. [1], [13], [15]), we can show the following:

PROPOSITION 2.2. Let 1 � p < ∞, 1 � s < t �∞, and φ be a bounded continu-
ous function on R. Then we have

‖ T̃ε ‖M(p,t;p,s)(T)� C ‖ T ‖M(p,t;p,s)(R) (ε > 0),

where C is a constant.

It is easy to see the following proposition, and we omit the proof (cf. [2]).

PROPOSITION 2.3. Let 1 < p < ∞, 1 � s < t � ∞, and μ ∈ M(R), where M(R)
is the bounded regular Borel measures on R. Then we have

‖ Tμ∗φ ‖M(p,t;p,s)(R)� C ‖ Tφ ‖M(p,t;p,s)(R)‖ μ ‖
for Tφ ∈ M(p, t; p,s)(R) , where ‖ μ ‖ is the total variation of μ , and C is a constant.

The proof of Theorem 1.1. First suppose that φ is bounded continuous. Then we
assume that there exists ξ0 ∈ R such that φ(ξ0) �= 0, and define

T0 f (x) =
∫
φ(ξ + ξ0) f̂ (ξ )eiξxdx ( f ∈C∞

c (R)).
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Since ‖ T0 ‖M(p,t;p,s)(R)=‖ T ‖M(p,t;p,s)(R) , we may assume φ(0) �= 0. Moreover, we
may assume that supp φ is a compact subset. Then, by Proposition 2.2 there exists a
constant C such that

‖ T̃ε ‖M(p,t;p,s)(T)� C ‖ T ‖M(p,t;p,s)(R) (ε > 0).

Now let P,Q be any trigonometric polynomials on T, and N = max(deg of P, deg of Q) .
Since ∫

T̃εP(θ )Q(θ )
dθ
2π

= ΣN
−Nφ(εn)P̂(n)Q̂(n), (8)

we have

lim
ε→0

∫
T̃εP(θ )Q(θ )

dθ
2π

= φ(0)
∫

P(θ )Q(θ )
dθ
2π

(9)

by Parseval’s equality. By (8), (9) and the duality, we have

| φ(0)
∫

P(θ )Q(θ )
dθ
2π

| � C limsup
ε→0

‖ T̃εP ‖∗p,s(T)‖ Q ‖∗p′,s′(T)

� C ‖ T ‖M(p,t;p,s)(R)‖ P ‖∗p,t(T)‖ Q ‖∗p′,s′(T) .

Then, for any trigonometric polynomial P we get

| φ(0) |‖ P ‖∗p,s(T)� C ‖ T ‖M(p,t;p,s)(R)‖ P ‖∗p,t(T) .

Therefore, we obtain Lp,s(T) = Lp,t(T) by φ(0) �= 0. This is a contradiction. So we
get φ(x) = 0. Next let φ(x) be in L∞(R) . Also let

KN(x) =
1

2π(N +1)

(
sin( (N+1)x

2 )
x
2

)2

(10)

the Fejer kernel of degree N on R. Then we have that Tφ∗KN is a bounded linear operator
from Lp,t(R) to Lp,s(R) by Proposition 2.3. Here, we may assume that supp φ is a
compact subset. Hence, for f ,g ∈C∞

c (R) we have

| Tφ∗KN ( f )(x)−Tφ ( f )(x) |�
(∫

| φ ∗KN(ξ )−φ(ξ ) |2 dξ
)1/2

‖ f ‖2

−→ 0 (N → ∞).

On the other hand, we remark that φ ∗KN is bounded continuous. Therefore, by the
former half we obtain that Tφ∗LN = 0, and the desired result Tφ = 0. �

3. The proofs of Theorems 1.2 and 1.3

The proof of Theorem 1.2. According to Kaneko-Sato [10] (cf. [5]), we introduce
some notations. Let T̃φ define

T̃φ (P,Q)(x) =∑
n,m

φ(n,m)P̂(n)Q̂(m)eix(m+n) (11)
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for trigonometric polynomials P and Q on T, where χ a non-negative smooth even
function bounded by 1 from above on R with compact support such that χ(x)= 1 (|x|�
2π), χ(x) = 0 (|x| � 4π) , and χε(x) = χ(εx) . Then we set

γε (x) = (χε(x))2T̃φ (P,Q)(x)−Tφ (χεP,χεQ)(x) (12)

for trigonometric plynomials P and Q on T. By the Fourier transform, we have

γε(x) = ∑
n,m

P̂(n)Q̂(m)
∫ ∫

1
ε
χ̂
(
ξ
ε

)
1
ε
χ̂
(η
ε

)
×eix(ξ+n)eix(η+m)(φ(n,m)−φ(ξ +n,η+m))dξdη ,

and

‖ γε ‖∞�∑
n,m

|P̂(n)||Q̂(m)||
∫ ∫

χ̂(ξ )χ̂(η)(φ(n,m)−φ(εξ +n,εη+m))dξdη |.
(13)

Here, for any δ ′ > 0 we choose the compact interval I such that∫ ∫
(I×I)c

2 ‖ φ ‖∞ |χ̂(ξ )||χ̂(η)|dξdη < δ ′.

Then, we get

‖ γε ‖∞ � ∑
n,m

|P̂(n)||Q̂(m)|δ ′

+∑
n,m

∫ ∫
I×I

|χ̂(ξ )||χ̂(η)||φ(n,m)−φ(εξ +n,εη+m))|dξdη .

By the continuity of φ on R2 , for any δ > 0 we get the compact interval I and ε0 > 0
such that for 0 < ε < ε0 we have ‖ γε ‖∞< δ . So when we put Δε =‖ γε ‖∞ , we have
limε→0Δε = 0.

Now let ΛF(t) = m({x ∈ T : |F(x)| > t}) be a distribution function of a function
F on T, and λ f (t) = μ({x ∈ R : | f (x)| > t}) a distribution function of a function f on
R. For t > 0, suppose ε > 0 such that Δε < t . By (12), we have

{x ∈ R : |Tφ (χεP,χεQ)(x)| > t−Δε} ⊃ {x ∈ R : |(χε(x))2T̃φ (P,Q)(x)| > t}. (14)

Therefore, (∫ ∞

a
(tλ(χε)2T̃φ (P,Q)(t)

1/p3)q3
dt
t

)1/q3

�
(∫ ∞

a
(tλTφ (χεP,χεQ)(t−Δε)1/p3)q3

dt
t

)1/q3

�
(∫ ∞

a−Δε
2(tλTφ (χεP,χεQ)(t)

1/p3)q3
dt
t

)1/q3

� 2

(∫ ∞

0
(tλTφ (χεP,χεQ)(t)

1/p3)q3
dt
t

)1/q3
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for any a and ε such that a
2 > Δε , and(

q3

∫ ∞

a
(tλ(χεk )2T̃φ (P,Q)(t)

1/p3)q3
dt
t

)1/q3

� 2 ‖ Tφ (χεP,χεQ) ‖∗p3,q3(R)

� 2C ‖ χεP ‖∗p1,q1(R)‖ χεQ ‖∗p2,q2(R)

by the assumption. By the way, we have 0 � χε � 1 and supp χε ⊂ [−4π/ε,4π/ε].
The number of the indices m satisfying [2mπ ,2(m + 1)π ]∩ [−4π/ε,4π/ε] �= φ is
less or equal than 2[2/ε + 1] . Hence we obtain {x ∈ R : |χε(x)P(x)| > t} ⊂ ∪m{x ∈
[2mπ ,2(m+1)π) : |P(x)| > t, [2mπ ,2(m+1)π)∩ [−4π/ε,4π/ε] �= φ} , and, we have

‖ χεP ‖∗p1,q1(R) =
(

q1

∫ ∞

0
(tλχεP(t)1/p1)q1

dt
t

)1/q1

�
{

2

(
2
ε

+1

)}1/p1
(

q1

∫ 2π

0
(tΛP(t)1/p1)q1

dt
t

)1/q1

=
{

2

(
2
ε

+1

)}1/p1

‖ P ‖∗p1,q1(T),

and

‖ χεQ ‖∗p2,q2(R)�
{

2

(
2
ε

+1

)}1/p2

‖ Q ‖∗p2,q2(T), (15)

similarly. On the other hand, since χε(x) = 1 on [−2π/ε,2π/ε] , the number of the in-
dices m satisfying [2mπ ,2(m+1)π)⊂ [−2π/ε,2π/ε] is at least (2/ε−2) . Therefore,
by the periodicity of T̃φ (P,Q) we have{(

2
ε
−2

)}1/p3

q1/q3
3

(∫ 2π

a
(tΛT̃φ (P,Q)(t)

1/p3)q3
dt
t

)1/q3

� {2(2/ε+1)}1/p1{2(2/ε+1)}1/p22C ‖ P ‖∗p1,q1(T)‖ Q ‖∗p2,q2(T) .

After we divide the both side of the above inequality by {2(1/ε−1)}1/q3 , we get(
q3

∫ 2π

a
(tΛT̃φ (P,Q)(t)

1/p3)q3
dt
t

)1/q3

� {2(2+ ε)}1/p1{2(2+ ε)}1/p2{2(1− ε)}−1/p3ε1/p3−1/p1−1/p2

×2C ‖ P ‖∗p1,q1(T)‖ Q ‖∗p2,q2(T) .

Here, by the assumption 1/p3 > 1/p1 +1/p2 , we have∫ 2π

a
(tΛT̃φ (P,Q)(t)

1/p3)q3
dt
t

= 0

for any a > 0, and T̃φ (P,Q) = 0 for trigonometric polynomials P and Q on T. There-
fore, we have φ(n,m) = 0 on Z2 .
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Now let φε define φε (ξ ,η) = φ(εξ ,εη) , and

Tε( f ,g)(x) =
∫ ∫

φε(ξ ,η) f̂ (ξ )ĝ(η)eix(ξ+η)dξdη . (16)

Then, by the change of variable we have

‖ Tε( f ,g) ‖∗p3,q3(R)� Cε1/p3−1/p1−1/p2 ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)),

where C is a constant which depends only on Tφ . Hence, after the same process as we
showed φ = 0 on Z2 before, we have

φ(εn,εm) = φε(n,m) = 0

on Z2 for any ε > 0. Then, we get φ(ξ ,η) = 0 on R2 by the continuity of φ on
R2 . �

Next we show Theorem 1.3. Before the proof, we prove some Lemmas, and intro-
duce some notations for using the idea of Hare-Sato [7], according to [7].

DEFINITION 3.1. Let λ be a large integer (λ = 1000 will suffice) and for con-
vinenience set MN = 2λN + 1. Let DN be the Dirichlet kernel of degree λN . Set
x j = 2( j−1)/

√
MN for j = 1, . . . ,2N and set zk = 3Nk/

√
MN for k = 1, . . . ,N. Define

Dj,k(x) = DN(x− (x j + zk)) and

D̃ j,k(x) =
{

Dj,k(x) if ∈ [−2/MN ,−2/MN]+ x j + zk

0 else.

Notice that if N is sufficiently large than the functions D̃ j,k(x) are disjointly supported.
FN will be defined by

FN(x) =
1

MN
ΣN

k=12
−k/pΣ2k

j=1D̃ j,k(x),

and for 0 < p < ∞, 0 < s � ∞

h(x) =
M3

N

2
χ[−1/M3

N ,1/M3
N ], GN(x) = FN ∗ h(x) ∈C(T).

Then, we have the estimate of the quasi-norm

‖ GN ‖∗p,r(T)∼ M−1/p
N N1/r (17)

like [7; Proposition 3.3] and [7; Proposition 3.6].

LEMMA 3.2. Let 0 < p j,q j < ∞ ( j = 1,2,3) such that

1
p3

=
1
p1

+
1
p2

,
1
q3

>
1
q1

+
1
q2

. (18)
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Then, there is no constant C > 0 such that

‖ PQ ‖∗p3,q3(T)� C ‖ P ‖∗p1,q1(T)‖ Q ‖∗p2,q2(T) (19)

for all trigonometric polynomials P and Q on T.

Proof. Assume (19) holds for some constant C > 0. Then, we have

‖ FG ‖∗p3,q3(T)� C ‖ F ‖∗p1,q1(T)‖ G ‖∗p2,q2(T) (F,G ∈C(T)), (20)

where C(T) denotes the set of all continuous functions on T. In fact, for F,G ∈C(T)
and ε > 0, there exist trigonometric polynomials P and Q on T such that ‖ F−P ‖∞<
ε and ‖ G−Q ‖∞< ε . Since we have

‖ FG ‖∗p3,q3(T) � C(‖ (F −P)G ‖∗p3,q3(T) + ‖ P(G−Q) ‖∗p3,q3(T) + ‖ PQ ‖∗p3,q3(T))

� Cε(||G||∞ + ε+ ||F||∞+ ε)+C(||F||∗p1,q1(T) + ε)(||G||∗p2,q2(T) + ε),

we get the above result. On the other hand, by the definition of GN and (17) we obtain

‖ G2
N ‖∗p3,q3(T)∼ M−1/p3

N N1/q3 , (21)

since we have ‖ G2
N ‖∗q,q3(T)=‖ GN ‖∗22q,2q3(T) . By GN ∈C(T) and (20), we have

‖ GN ·GN ‖∗p3,q3(T)� C ‖ GN ‖∗p1,q1(T)‖ GN ‖∗p2,q2(T)

for some constant C , and

M−1/p3
N N1/q3 � CC′M−1/p1

N N1/q1M−1/p2
N N1/q2

for some C′ > 0. This contradicts to 1/p3 = 1/p1 + 1/p2 and 1/q3 > 1/q1 + 1/q2.
Therefore, we get the desired results. �

Now let T̃ε(P,Q) define

T̃ε(P,Q) =∑
n,m

φ(n,m)P̂(n)Q̂(m)ei(n+m)x (22)

for trigonometric polynomials P and Q on T.
Blasco-Villarroya [3] proved the following result (cf. [10]).

PROPOSITION 3.3. Let 0 < p j,q j < ∞ ( j = 1,2,3) , and 1/p3 = 1/p1 + 1/p2 .
Also let φ be a bounded continuous function on R2 . If we have

‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)) (23)

for some constant C > 0, then we get

‖ T̃ε(P,Q) ‖∗p3,q3(T)� C ‖ P ‖∗p,q1(T)‖ Q ‖∗p2,q2(T) (24)
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for trigonometric polynomials P and Q on T.

The proof of Theorem 1.3. We assume φ �= 0 for getting the contradiction. First
let φ be a bounded continuous function on R2 . We define

T̃ε( f ,g)(θ ) = Σn,mφ(εn,εm) f̂ (n)ĝ(m)eiθ(n+m) (ε > 0).

Then by the assumption of Tφ and Proposition 3.3, we have

‖ T̃ε(P,Q) ‖∗p3,q3(T)� C ‖ P ‖∗p1,q1(T)‖ Q ‖∗p2,q2(T)

for trigonometric polynomials P and Q on T, where C is a positive constant which
is independent from P,Q, and ε . We may assume that φ(0,0) �= 0 and supp φ ⊂
(−δ ,δ )× (−δ ,δ ) for some δ > 0, since we have that

‖ Tφ0( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)) (25)

for φ0(ξ ,η) = φ(ξ − ξ0,η−η0) ((ξ0,η0) ∈ R2) and

‖ Tφϕ( f ,g) ‖∗p3,q3(R)� C ‖ ϕ̂ ‖1‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)) (26)

for ϕ(ξ ,η) = ϕ1(ξ )ϕ2(η) (ϕ j ∈ C∞
c (R) j = 1,2). Now let P,Q be trigonometric

polynomials on T, and N = max(deg o f P, deg o f Q) . Then there exists ε0 > 0 such
that {(εn,εm) | n,m = 0± 1, · · · ,±N} ⊂ (−δ ,δ )× (−δ ,δ ) for 0 < ε < ε0 . So we
obtain that

lim
ε→0

T̃ε(P,Q)(θ ) = φ(0,0)ΣN
n,m=−NP̂(n)Q̂(m)eiθ(n+m)

= φ(0,0)P(θ )Q(θ ),

and by Fatou’s lemma we have

| φ(0,0) |‖ PQ ‖∗p3,q3(T)� C ‖ P ‖∗p1,q1(T)‖ Q ‖∗p2,q2(T) . (27)

On the other hand, we remark that φ(0,0) �= 0, C > 0, 1/p3 = 1/p1 + 1/p2, and
1/q3 > 1/q1 +1/q2. This contradicts to Lemma 3.2. We get the desired result. �

Next proposition is similar to Proposition 2.3. we omit the proof.

PROPOSITION 3.4. Let 1 < p j,q j < ∞ ( j = 1,2,3) and μ be in M(R2), where
M(R2) denotes the set of all bounded regular Borel measures on R2 , and ‖ μ ‖ the
total variation of μ . If for φ ∈ L∞(R2) , we have

‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)) (28)

for some constant C > 0, then we obtain

‖ Tμ∗φ ( f ,g) ‖∗p3,q3(R)� C ‖ μ ‖‖ f ‖∗p,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)). (29)
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COROLLARY 3.5. Let 1 < p j,q j <∞ ( j = 1,2,3) such that 1/p3 > 1/p1 +1/p2

or 1/p1 +1/p2 = 1/p3 with 1/q3 > 1/q1 +1/q2. Also let φ be in L∞(R2) , and

Tφ ( f ,g)(x) =
∫ ∫

φ(ξ ,η) f̂ (ξ )ĝ(η)eix(ξ+η)dξdη ( f ,g ∈C∞
c (R)). (30)

If we have

‖ Tφ ( f ,g) ‖∗p3,q3(R)� C ‖ f ‖∗p1,q1(R)‖ g ‖∗p2,q2(R) ( f ,g ∈C∞
c (R)), (31)

where C is a constant, then Tφ = 0 .

Proof. Let

KN(x) =
1

2π(N +1)

⎛⎝ sin
(

(N+1)x
2

)
x
2

⎞⎠2

(32)

be the Fejer kernel of degree N on R, and LN(ξ ,η) = KN(ξ )KN(η). Then we have
that Tφ∗LN is a bounded bilinear operator from Lp1,q1(R)×Lp2,q2(R) to Lp3,q3(R) by
Proposition 3.4. Here, we may assume that supp φ is a compact subset as we showed
it in Theorem 1.2. Then, for f ,g ∈C∞

c (R) we have

| Tφ∗LN ( f ,g)(x)−Tφ ( f ,g)(x) |

�
(∫ ∫

| φ ∗LN(ξ ,η)−φ(ξ ,η) |2 dξdη
)1/2

‖ f ‖2‖ g ‖2

−→ 0 (N → ∞).

On the other hand, we remark that φ ∗LN is bounded continuous. Therefore, by
Theorems1.2 and 1.3 we obtain that Tφ∗LN = 0, and the desired result Tφ = 0. �
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