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THE MODULAR INTERPOLATION INEQUALITY IN SOBOLEV

SPACES WITH VARIABLE EXPONENT ATTAINING THE VALUE 1
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(Communicated by L. Maligranda)

Abstract. We prove a modular type interpolation inequality for functions belonging to Sobolev
spaces with variable exponent attaining the value 1 . The approach combines the original proof of
the interpolation inequality by Nirenberg [19] with an inequality for averages over balls, avoiding
the use of the norm interpolation inequality for variable exponent Sobolev spaces, known for
exponents whose infimum is greater than 1 .

1. Introduction

One of the useful properties in the study of the theory of Sobolev spaces is the
possibility to estimate the Lp norm of the intermediate derivatives of a function u in
terms of the Lp norms of the derivative of maximum order and of u itself. For a
function u belonging to a classical Sobolev space W 2,p(Ω) , the norm is defined as

||u||W2,p(Ω) = ||u||Lp(Ω) + || |Du| ||Lp(Ω) + || |D2u| ||Lp(Ω).

If the domain Ω is sufficiently smooth and has bounded boundary, the norm || |Du| ||Lp(Ω)

can be controlled by ||u||Lp(Ω) and || |D2u| ||Lp(Ω) by means of the interpolation inequal-
ity

|| |Du| ||Lp(Ω) � ε|| |D2u| ||Lp(Ω) + c(ε)||u||Lp(Ω) (1.1)

and, due to (1.1), the space W 2,p(Ω) admits the equivalent norm

|||u|||W2,p(Ω) = ||u||Lp(Ω) + || |D2u| ||Lp(Ω).

Investigations on interpolation inequalities have been started long ago and interested
many authors. The earliest papers on the argument are due to Ehrling [7], Gagliardo [9]
and Nirenberg [19] but we also refer to the books of Adams [1] and Maz’ja [16] for a
scrupulous treatment of it.

In the last years variable exponent spaces have attracted many authors and have
been considered in a series of papers, see e.g. [12], [8], [10], [20] and references
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therein. For a function u belonging to a variable Sobolev space W 2,p(·)(Ω) , the norm
is defined as

||u||W2,p(·)(Ω) = ||u||Lp(·)(Ω) + || |Du| ||Lp(·)(Ω) + || |D2u| ||Lp(·)(Ω)

and, as it happens for constant exponents, if the domain is sufficiently regular, the norm
of |Du| in Lp(·)(Ω) can be controlled by ||u||Lp(·)(Ω) and || |D2u| ||Lp(·)(Ω) by means of
the interpolation inequality

|| |Du| ||Lp(·)(Ω) � ε|| |D2u| ||Lp(·)(Ω) + c(ε)||u||Lp(·)(Ω) (1.2)

which can be obtained as a direct consequence of the following general result due to
J.L. Lions (see [14], [18]).

THEOREM 1.1. Let Bi , i = 1,2,3 , three Banach spaces such that

B1 ⊂ B2 ⊂ B3

algebraically and topologically. Suppose that the imbedding of B1 in B2 is compact.
For every ε > 0 , there exists a constant c(ε) such that if u ∈ B1 then

||u||B2 � ε||u||B1 + c(ε)||u||B3 . (1.3)

Choosing B1 = W 2,p(·)(Ω) , B2 = W 1,p(·)(Ω) and B3 = Lp(·)(Ω) , we can recognize in
(1.3) the interpolation inequality (1.2). Let us stress that the proof of inequality (1.2) as
consequence of (1.3) reduces to the problem of compact embedding between Sobolev
spaces with variable exponent. A detailed study in this direction appears in a recent
paper by Zang and Fu [21] (see also [11] and [5]), where the restriction ess inf p > 1 is
necessary, since the boundedness of the maximal operator is required (see [4]).

It is worth pointing out that the norm of a function which belongs to a variable
Lp space does not coincide, up to a power, with its modular, as it happens in the case
of a constant exponent. Therefore, in the context of variable exponents it is interesting
to consider, besides norm inequalities, also modular inequalities. The papers in this
directions show that the corresponding modular inequalities are true for a smaller class
of exponents and, sometimes, only for constant exponents (see for example [13]).

In this paper we obtain a modular type estimate in the setting of variable expo-
nent Sobolev spaces. We shall consider exponents p(·) belonging to a class of regular
functions on domains Ω⊂ R

n , n � 1, defined in Section 2 and denoted with P(Ω) .

We shall use Dju to denote the vector
∂ ju

∂α1∂α2 · · ·∂αn

, α1 + · · ·+αn = j , of all

derivatives of u of order j and |Dju| for its norm, that is |Dju|=
(
∑

|α |= j

(Dαu)2
) 1

2
. In

particular we shall write Du instead of D1u and u instead of D0u . Moreover, we shall
denote by ρLp(·)(Ω)(u) the modular

∫
Ω |u(x)|p(x) dx .

Our main result is the following
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THEOREM 1.2. Let Ω ⊂ R
n (n � 1) be a domain satisfying the uniform C2 -

regularity property and let u be a real valued mapping in W 2,p(·)(Ω) , with p(·) ∈
P(Ω) . If ρLp(·)(Ω)(u) < 1 and ρLp(·)(Ω)(|D2u|) < 1 , then there exists c = c(n, p(·),Ω)
such that for ε sufficiently small

∫
Ω
|Du(x)|p(x)dx � c

(
ε p−

∫
Ω
|D2u(x)|p(x)dx

+ε−p+

∫
Ω
|u(x)|p(x)dx+ ε−p+ max{(p+− p−)p+ ,(p+− p−)p−}

)
.

The inequality in Theorem 1.2 represents an extension of the classical interpolation
inequality (1.1): in fact, if p(·) ≡ p , it reduces to

|| |Du| ||pp � c(ε p|| |D2u| ||pp + ε−p||u||pp)

for all u : ||u||p < 1, || |D2u| ||p < 1, which in turn is equivalent to (1.1) without any
restriction on the norms of u and |D2u| because of its homogeneity.

Before spending few words on the proof of Theorem 1.2, we want to observe that
a direct consequence of the inequality in its statement is that ρLp(·)(Ω)(|Du|) is bounded
by a constant independent of u . Under the same hypotheses, this fact obviously fol-
lows also from the inequality (1.2), however, our previous digression on inequality
(1.2) shows that such approach imposes on the exponent the condition to be essentially
greater than 1.

The proof of Theorem 1.2, given in Section 3, combines the original argument of
the interpolation inequality by Nirenberg [19] with an inequality for averages over balls
(see next Proposition 3.1), and admits exponents attaining the value 1. The proof of
the inequality in Theorem 1.2 is obtained considering first the case of functions of one
variable with continuous derivatives up to the order 2. Later, a result of convergence of
type Meyers-Serrin will be used for functions in the Sobolev class W 2,p(·)(Ω) .

2. Notation and preliminaries

Let Ω be an open domain in R
n and suppose that there exists a locally finite

collection of subdomains, called patches, which together with a compact subdomain
Ω0 cover Ω . Suppose also that the closure Ωi of each patch Ωi may be mapped in
a one to one way onto a cube, with ∂Ω∩Ωi mapped onto a set lying in an (n− 1)-
dimensional plane. If we assume that all such mappings and their respective inverses
are j times, j � 1, continuously differentiable and with uniformly bounded Jacobian
determinants, we refer to Ω as a domain with uniform C j -regularity property.

Let p :Ω→ [1,∞) be a measurable bounded function such that

p− = p−(Ω) := ess inf{p(x) : x ∈Ω} � 1,

p+ = p+(Ω) := esssup{p(x) : x ∈Ω} < ∞.
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The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable func-
tions f such that the modular

ρLp(·)(Ω)( f ) =
∫
Ω
| f (x)|p(x) dx (2.1)

is finite. Note that the space Lp(·)(Ω) is a particular case of the so called Musielak-
Orlicz spaces, see [17] for details on these spaces.

The expression

|| f ||Lp(·)(Ω) = inf{λ > 0 : ρLp(·)(Ω)( f/λ ) � 1} (2.2)

is a norm on Lp(·)(Ω) which makes it a Banach space. It is possible to verify that
ρLp(·)(Ω)( f ) � 1 if and only if || f ||Lp(·) � 1, see [8], [12].

The exponent p(·) is said to be locally log-Hölder continuous if there exists a
constant C > 0 such that

|p(x)− p(y)|� C
log(1/|x− y|) (2.3)

for all points x,y ∈Ω with |x− y| < 1
2 . It turns out that this condition plays a relevant

role in the theory of variable exponent Sobolev spaces as Diening and Samko noticed
in [6] and [20] respectively.

The exponent p(·) is said to be log-Hölder continuous at infinity if there exists a
constant C > 0 such that

|p(x)− p(y)| � C
log(e+ |x|) (2.4)

for all points x,y∈Ω with |y|� |x| . This condition has been introduced by Cruz-Uribe,
Fiorenza and Neugebauer [4] when studying the boundedness of the maximal operator
in not necessarily bounded domains.

In the following we shall refer to P(Ω) as the set of the exponents p(·) for which
conditions (2.3) and (2.4) hold. Note that each p(·) ∈ P(Ω) is always continuous.

The variable exponent Sobolev space W j,p(·)(Ω) is the subspace of Lp(·)(Ω) of
functions f such that Dα f ∈ Lp(·)(Ω) for every multi-index α with |α| � j . The
norm

|| f ||W j,p(·)(Ω) = ∑
|α |� j

|| |Dα f | ||Lp(·)(Ω) (2.5)

makes it a Banach space.
In the proof of our main result we shall need to approximate u ∈ W 2,p(·)(Ω) by

more regular functions. We shall use the following density lemma (see [3], Theorem
2.5) that in the case of classical Sobolev spaces is due to Meyers and Serrin.

LEMMA 2.1. Let Ω be an open domain in R
n and let p(·) ∈ P(Ω) . Then for all

j � 1 , C∞(Ω)∩W j,p(·)(Ω) is dense in W j,p(·)(Ω) .
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In order to obtain a fundamental inequality for averages over balls, we shall need
the two following lemmas. The first one is due to Diening [6] but a proof can be found
also in [4], while the second is a variant of a result in [4] and it will be useful to replace
an exponent function with another.

LEMMA 2.2. Let Ω be an open set and p(·) : Ω → [1,+∞) a function which
satisfies condition (2.3). Then for any ball B such that |B∩Ω| > 0 ,

|B|p−(B∩Ω)−p+(B∩Ω) � C.

LEMMA 2.3. Given a set G and two non-negative functions r(·) and s(·) , sup-
pose that for each y ∈ G,

0 � s(y)− r(y) � c
log(e+ |z(y)|) (2.6)

where z : G → R
n . Then there exists a constant Ct such that for every function u the

following inequality holds∫
G
|u(y)|r(y)dy � Ct

[∫
G
|u(y)|s(y)dy+

∫
G

[(s(y)− r(y))Rt(z(y))]r−(G) dy
]

where Rt(x) = (e+ |x|)−nt , t > 0 .

Proof. Let GRt = {y ∈ G : |u(y)| � (s(y)− r(y))Rt(z(y))} and write∫
G
|u(y)|r(y)dy =

∫
GRt

|u(y)|r(y)dy+
∫
G\GRt

|u(y)|r(y)dy.

Let us estimate each integral separately. Since
s(y)− r(y)

c
Rt(z(y)) � 1 by assumption

(2.6), we have∫
G\GRt

|u(y)|r(y)dy �
∫

G\GRt
[(s(y)− r(y))Rt(z(y))]

r(y) dy

� C
∫

G\GRt
[(s(y)− r(y))Rt(z(y))]

r−(G) dy. (2.7)

On the other hand, if y ∈ GRt , then∫
GRt

|u(y)|r(y)dy =
∫

GRt
|u(y)|s(y)|u(y)|r(y)−s(y)dy

� C
∫

GRt
|u(y)|s(y) [(s(y)− r(y))Rt(z(y))]

− c
log(e+|z(y)|) dy

� Ct

∫
GRt

|u(y)|s(y)dy.

Combining the last estimate with (2.7) we get the conclusion. �
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3. The proof of the main result

In the proof of Theorem 1.2 we are inspired by the arguments used in the case of
the classical Sobolev spaces (see Nirenberg, [19]). Our main difficulty is the lack of the
homogeneity of the modular (2.1) which leads us to the use of the following variant of
Theorem 4.1 in [2]:

PROPOSITION 3.1. Let Ω = (0,1)n and let p(·) : Ω → [1,∞) satisfy (2.3). Let
u ∈ Lp(·)(Ω) be such that ρLp(·)(Ω)(u) � 1 . Then for every ball B and every x ∈ B,
denoting by BΩ = B∩Ω and by p(x) = p(x)/p− , we have

( 1
|B|
∫

BΩ
|u(y)|dy

)p(x)

� C

[( 1
|B|
∫

BΩ
|u(y)|p(y) dy

)p−
+
{

(p+(BΩ)− p−(BΩ))R2(x)
}p(x)

]

where C = C(n, p(·)) and R2(x) = (e+ |x|)−2n .

Proof. Observe that p(x) � 1 and that p verifies (2.3). It follows, by the bound-
edness of Ω , that there exists a constant c such that

|p(x)− p(y)| � c
log(e+ |x|) x,y ∈Ω, |y| � |x|. (3.1)

Fix x ∈ Ω and a ball B of radius r > 0 containing x . We shall carry on splitting the
proof in two cases.

Case 1. r < |x|/4
By our assumption on r , if y1,y2 ∈ BΩ , then log(e+ |y1|) ≈ log(e+ |y2|) . Hence

for all y ∈ BΩ we have

0 � p(y)− p−(BΩ) � c
log(e+ |y|) .

Therefore, by Hölder’s inequality and Lemma 2.3 with s = p , r = p−(BΩ) , z = y ,
t = 2, we deduce( 1

|B|
∫

BΩ
|u(y)|dy

)p(x)
�
( 1
|B|
∫

BΩ
|u(y)|p−(BΩ) dy

)p(x)/p−(BΩ)

�
( C
|B|
∫

BΩ
|u(y)|p(y)dy+

C
|B|
∫

BΩ
[(p(y)− p−(BΩ))R2(y)]p−(BΩ)dy

) p(x)
p−(BΩ)

.

Since r < |x|
4 , if y ∈ B then R2(y) � cR2(x) and therefore we can estimate the term in

the right-hand side with

( C
|B|
∫

BΩ
|u(y)|p(y)dy+

C
|B|R2(x)p−(BΩ)

∫
BΩ

(p(y)− p−(BΩ))p−(BΩ)dy
) p(x)

p−(BΩ)
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�
( C
|B|
∫

BΩ
|u(y)|p(y)dy+C(p+(BΩ)− p−(BΩ))p−(BΩ)R2(x)p−(BΩ)

) p(x)
p−(BΩ)

� 2p+C

(
1
|B|
∫

BΩ
|u(y)|p(y)dy

) p(x)
p−(BΩ)

+2p+C[(p+(BΩ))− p−(BΩ))R2(x)]p(x)

where in the last inequality we have used that p(x)/p−(BΩ) � p+ < +∞ .
It remains to prove that the first term is dominated by a constant multiple of(

1
|B|
∫
BΩ

|u(y)|p(y)dy
)p−

. To this aim observe that

( 1
|B|
∫

BΩ
|u(y)|p(y)dy

)p(x)/p−(BΩ)

=
( 1
|B|
∫

BΩ
|u(y)|p(y)dy

)p−( 1
|B|
∫

BΩ
|u(y)|p(y)dy

)(p(x)/p−(BΩ))−p−

� |B|−
[

p(x)
p−(BΩ)−p−

]
/p−
(∫

BΩ
|u(y)|p(y)dy

)[ p(x)
p−(BΩ)−p−

]
/p−( 1

|B|
∫

BΩ
|u(y)|p(y)dy

)p−
.

Note that

− 1
p−

[ p(x)
p−(BΩ)

− p−
]

= p(x)
[ 1

p(x)
− 1

p−(BΩ)

]
� 0.

Hence, if |B| � 1,

|B|−[(p(x)/p−(BΩ))−p−]/p− � 1.

Otherwise, if |B| � 1, we observe that

p(x)
[ 1

p(x)
− 1

p−(BΩ)

]
� p+

p2−
(p−(BΩ)− p+(BΩ)) (3.2)

and therefore, by Lemma 2.2,

|B|−[(p(x)/p−(BΩ))−p−]/p− � |B|(p+/p2−)(p−(BΩ)−p+(BΩ)) � C.

Similarly,
p(x)

p−(BΩ)
− p− =

p(x)
p−(BΩ)

p−− p− � 0.

Hence, being ρLp(·)(Ω)(u) � 1,

(∫
BΩ

|u(y)|p(y)
)[(p(x)/p−(BΩ))−p−]/p−

� 1

and therefore the desired inequality.
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Case 2. r � |x|/4
First of all observe that for every y ∈ BΩ , since |x| � 1,

0 � p(y)− p−(BΩ) � p+− p− � C
log(e+ |x|) .

As in the previous case, we apply Hölder’s inequality and Lemma 2.3 with r = p−(BΩ) ,
s = p , z = x , t = 2 having ( 1

|B|
∫

BΩ
|u(y)|dy

)p(x)

�
( C
|B|
∫

BΩ
|u(y)|p(y)dy+

C
|B|
∫

BΩ
[(p(y)− p−(BΩ))R2(x)]p−(BΩ)dy

)p(x)/p−(BΩ)

�
( C
|B|
∫

BΩ
|u(y)|p(y)dy+

C
|B|
∫

BΩ
[(p+(BΩ)− p−(BΩ))R2(x)]p−(BΩ)dy

)p(x)/p−(BΩ)

� 2p+
( C
|B|
∫

BΩ
|u(y)|p(y)dy

)p(x)/p−(BΩ)
+2p+C[(p+(BΩ)− p−(BΩ))R2(x)]p(x)

where we have used that p(x)/p−(BΩ) � p+ < +∞ . In order to prove that the first

term is dominated by a constant multiple of
(

1
|B|
∫
BΩ

|u(y)|p(y)dy
)p−

we argue as in

case 1. �

REMARK 3.2. Observe that the second term of the right hand side of the inequal-
ity in Proposition 3.1 is a function belonging to L1(Rn) since p− � 1.

We are now in a position to prove our main result.

Proof of Theorem 1.2.
Step 1. Let us start assuming u with continuous derivatives up to order 2 in an

interval Ω , say Ω= (0,1) .
Fix ε,0 < ε < 1, and divide Ω into a number of subintervals such that the length

of each is bounded by
ε
4

� bi−ai �
ε
2
.

Divide now such a subinterval, say (a1,b1) , into three successive intervals of lenghts
α , 2α and α , so that b1−a1 = 4α .

If t1 and t2 are points in the first and third intervals we have, by Lagrange’s theo-
rem, that at some point t0 ,

Du(t0) =
u(t2)−u(t1)

t2− t1
so that for a fixed x ∈ (a1,b1) ,

|Du(x)| � |Du(t0)|+
∣∣∣∣
∫ x

t0
D2u(t)dt

∣∣∣∣
� |u(t2)|+ |u(t1)|

2α
+
∫ b1

a1

|D2u(t)|dt. (3.3)
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Since we have ∫ b1

b1−α
dt2

∫ a1+α

a1

|u(t2)|+ |u(t1)|
α

dt1

=
1
α

∫ b1

b1−α

(
α|u(t2)|+

∫ a1+α

a1

|u(t1)|dt1

)
dt2

=
∫ b1

b1−α
|u(t2)|dt2 +

∫ a1+α

a1

|u(t1)|dt1 �
∫ b1

a1

|u(t)|dt

integrating (3.3) separately on (a1,a1 +α) with respect to t1 and on (b1−α,b1) with
respect to t2 we find

α2 |Du(x)| � 1
2

∫ b1

a1

|u(t)|dt +α2
∫ b1

a1

|D2u(t)|dt.

Hence

|Du(x)| � 1
2α2

∫ b1

a1

|u(t)|dt +
∫ b1

a1

|D2u(t)|dt

and

|Du(x)|p(x) � 2p(x)−1

[(
1

2α2

∫ b1

a1

|u(t)|dt

)p(x)

+
(∫ b1

a1

|D2u(t)|dt

)p(x)
]

. (3.4)

Since ρLp(·)(Ω)(u) < 1 and ρLp(·)(Ω)(|D2u|) < 1 by assumptions, we can estimate both
terms in the right hand side of (3.4) by using Proposition 3.1 as follows

(
1

2α2

∫ b1

a1

|u(t)|dt

)p(x)

=
(

2
α

)p(x)( 1
4α

∫ b1

a1

|u(t)|dt

)p(x)

�
(

2
α

)p(x) [
c(n, p(·))

(
1

4α

∫ b1

a1

|u(t)|p(t)/p− dt

)p−
+S(x)

]

and analogously

(∫ b1

a1

|D2u(t)|dt

)p(x)

= (4α)p(x)
(

1
4α

∫ b1

a1

|D2u(t)|dt

)p(x)

� (4α)p(x)
[
c(n, p(·))

(
1

4α

∫ b1

a1

|D2u(t)|p(t)/p− dt

)p−
+S(x)

]

where we have denoted by S(x) = Sp(x) ∈ L1(R) (see Remark 3.2) the expression

{
(p+ − p−)R2(x)

}p(x)
(3.5)

with p(·) = p(·)/p− .
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Therefore, by Hölder’s inequality,

|Du(x)|p(x) � 2p(x)−1
{( 2

α

)p(x) [
c(n, p(·)) 1

4α

∫ b1

a1

|u(t)|p(t) dt +S(x)
]

+(4α)p(x)
[
c(n, p(·)) 1

4α

∫ b1

a1

|D2u(t)|p(t) dt +S(x)
]}

and integrating in (a1,b1) , ∫ b1

a1

|Du(t)|p(t) dt

� c(n, p(·))
{ 1

4α

∫ b1

a1

(
2
α

)p(t)

dt
∫ b1

a1

|u(t)|p(t)dt +
(

2
α

)p+ ∫ b1

a1

S(t)dt

+
1

4α

∫ b1

a1

(4α)p(t)dt
∫ b1

a1

|D2u(t)|p(t)dt +(4α)p−
∫ b1

a1

S(t)dt
}
.

Since ε
4 < 4α < ε , we have

1
4α

∫ b1

a1

(
2
α

)p(t)

dt �
(

2
α

)p+

�
(

32
ε

)p+

1
4α

∫ b1

a1

(4α)p(t)dt � (4α)p− � ε p−

and finally that ∫ b1

a1

|Du(t)|p(t)dt

� c(n, p(·))
[
ε−p+

∫ b1

a1

|u(t)|p(t)dt + ε p−
∫ b1

a1

|D2u(t)|p(t)dt + ε−p+

∫ b1

a1

S(t)dt

]
.

Summation over all the intervals yields
∫
Ω
|Du(t)|p(t)dt

� c(n, p(·))
[
ε−p+

∫
Ω
|u(t)|p(t)dt + ε p−

∫
Ω
|D2u(t)|p(t)dt + ε−p+ ||S||1

]
.

Step 2. Consider now functions u = u(x1, . . . ,xn) in a cube Ω , let’s say Ω =
(0,1)n . Applying the inequality obtained in the previous step on line segments parallel
to the edges, we have for all i = 1, . . . ,n ,

∫ 1

0

∣∣∣ ∂u
∂xi

∣∣∣p(x)
dxi � c(n, p(·))

[
ε p−

∫ 1

0

∣∣∣∂ 2u

∂x2
i

∣∣∣p(x)
dxi + ε−p+

∫ 1

0
|u|p(x) dxi + ε−p+ ||S||1

]
.

(3.6)
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Integrating each of the n inequalities in (3.6) with respect to all the other orthog-
onal directions, we get,

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣p(x)
dx � c(n, p(·),Ω)

[
ε p−

∫
Ω

∣∣∣∂ 2u

∂x2
i

∣∣∣p(x)
dx+ε−p+

∫
Ω
|u(x)|p(x) dx+ε−p+ ||S||1

]
.

Now summing over i = 1, . . . ,n and observing that

n

∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣p � n−p|Du|p

and
n

∑
i=1

∣∣∣∂ 2u

∂x2
i

∣∣∣p � n |D2u|p,

we have an analogous estimate with ∂
∂xi

replaced with D and ∂ 2

∂x2
i

with D2 .

Step 3. Let Ω be any domain with the uniform C2 -regularity property.
Let’s say Hi the mappings such that

Hi ∈C2(Ωi),

Hi(Ωi) = Q+,

H−1
i (Q+) = Ωi,

H−1
i ∈C2(Q+),

Hi(∂Ω∩Ωi) = Q0,

where

Q = {x = (x1, . . . ,xn) ∈ R
n : |xk| < 1,k = 1, · · · ,n},

Q+ = {x ∈ Q, |xi| < 1 : xn > 0},

Q0 = {x ∈ Q, |xi| < 1 : xn = 0}.
Since the Jacobian determinants are uniformly bounded, we assume

m � |JacHi| � M.

We shall need the following Lemma, whose proof is straightforward:

LEMMA 3.3. Let u∈W 2,p(·)(Ωi) and vi(y) = u(H−1
i (y)) ∀y ∈Q+ . Then, setting

p̃ = p ◦H−1
i , it is vi ∈W 2, p̃(·)(Q+) .
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By using the assumptions ρLp(·)(Ω)(u)< 1 and ρLp(·)(Ω)(|D2u|)< 1, it can be easily

seen that ρLp̃(·)(Q+)

( vi
1+M

)
< 1 and ρLp̃(·)(Q+)

( |D2vi|
1+M

)
< 1. Therefore, from step 1, we

can write

∫
Q+

∣∣∣∣Dvi(y)
1+M

∣∣∣∣
p̃(y)

dy � c(n, p̃(·),Q+)
[
ε p̃−

∫
Q+

∣∣∣∣D2vi(y)
1+M

∣∣∣∣
p̃(y)

dy

+ε− p̃+

∫
Q+

∣∣∣∣ vi(y)
1+M

∣∣∣∣
p̃(y)

dy+ ε− p̃+||Sp̃||1
]
,

that is,

∫
Q+

∣∣∣∣∣Du(H−1
i (y))

1+M

∣∣∣∣∣
p̃(y)

dy � c(n, p̃(·),Q+)
[
ε p̃−

∫
Q+

∣∣∣∣∣D
2u(H−1

i (y))
1+M

∣∣∣∣∣
p̃(y)

dy

+ε− p̃+

∫
Q+

∣∣∣∣∣u(H−1
i (y))

1+M

∣∣∣∣∣
p̃(y)

dy+ ε− p̃+||Sp̃||1
]
.

Setting x = H−1
i (y) , ∫

Ωi

∣∣∣∣Du(x)
1+M

∣∣∣∣
p(x)

|JacHi(x)|dx

� c(n, p(·),Ωi)
[
ε p−

∫
Ωi

∣∣∣∣D2u(x)
1+M

∣∣∣∣
p(x)

|JacHi(x)|dx

+ ε−p+

∫
Ωi

∣∣∣∣ u(x)
1+M

∣∣∣∣
p(x)

|JacHi(x)|dx+ ε−p+

∫
Ωi

S(x)|JacHi(x)|dx
]
,

and therefore

m
(1+M)p+

∫
Ωi

|Du(x)|p(x)dx � c(n, p(·),Ωi)
[
ε p− M

(1+M)p−

∫
Ωi

|D2u(x)|p(x)dx

+ ε−p+ M
(1+M)p−

∫
Ωi

|u(x)|p(x)dx+ ε−p+M||S||1
]
.

Hence ∫
Ωi

|Du(x)|p(x)dx � c(n, p(·),Ωi)
[
ε p−

∫
Ωi

|D2u(x)|p(x)dx

+ε−p+

∫
Ωi

|u(x)|p(x)dx+ ε−p+||S||1
]
.

Since Ω0 can be covered by a finite number of cubes, an analogous inequality holds in
it. Summing on these cubes and patches, we find for ε sufficiently small that∫

Ω
|Du(x)|p(x)dx

� c(n, p(·),Ω)
[
ε p−

∫
Ω
|D2u(x)|p(x) dx+ ε−p+

∫
Ω
|u(x)|p(x)dx+ ε−p+||S||1

]
(3.7)
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and therefore, using the expression of S(x) in (3.5),

∫
Ω
|Du(x)|p(x)dx � c

(
ε p−

∫
Ω
|D2u(x)|p(x)dx+ ε−p+

∫
Ω
|u(x)|p(x)dx

+ε−p+ max{(p+− p−)p+ ,(p+− p−)p−}
)

.

Finally, in virtue of Lemma 2.1 and by using the fact that the convergence in norm im-
plies the convergence of the modulars (see [17], [15], [8]), Theorem 1.2 is proved for all
u ∈W 2,p(·)(Ω) . Observe that the assumptions ρLp(·)(Ω)(u) < 1 and ρLp(·)(Ω)(|D2u|) < 1

are equivalent to the conditions ||u||Lp(·)(Ω) < 1 and || |D2u| ||Lp(·)(Ω) < 1, see [15].

Therefore, if un → u in W 2,p(·)(Ω) , and hence un → u in Lp(·)(Ω) and |D2un| → |D2u|
in Lp(·)(Ω) , then ||un||Lp(·)(Ω) < 1 and || |D2un| ||Lp(·)(Ω) < 1 definitely. �

Now denote by ρ̃(u) = ρLp(·)(Ω)(u)+ρLp(·)(Ω)(|D2u|) and observe that for any u ∈
W 2,p(·)(Ω) , it is ρLp(·)(Ω)

(
u

1+ρ̃(u)

)
< 1 and ρLp(·)(Ω)

( |D2u|
1+ρ̃(u)

)
< 1. As a consequence,

we can replace u by
u

1+ ρ̃(u)
in Theorem 1.2 and obtain the following

COROLLARY 3.4. Let Ω ⊂ R
n , n � 1 , a domain satisfying the uniform C2 -

regularity property and let u be a real valued mapping in W 2,p(·)(Ω) . There exists
c = c(n, p(·),Ω) such that for ε sufficiently small

∫
Ω

∣∣∣∣ Du(x)
1+ ρ̃(u)

∣∣∣∣
p(x)

dx � c

(
ε p−

∫
Ω

∣∣∣∣ D2u(x)
1+ ρ̃(u)

∣∣∣∣
p(x)

dx+ ε−p+

∫
Ω

∣∣∣∣ u(x)
1+ ρ̃(u)

∣∣∣∣
p(x)

dx

+ε−p+ max{(p+− p−)p+ ,(p+ − p−)p−}
)

.
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