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h–CONVEX FUNCTIONS

ATTILA HÁZY

(Communicated by S. Varošanec)

Abstract. In this paper we introduce a class of h -convex functions which is a common gen-
eralization of the convexity, s -convexity, the Godunova-Levin functions and the P -functions.
Namely, an h -convex function is defined as a function f : D → R (where D is an open, convex,
nonempty subset of a linear space) which satisfies

f (λx+(1−λ)y) � h(λ) f (x)+h(1−λ) f (y),

for all λ ∈ [0,1] and x,y ∈ D , where h is a given real function.
In this paper some regularity and Bernstein-Doetsch type results for h -convex functions

are presented.

1. Introduction

The concept of h -convexity was introduced by Varošanec [26] in the following
way:

DEFINITION 1. Let I and J are real intervals, (0,1)⊆ J and h : J → R be a non-
negative function. We say that f : I → R is an h -convex function, if f is nonnegative
and for all x,y ∈ I and λ ∈ (0,1) we have

f (λx+(1−λ )y) � h(λ ) f (x)+h(1−λ ) f (y).

This type of h -convexity is a common generalization of the usual convexity, the
Godunova-Levin functions, the Breckner s-convex functions and the so called P-func-
tions, when the function f is nonnegative. The term on the left-hand side of the in-
equality are the same in all definitions while the right-hand side of all inequalities has
a similar form.

In the paper of Varošanec [26] was investigated the nonnegative h -convex func-
tions on real intervals. However, in that case the h -convexity is not a real generalization
of the usual one since the extra assumptions allow only nonnegative functions.
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The Godunova-Levin functions was investigated in [7]. We say that f : I → R

(where I is a real interval) is a Godunova-Levin function, if f is nonnegative and for
all x,y ∈ I and λ ∈ (0,1) we have

f (λx+(1−λ )y) � f (x)
λ

+
f (y)

1−λ
.

Some properties of this type of functions are given in [6], [15], [16]. Among others, it
is proved that nonnegative monotone and nonnegative convex functions belong to this
class of functions. The Godunova-Levin functions are h -convex, with h(λ ) = 1

λ .
The concept of s-convexity was introduced by Breckner [4]. A real valued func-

tion f : D→R (where D is a convex, open, nonempty subset of a real (complex) linear
space X ) is called Breckner s-convex (or briefly s-convex), if

f (λx+(1−λ )y) � λ s f (x)+ (1−λ )s f (y)

for every x,y ∈ D and λ ∈ [0,1] , where s ∈]0,1] is a fixed number. The case s = 1
means the usual convexity of f . In [4] and [5] Berstein-Doetsch type results were
proved on rationally s-convex functions, moreover, for the s-Hölder property of s-
convex functions. Pycia [23] gives a new proof of the latter statement, when f is
defined on a nonempty, convex subset of a finite dimensional vector space. In [13] the
authors collect some properties of s-convex functions defined on the nonnegative reals.
In [2] there are some Berstein-Doetsch type result on (H,s)-convex functions. The
s-convex functions are h -convex with h(λ ) = λ s .

The P-functions was investigated in [6]. A real valued function f : D→R (where
D is a convex, open, nonempty subset of a real (complex) linear space X ) is called P-
function, if for every x,y ∈ D and λ ∈ [0,1] we have

f (λx+(1−λ )y) � f (x)+ f (y).

Some results about the P-functions there are in [22], [25]. The P-functions are h -
convex, with h(λ ) = 1.

Bernstein and Doetsch in [1] proved that if a function f : D → R (where D is a
convex, open, nonempty subset of a real (complex) linear space X ) is locally bounded
from above at a point of D , then the Jensen-convexity of the function yields its lo-
cal boundedness and continuity as well, which implies the convexity of the function
f (see [14] for further references). This result has been generalized by several au-
thors. The first such type results are due to Nikodem and Ng [18] for the approximately
Jensen-convex functions (the so-called ε -Jensen-convexity), which was extended by
Páles ([19], [20]) to approximately t -convex functions. Further generalizations can be
found in papers of Mrowiec [17], Házy ([9], [10]), Házy and Páles ([11], [12]). In the
paper of Gilányi, Nikodem and Páles [8] there are some Bernstein-Doetsch type results
for quasiconvex functions.

In this paper we introduce a more general concept of the h -convexity, and the
concept of the so called (H,h)-convexity.

The main goal of the paper is to prove some regularity and Bernstein-Doetsch
type result for h -convex and (H,h)-convex functions. Besides we also collect some
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facts on such functions. Finally we collect some interesting, easily-proved properties
of h -convex functions.

2. Definition and basic results

In the sequel, let D be a nonempty, convex, open subset of a real (complex) linear
space X .

DEFINITION 2. Let h : [0,1] → R be a given function. We say that f : D → R is
an h -convex function if, for all x,y ∈ D and λ ∈ [0,1] , we have

f (λx+(1−λ )y) � h(λ ) f (x)+h(1−λ ) f (y). (1)

In this case h(λ ) = λ means the usual convexity of f , without any further as-
sumptions.

Let H ⊆ [0,1] be a nonempty set. A real valued function f : D → R is called
(H,h)-convex if it fulfills (1) for all λ ∈ H .

In the special cases when H =
{

1
2

}
, H = {λ} or H = Q∩ [0,1] , the correspond-

ing (H,h)-convex functions are said to be (Jensen, h)-convex, (λ ,h)-convex and (ra-
tionally, h)-convex.

The following property shows that the nonnegativity and nonpositivity of (λ ,h)-
functions depends only the sign of h(λ )+ h(1− λ )− 1, therefore we do not assume
the nonnegativity of f in the definition.

PROPOSITION 1. Let λ ∈ [0,1] , h : [0,1]→R be a given function and f : D→ R

be a (λ ,h)-convex function. Then

(i) if h(λ )+h(1−λ )> 1 then f is nonnegative.

(ii) if h(λ )+h(1−λ )< 1 then f is nonpositive.

Proof. Let x be an arbitrary element of D . Using (λ ,h)-convexity of f

f (x) = f (λx+(1−λ )x) � h(λ ) f (x)+h(1−λ ) f (x) = (h(λ )+h(1−λ )) f (x),

which implies
0 � (h(λ )+h(1−λ )−1) f (x).

If h(λ )+ h(1−λ )− 1 > 0, then we have f (x) � 0 and if h(λ )+ h(1−λ )− 1 < 0,
then we have f (x) � 0. �

Let us note that if h(λ )+ h(1− λ ) = 1, then, similarly the usual convexity and
Jensen-convexity, there is no such type result. An easy consequence of the previous
proposition is the following:

COROLLARY 1. Let h : [0,1] → R be a given function and let f : D → R be an
h-convex function. Then
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(i) if h(λ )+ h(1− λ ) � 1 for all λ ∈ [0,1] and there exists λ1 ∈ [0,1] such that
h(λ1)+h(1−λ1) > 1 , then f is nonnegative.

(ii) if h(λ )+ h(1− λ ) � 1 for all λ ∈ [0,1] and there exists λ1 ∈ [0,1] such that
h(λ1)+h(1−λ1) < 1 , then f is nonpositive.

(iii) if there exists λ1,λ2 ∈ [0,1] such that h(λ1)+h(1−λ1) > 1 and h(λ2)+h(1−
λ2) < 1 then f is identically zero.

The proof of this Corollary is similar to the proof of Proposition 1.

REMARK 1. Analogue statement remains true for (H,h)-convex functions, when-
ever H fulfils any of the properties (i), (ii), (iii) respectively.

3. Regularity properties of (λ ,h)-convex functions

In this section we assume that (X ,‖ · ‖) is a real (complex) normed space. We
recall that a function f : D→ R is called locally bounded from above on D if, for each
point of p∈D , there exist ρ > 0 and a neighborhood U(p,ρ) := {x∈X : ‖x− p‖< ρ}
such that f is bounded from above on U(p,ρ) .

We assume that h : [0,1]→ R is nonnegative, furthermore h(λ ) and h(1−λ ) are
not zero simultaneously. Since, if h(λ ) = h(1−λ ) = 0, then the (λ ,h)-convexity does
not imply the boundedness of f , only the upper boundedness of f . Indeed, in this case
we get f (x) � 0 from the inequality (1).

THEOREM 1. Let D ⊂ X be convex, open, nonempty, let λ ∈]0,1[ be fixed, let
h : [0,1] → R be a given nonnegative function such that h(λ ) and h(1−λ ) are not
zero simultaneously, and let f : D → R be (λ ,h)-convex. Then

(i) if h(λ )+h(1−λ )< 1 or

(ii) if h(λ )+h(1−λ )� 1 and f is locally bounded from above at a point p ∈ D

then f is locally bounded at every point of D.

Proof. Since h(λ ) and h(1−λ ) are not zero simultaneously, therefore, without
loss generality, we may assume that h(λ ) > 0. In the case (i) the local upper bounded-
ness yields from Proposition 1. So we prove that f is locally bounded from above on
D in the case (ii) .

First we prove that f is locally bounded from above on D . Define the sequence
of sets Dn by

D0 := {p}, Dn+1 := λDn +(1−λ )D.

Using induction on n , we prove that f is locally upper bounded at each point of Dn .
By assumption, f is locally bounded from above at p ∈ D0 . Assume that f is locally
upper bounded at each point of Dn . For x∈Dn+1 , there exist x0 ∈Dn and y0 ∈D such
that x = λx0 +(1−λ )y0 . By the inductive assumption, there exist r > 0 and a constant
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M0 � 0 such that f (x′) � M0 for ‖x0 − x′‖ < r . Then, by the (λ ,h)-convexity of f ,
for x′ ∈U0 := U(x0,r) we have

f (λx′ +(1−λ )y0) � h(λ ) f (x′)+h(1−λ ) f (y0) � h(λ )M0 +h(1−λ ) f (y0) =: M.

Therefore, for

y ∈U := λU0 +(1−λ )y0 = U(λx0 +(1−λ )y0,λ r) = U(x,λ r),

we get that f (y) � M . Thus f is locally bounded from above on Dn+1 .
On the other hand, we show that

D =
∞⋃

n=1

Dn.

From the definition of Dn , it follows by induction that Dn = λ np + (1− λ n)D . For
fixed x ∈ D , define the sequence xn by

xn :=
x−λ np
1−λ n .

Then xn → x if n → ∞ . As D is open, xn ∈ D for some n . Therefore

x = λ np+(1−λ n)xn ∈ λ np+(1−λ n)D = Dn.

Thus f is locally bounded from above on D .
Now, we prove that f is locally bounded from below. Let q ∈ D be arbitrary.

Since f is locally bounded from above at the point q , there exist ρ > 0 and M > 0
such that

sup
U(q,ρ)

f � M.

Let x ∈U(q,(1−λ )ρ) and y :=
q−λx
1−λ

. Then y is in U(q,ρ) . By (λ ,h)-convexity,

f (q) � h(λ ) f (x)+h(1−λ ) f (y),

which implies

f (x) � f (q)−h(1−λ ) f (y)
h(λ )

� f (q)−h(1−λ )M
h(λ )

=: M′.

Therefore f is locally bounded from below at any point of D . �
As an immediate consequence of the previous theorem we obtain the following

generalization of the celebrated theorem of Bernstein and Doetsch:

COROLLARY 2. Let f : D→R be a (Jensen,h)-convex function. If either h(1/2)<
1/2 or h(1/2) � 1/2 with the additional assumption on the locally boundedness of f
from above at a point of D, then f is locally bounded at every point of D.
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The next theorem essentially weakens the local boundedness assumption if the
underlying space is of finite dimension. The proof is analogous what was followed in
[11] (that is based on Steinhaus’ and Piccard’s theorems (cf. [24], [21])).

THEOREM 2. Let D be an open convex subset of Rn , let h : [0,1] → R be a
given nonnegative function such that h(λ ) and h(1−λ ) are not zero simultaneously,
and let f : D → R be (λ ,h)-convex function with a fixed 0 < λ < 1 . Assume that
there exist a Lebesgue-measurable set of positive measure (or a Baire-measurable set of
second category) S⊆D and a Lebesgue-measurable (resp. Baire-measurable) function
g : S → R such that f � g on S. Then f is locally bounded on D.

REMARK 2. It is a well-known fact that if a Jensen-convex function f is locally
bounded above at a point of its domain (see [1], [14]), then it is continuous on its
domain. This is not true for (Jensen,h )-convex functions. Indeed, in the case h(λ )= λ s

(where 0 < s < 1 is a fixed number), in [2] we give an example which is (Jensen,h )-
convex, bounded and nowhere continuous.

Next theorem gives a sufficient condition when local boundedness implies conti-
nuity.

THEOREM 3. Let D ⊂ X be a nonempty, convex, open set and let h : [0,1] → R

be a given nonnegative function satisfying the limit conditions

lim
x→0

h(x) = 0 and lim
x→1

h(x) = 1.

Let the sequence {λn}n∈N be such that λn ∈]0,1] and λn tends to 0 (when n →
∞) and assume that h(λn) and h(1− λn) not simultaneously zero. If f : D → R is
({λn}n∈N,h)-convex and f is locally bounded from above at a point x0 ∈ D, then f is
continuous at x0 .

Proof. Since h(λn) and h(1−λn) are not zero simultaneously, therefore, without
loss generality, we may assume that h(1−λn) > 0.

Since f is locally bounded from above at a point x0 ∈ D , there exists a neighbor-
hood U at x0 and a constant K � 0 such that f (x) � K for every x ∈U . Let ε be an
arbitrary nonnegative constant. Then there exists n0 ∈ N such that if n � n0 , then

h(λn)K +[h(1−λn)−1] f (x0) < ε,

whence
h(λn)

h(1−λn)
K +

[
1− 1

h(1−λn)

]
f (x0) < ε.

Let V be a neighborhood of 0 such that x0 +V ⊆U , and let U ′ = x0 +λnV . We prove
that

| f (x)− f (x0)| < ε (x ∈U ′).
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For x ∈U ′ there exist y,z ∈ x0 +V such that

x = λny+(1−λn)x0,

x0 = λnz+(1−λn)x.

Indeed,

y− x0 =
1
λn

(x− x0) ∈ 1
λn
λnV = V,

and

z− x0 =
1−λn

λn
(x0 − x) ∈ 1−λn

λn
λnV = (1−λn)V ⊆V.

According to (λn,h)-convexity of f ,

f (x) � h(λn) f (y)+h(1−λn) f (x0) � h(λn)K +h(1−λn) f (x0),
f (x0) � h(λn) f (z)+h(1−λn) f (x) � h(λn)K +h(1−λn) f (x).

We get
f (x)− f (x0) � h(λn)K +[h(1−λn)−1] f (x0) < ε (2)

and

f (x) � f (x0)−h(λn)K
h(1−λn)

,

which implies

f (x)− f (x0) �
[

1
h(1−λn)

−1

]
f (x0)− h(λn)

h(1−λn)
K > −ε. (3)

The inequalities (2) and (3) show that | f (x)− f (x0)| < ε , that is f is continuous at x0 ,
which was to be proved. �

REMARK 3. The previous limit conditions are not necessary, since in the case of
Jensen-convexity are not fulfilled. However, the result of Bernstein and Doetsch is valid
for Jensen-convex functions. In contrary, the nonnegative monotone functions - which
are not necessary continuous - belongs to a special class of the h -convex functions, to
the class of Godunova-Levin functions. Therefore, in this setting, the limit conditions
in question cannot be ignored.

COROLLARY 3. Let D⊂ X be a nonempty, convex, open set and let h : [0,1]→R

be a given nonnegative function satisfying the limit conditions

lim
x→0

h(x) = 0 and lim
x→1

h(x) = 1.

Let H ⊆ [0,1] and assume that 0 or 1 is an accumulation point of H and h(λ ) and
h(1−λ ) are not zero simultaneously for all λ ∈H . If f : D→ R is (H,h)-convex and
locally bounded at a point of D, then f is continuous at that point.
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Proof. Since f is (H,h)-convex, it is also (1−H,h)-convex, so there exists a
sequence in H or in 1−H , which tends to zero. Now, we can apply the previous
theorem. �

THEOREM 4. Let D ⊂ X be a nonempty, convex, open set and let h : [0,1] → R

be a given nonnegative function satisfying the limit conditions

lim
x→0

h(x) = 0 and lim
x→1

h(x) = 1.

Let H ⊆ [0,1] and assume that 0 or 1 is an accumulation point of H and h(λ ) and
h(1−λ ) are not zero simultaneously for all λ ∈H . If f : D→ R is (H,h)-convex and
locally bounded at a point of D, then f continuous on D.

Proof. According to Theorem 1, f is locally bounded at every point of D . So, we
can use the previous corollary to get the continuity of f at every point of D . �

4. Convexity property of (Q,h)-convex functions

The following result offers a generalization of the theorem of Bernstein-Doetsch
[1], Breckner [4] and Burai-Házy-Juhász [2] for (rationally,s)-convex functions

THEOREM 5. Let D ⊂ X be a nonempty, convex, open set and let h : [0,1] → R

be a given continuous, nonnegative function satisfying the limit conditions

lim
x→0

h(x) = 0 and lim
x→1

h(x) = 1.

Assume that h(λ ) and h(1−λ ) are not zero simultaneously for all λ ∈ Q∩ [0,1] . If
f : D → R is (Q,h)-convex and locally bounded at a point of D, then f is continuous
on D and is h-convex.

Proof. We prove that the function f is (λ ,h)-convex for all λ ∈ [0,1] . Let λ ∈
[0,1] arbitrary. Then there exists a sequence {λn}n∈N such that λn ∈ Q and λn → λ
(when n tends to ∞). Applying (Q,h)-convexity of f , we get

f (λnx+(1−λn)y) � h(λn) f (x)+h(1−λn) f (y). (4)

The local upper boundedness of f implies the continuity of f (according to Theorem
3). Therefore, taking the limit n → ∞ in (4), we get

f (λx+(1−λ )y) � h(λ ) f (x)+h(1−λ ) f (y),

which proves the h -convexity of f . �
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COROLLARY 4. Let D⊂ X be a nonempty, convex, open set and let h : [0,1]→R

be a given continuous, nonnegative function satisfying the limit conditions

lim
x→0

h(x) = 0 and lim
x→1

h(x) = 1.

Let H is a dense subset of [0,1] and assume that h(λ ) and h(1− λ ) are not zero
simultaneously for all λ ∈ H . If f : D → R is (H,h)-convex and locally bounded at a
point of D, then f is continuous on D and is h-convex.
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