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ON THE WEIGHTED HARDY TYPE INEQUALITY IN A FIXED DOMAIN

FOR FUNCTIONS VANISHING ON THE PART OF THE BOUNDARY

YU. O. KOROLEVA

(Communicated by L.-E. Persson)

Abstract. We derive and discuss a new two-dimensional weighted Hardy-type inequality in a
rectangle for the class of functions from the Sobolev space H1 vanishing on small alternating
pieces of the boundary.

1. Introduction

Inequalities of Hardy-type are very important for many applications. These in-
equalities are important tools e.g. for deriving some estimates for operator norms, for
proving some embedding theorems, for estimating eigenvalues, etc.

The following basic one-dimensional Hardy-type inequality is well known:∫ a

0

(u
t

)p
dt �

(
p

p−1

)p ∫ a

0
(u′)p dt, (1.1)

where u ∈ Lp(0,a), u′ ∈ Lp(0,a), p > 1, u(0) = 0.
This inequality could be generalized to the multidimensional weighted form:⎛⎝∫

Rn

V (x)|u(x)|q dx

⎞⎠
1
q

� C

⎛⎝∫
Rn

W (x)|∇u(x)|p dx

⎞⎠
1
p

, (1.2)

where n ∈ Z+, u(x) ∈ C∞
0 (Rn), V (x) � 0,W (x) � 0, p,q � 1, and the constant C

depends only on V (x) and W (x). There are several results concerning weighted Hardy-
type inequality (see e.g. the books [10], [11] and [14] and the references given there).

For the case n = 1, 1 < p � q <∞ we have the following necessary and sufficient
condition for the validity of (1.2):

AM := sup
x>0

⎛⎝ ∞∫
x

V (t)dt

⎞⎠
1
q
⎛⎝ x∫

0

W 1−p∗(t)dt

⎞⎠
1
p∗

< ∞, (1.3)

where p∗ = p
p−1 .

Let us mention also the following result of V.Maz‘ya (see [12, Corollary of Theo-
rem 1.4.1.2, Theorem 1.4.2.2 ]):
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THEOREM 1.1. Let 1 < p < q < ∞, p < n or 1 = p � q < ∞. Then the Hardy
inequality (1.2) with W (x)≡ 1 holds for every u∈C∞

0 (Rn) with a finite constant C > 0
if and only if

B := sup
x∈Rn

sup
R>0

R1− n
p

⎛⎜⎝ ∫
BR(x)

V (y)dy

⎞⎟⎠
1
q

< ∞,

where BR(x) is a ball of the radius R centered at the point x.

The weighted Hardy-type inequality can be generalized to domains in R
n. It was

first done by J. Nečas in [13]. He proved that if Ω is a bounded domain with Lipschitz
boundary, 1 < p < ∞, α < p−1, then for u ∈C∞

0 (Ω) the inequality∫
Ω

|u(x)|pρ−p+α(x)dx � C
∫
Ω

|∇u(x)|pρα(x)dx (1.4)

holds, where ρ(x)= dist(x,∂Ω). After that this inequality was generalized by A. Kufner
in [9] to domains with the Hölder boundary and later by A.Wannebo (see [16]) to do-
mains with the generalized Hölder condition. All results related to (1.4) in the case
α = 0 was described in [7].

The aim of this paper is to prove a Hardy-type inequality (1.4) with p = 2 for func-
tions from H1, vanishing on small alternating pieces of the boundary of the domain. It
is assumed for the simplicity that Ω is a rectangle in R

2.
Such a result is completely new in the theory of Hardy-type inequalities and it

gives us possibility to apply the tools of homogenization theory to obtain the asymp-
totics of the best constant in the Hardy-type inequality.

An analogous result was obtained earlier in [1] and in [2] for Friedrichs inequality
which can be regarded as a special case of weighted Hardy-type inequalities when we
assume that the weight functions equals to 1.

The paper is organized as follows: in Section 2 we give some necessary definitions
and formulate auxiliary lemmas. The main results are presented and proved in Section
3 and Section 4 is reserved for some concluding remarks.

2. Preliminaries

Let Ω⊂ R
2 be the rectangle [0,a]× [0,b] :

Ω = {(x1,x2) : 0 � x1 � a,0 � x2 � b}.
Assume that ε > 0 is a small positive parameter, ε = b

N , N � 1, N ∈ N, and δ =
const,0 < δ < 1. Moreover, let

Γ := {(x1,x2) ∈ ∂Ω : x1 = 0}.
We suppose that Γ is represented in the form:

Γ= Γε ∪ γε , Γε =
⋃
i

(Γεi ), γε =
⋃
i

(γεi ), Γεi ∩ γεi = ∅,
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mes Γεi = εδ , mes (Γεi ∪ γεi ) = ε,

where Γεi and γεi are alternating (see Figure 2).

Figure 1: The domain Ω .

Denote by
Πi

1 := {(x1,x2) ∈Ω : 0 < x1 < a, x2 ∈ Γεi },
Πi

2 := {(x1,x2) ∈Ω : 0 < x1 < a, x2 ∈ γεi }.
Π1 =

⋃
i

Πi
1, Π2 =

⋃
i

Πi
2.

Fix a parameter θ > 0. Define the set Ωθ := {x = (x1,x2) ∈ Ω : x1 > θ}. The sets
Πi,θ

1 ,Πi,θ
2 ,Πθ

1 and Πθ
2 are defined analogously. Moreover, we use the notation

B(x,r) := {(y1,y2) ∈ R
2 : (y1 − x1)2 +(y2− x2)2 � r2},

and the average value of the function u over B(·,r) ∈ R
2 is defined as

uB :=
1
πr2

∫
B

u(x)dx.

Let u be a locally integrable function on R
2. The maximal functions M(u) and MR(u)

of u are defined by

M(u)(x) := sup
r>0

uB, MR(u)(x) := sup
0<r�R

uB.

Let us define the Sobolev space

H1(Ω,Γε) = {uε ∈ H1(Ω) : uε |Γε = 0}.
Analogously,

C∞(Ω,Γε ) = {uε ∈C∞(Ω) : uε = 0 in a neighborhood of Γε = 0}.
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Let x ∈Ω, ρ(x) = dist(x,Γ). Define the following functions:

r1(x) = ρ(x), r2(x) = dist(x, Γε) := inf
y∈Γε

dist(x,y).

According to the geometrical construction of the domain,
r1(x) < r2(x) < ρ(x)+ (1− δ ) ε2 (see Figure 2).

Figure 2: Periodical structure of the domain.

We need to derive the following auxiliary Lemma of independent interest:

LEMMA 2.1. Let uε ∈ H1(Ω,Γε). Then the Friedrichs type inequality∫
Π2

u2
ε dx � K(a,ε,δ )

∫
Ω

|∇uε |2 dx, (2.1)

holds with K(a,ε,δ ) = 2
(
a2 1−δ

δ + ε2(1− δ )2
)

.

Proof. Fix the point (x1,x2) ∈ Πi
1. By using the Newton-Leibnitz formula, we

have

uε(x1,x2) = uε(x1,x2)−u(0,x2) =
x1∫

0

∂uε
∂x1

dx1 �
a∫

0

∂uε
∂x1

dx1.

Hence,

u2
ε(x1,x2) �

⎛⎝ a∫
0

∂uε
∂x1

dx1

⎞⎠2

� a

a∫
0

|∇uε |2 dx1.

Then, by integrating the last inequality with respect to x2 and after that with respect to
x1 over Πi

1, we obtain that ∫
Πi

1

u2
ε dx � a2

∫
Πi

1

|∇uε |2 dx. (2.2)
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Now choose the point (x1, x̃2) ∈ Πi
2 such that x̃2 = 1−δ

δ x2 + εδ . This means that
(x1, x̃2) ∈ Πi

2 if and only if (x1,x2) ∈ Πi
1. By again using the Newton-Leibnitz for-

mula, we fined that

uε(x1, x̃2) = u(x1,x2)+
x̃2∫

x2

∂uε
∂x2

dx̃2.

Consequently,

u2
ε(x1, x̃2) � 2u2(x1,x2)+2(x̃2− x2)

x̃2∫
x2

|∇uε |2 dx̃2.

Integrating the last inequality over Πi
2 and substituting the integral on the right-hand

side by the greater integral, we get that

∫
Πi

2

u2
ε dx1 dx̃2 � 2

1− δ
δ

∫
Πi

1

u2
ε dx1 dx2 +2ε2(1− δ )2

∫
Πi

2

|∇uε |2 dx1 dx̃2.

Finally, by applying the estimate (2.2) to the first integral on the right-hand side and
substituting both integrals by the greater integral, we obtain that∫

Πi
2

u2
ε dx � 2

(
a2 1− δ

δ
+ ε2(1− δ )2

) ∫
Πi

1∪Πi
2

|∇uε |2 dx. (2.3)

By summarizing up the inequalities (2.2) and (2.3) with respect to i, we obtain the
desired estimate:∫

Π2

u2
ε dx =

∫
⋃
i
Πi

2

u2
ε dx � 2

(
a2 1− δ

δ
+ ε2(1− δ )2

) ∫
⋃
i
(Πi

1∪Πi
2)

|∇uε |2 dx

= 2

(
a2 1− δ

δ
+ ε2(1− δ )2

)∫
Ω

|∇uε |2 dx. �

We also need the following well-known Lemmas:

LEMMA 2.2. Let u ∈W 1
1 (B). Then

|u(x)−uB| � 2
∫
B

|∇u(y)|
|x− y| dy.

For the proof see in [3, Lemma 7.16].
The following important inequality was derived in [4]:
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LEMMA 2.3. Let B = B(x,r) ⊂Ω, u ∈C∞(Ω), Γ⊂ ∂Ω. Then

inf
y∈Γ∩B

∫
B

|∇u(z)|
|y− z| dz �

∫
B

|∇u(z)|
|x− z| dz.

LEMMA 2.4. If 0 < α < 2 and r > 0, then there exists a constant c2, c2 �(
1
2

)α−2
, such that for each x ∈ R

2,∫
B(x,r)

|u(y)|
|x− y|2−α dy � c2r

αM(u)(x).

For the proof we refer to [15, Lemma 2.8.3]. We will use this result for the case α = 1.
Here, as usual, M(u) stands for the Hardy-Littlewood maximal operator. Moreover,
the following important theorem (the Hardy-Littlewood theorem on Maximal Operator)
will be used:

THEOREM 2.1. If u ∈ L2(R2), then there exist a constant c3 > 0 such that

‖M(u)‖2 � c3‖u‖2.

For the proof see e.g. in [15, Theorem 2.8.2].

3. The main results

Consider the function

ρε(x) =

{
ρ(x), if x ∈Π1,

ρ(x)+ (1− δ ) ε2 , if x ∈Π2.
(3.1)

Our first main result is the following pointwise inequality:

THEOREM 3.1. Let uε ∈C∞(Ω,Γε). Then there exist a constant C, C � 4, such
that the pointwise inequality

|uε(x)| � Cρε(x)Mρε (x)|∇uε |χB(x,ρε (x))(x) (3.2)

holds, where x ∈ Γ is satisfying that |x− x| = ρ(x).

Proof. Choose the point x ∈ Ω and denote by B := B(x,ρε(x)), where ρε(x) is
defined in (3.1).

Then B∩Γε �= ø for each x ∈ Ω. Extend the function uε in R
2 \Ω by reflecting

it across the boundary. By applying Lemma 2.2 to the extended uε , we have for any
y ∈ B∩Γε :

|uε(x)| = |uε(x)−uε(y)| � |uε(x)−uεB|+ |uε(y)−uεB|

� 2

⎛⎝∫
B

|∇uε(z)|
|x− z| dz+

∫
B

|∇uε(z)|
|y− z| dz

⎞⎠ .
(3.3)
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Hence, by applying Lemma 2.3 to (3.3), we obtain that

|uε(x)| � 2
∫
B

|∇uε(z)|
|x− z| dz. (3.4)

Finally, taking into account Lemma 2.4 and (3.1), we have that

|uε(x)| � 2c2ρε(x)Mρε (x)(|∇uε |)(x)

=

⎧⎨⎩4ρ(x)Mρ(x)(|∇uε |), x ∈Π1∩B(x,ρ(x)) ,

4
(
ρ(x)+ (1−δ )

2 ε
)
Mρ(x)+ (1−δ )

2 ε(|∇uε |), x ∈Π2∩B
(
x,ρ(x)+ (1−δ )

2 ε
)

.

(3.5)
The proof is complete. �

The next two theorems generalize some well-known classical Hardy-type for p =
2 inequalities to a much more wide class of functions.

THEOREM 3.2. Let ρε(x) be the function defined in (3.1) and 0 � α < α0. Then
the estimate ∫

Ω

ρ−2+α
ε (x)u2

ε(x)dx � C1

∫
Ω

ραε (x)|∇uε(x)|2 dx (3.6)

holds for each fixed ε for all functions uε ∈ H1(Ω,Γε ), where the constant C1 does
not depend on uε and on ε.

Proof. Fix uε ∈C∞(Ω,Γε) extended in R
n \Ω. According to (3.2) the inequality

|uε(x)|
ρε(x)

� 4Mρε(x)
(|∇uε |χB(x,ρε (x))

)
(x)

holds for all x ∈Ω. Then we have that∫
Ω

|uε(x)|2
ρ2
ε (x)

dx � 16
∫
Ω

M2
ρε (x)

(|∇uε |χB(x,ρε (x))(x)
)

dx.

The statement in Theorem 3.1 implies that∫
Ω

M2
ρε(x)

(|∇uε |χB(x,ρε (x))
)
(x)dx � c3

∫
Ω

|∇uε(x)|2 dx.

Thus, it yields that ∫
Ω

( |uε(x)|
ρε(x)

)2

dx � C1

∫
Ω

|∇uε(x)|2 dx,

where C1 = 16c3.
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Hence, the inequality (3.6) holds with α = 0. The next step is to prove (3.6) for
α > 0. Choose σ > 0 and put vε = |uε |ρσε . It is not difficult to derive that

|∇vε |2 =
(
∂uε
∂x1

ρσε +σρσ−1∂ρε
∂x1

uε

)2

+ρ2σ
ε

(
∂uε
∂x2

)2

� 2ρ2σ
ε |∇uε |2 +2σ2ρ2σ−2

ε u2
ε .

(3.7)

By now applying (3.6) with α = 0 to vε , we obtain that

∫
Ω

ρ−2+2σ
ε u2

ε dx � C1

⎛⎝∫
Ω

ρ2σ
ε |∇uε |2 dx+σ2

∫
Ω

ρ2(σ−1)
ε |uε |2 dx

⎞⎠ .

If 1−C1σ2 > 0, then we have that∫
Ω

ρ−2+2σ
ε u2

ε dx � 2C1

1−2C1σ2

∫
Ω

ρ2σ
ε |∇uε |2 dx.

Substituting σ by α
2 and denoting C1 by 2C1

1−2C1σ2 , we prove inequality (3.6). Fi-

nally, by approximating the functions from H1(Ω,Γε) by smooth functions belonging
to C∞(Ω,Γε ), we can complete the proof. �

Our final main result reads:

THEOREM 3.3. Let ρ(x) = dist(x,Γ) ,

K := K(a,ε,δ ,θ ) = 4+
2
θ 2

(
a2 1− δ

δ
+ ε2(1− δ )2

)
and 0 � α < α0 :=

√
2
K . Then the estimate∫

Ωθ

ρ−2+α(x)uε2(x)dx � C(a,ε,δ ,θ ,α)
∫
Ω

ρα(x)|∇uε(x)|2 dx (3.8)

holds for each fixed θ > 0 for all functions uε ∈ H1(Ω,Γε), where the constant

C(a,ε,δ ,θ ,α) =
4K

2−Kα2 .

Proof. First we note that∫
Π1

(
uε
ρ

)2

dx � 4
∫
Π1

|∇uε |2 dx � 4
∫
Ω

|∇uε |2 dx. (3.9)

Indeed, if uε(0) = 0, then, according to the classical one-dimensional inequality (1.1),
we have that ∫ a

0
u′ε

2 dx1 � 1
4

∫ a

0

(
uε
x1

)2

dx1.
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Using this fact, we obtain that∫
Π1

|∇uε |2 dx �
∫
Γε

∫ a

0

(
∂uε
∂x1

)2

dx � 1
4

∫
Γε

∫ a

0

(
uε
x1

)2

dx

=
1
4

∫
Π1

(
uε
ρ

)2

dx.

In particular, the estimate (3.9) holds in Πθ
1 . The next step is to prove that∫

Πθ
2

(
uε
ρ

)2

dx � K(a,ε,δ )
θ 2

∫
Ω

|∇uε |2 dx. (3.10)

Using the Friedrichs inequality (2.1) and taking into account the fact that ρ(x) > θ
when x ∈Πθ

2 , we obtain the following estimate:

∫
Πθ

2

(
uε
ρ

)2

dx � 1
θ 2

∫
Π2

u2
ε dx � K(a,ε,δ )

θ 2

∫
Ω

|∇uε |2 dx.

Now, summarizing the inequalities (3.9) and (3.10), we derive the desired estimate:∫
Ωθ

(
uε
ρ

)2

dx =
∫
Πθ

1

(
uε
ρ

)2

dx+
∫
Πθ

2

(
uε
ρ

)2

dx

�
(

4+
K(a,ε,δ )

θ 2

)∫
Ω

|∇uε |2 dx.

We have derived the inequality (3.8) for the case α = 0. The proof of (3.8) for the case
α > 0 is identically to the proof of the second part of Theorem 3.2, so we omit the
details. �

4. Concluding remarks

REMARK 4.1. The condition δ = 1 in the definition (3.1) corresponds to the case
Γε = Γ.

REMARK 4.2. If α = 0, then (3.6) takes the form∫
Ω

(
uε(x)
ρε(x)

)2

dx � C1

∫
Ω

|∇uε(x)|2 dx, (4.1)

while (3.8) becomes∫
Ωθ

(
uε(x)
ρ(x)

)2

dx � C(a,ε,δ ,θ ,α)
∫
Ω

|∇uε(x)|2 dx.
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We conjecture that these Hardy-type inequalities holds also when p = 2 is replaced
by any p > 1 but then another type of proof must be found.

REMARK 4.3. In this paper we have succeeded to prove a weighted Hardy-type
inequality in a fixed domain for functions vanishing on a part of the boundary. We
can see several open questions equipped with this result. For instance, one interesting
problem is to try to find a weighted Hardy-type inequality for perforated domains in the
case when the size of perforation depends on the small parameter.
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