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ON THE WEIGHTED HARDY TYPE INEQUALITY IN A FIXED DOMAIN
FOR FUNCTIONS VANISHING ON THE PART OF THE BOUNDARY

YU. O. KOROLEVA

(Communicated by L.-E. Persson)

Abstract. We derive and discuss a new two-dimensional weighted Hardy-type inequality in a
rectangle for the class of functions from the Sobolev space H' vanishing on small alternating
pieces of the boundary.

1. Introduction

Inequalities of Hardy-type are very important for many applications. These in-
equalities are important tools e.g. for deriving some estimates for operator norms, for
proving some embedding theorems, for estimating eigenvalues, etc.

The following basic one-dimensional Hardy-type inequality is well known:

LG we(G5) fra

where u € L,(0,a), u' € L,(0,a), p>1, u(0) =0.
This inequality could be generalized to the multidimensional weighted form:

(R/V(x)|u(x)|qu <‘€(W/W(x)Vu(x)|pdx , (1.2)

where n € Zy, u(x) € Cg(R"), V(x) > 0,W(x) >0, p,q > 1, and the constant ¢
depends only on V(x) and W (x). There are several results concerning weighted Hardy-
type inequality (see e.g. the books [10], [11] and [14] and the references given there).

For the case n =1, 1 < p < g < e we have the following necessary and sufficient
condition for the validity of (1.2):

€1
*

14

1
oo q x
awi=swp | [viar| | [wir@ar ) <o (13
X 0

x>0

where p* = #.

Let us mention also the following result of V. Maz‘ya (see [12, Corollary of Theo-
rem 1.4.1.2, Theorem 1.4.2.2 ]):
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THEOREM 1.1. Let 1 < p<g<oo, p<norl=p<q<oco. Then the Hardy
inequality (1.2) with W (x) = 1 holds for every u € Ci (R") with a finite constant C >0
if and only if

1

q
B := sup supRl_% / V(y)dy | <ee,
x€R"R>0
Brex

where Bg(y) is a ball of the radius R centered at the point x.

The weighted Hardy-type inequality can be generalized to domains in R”. It was
first done by J. Necas in [13]. He proved that if Q is a bounded domain with Lipschitz
boundary, 1 < p <o, o0 < p—1, then for u € C;(Q) the inequality

/\u(x)\Pp—P+“(x) dx < c/ IVu(x)|Pp% (x) dx (1.4)
Q Q

holds, where p(x) = dist(x,dQ). After that this inequality was generalized by A. Kufner
in [9] to domains with the Holder boundary and later by A. Wannebo (see [16]) to do-
mains with the generalized Holder condition. All results related to (1.4) in the case
o =0 was described in [7].

The aim of this paper is to prove a Hardy-type inequality (1.4) with p =2 for func-
tions from H'!, vanishing on small alternating pieces of the boundary of the domain. It
is assumed for the simplicity that Q is a rectangle in R?.

Such a result is completely new in the theory of Hardy-type inequalities and it
gives us possibility to apply the tools of homogenization theory to obtain the asymp-
totics of the best constant in the Hardy-type inequality.

An analogous result was obtained earlier in [1] and in [2] for Friedrichs inequality
which can be regarded as a special case of weighted Hardy-type inequalities when we
assume that the weight functions equals to 1.

The paper is organized as follows: in Section 2 we give some necessary definitions
and formulate auxiliary lemmas. The main results are presented and proved in Section
3 and Section 4 is reserved for some concluding remarks.

2. Preliminaries

Let Q C R? be the rectangle [0,a] x [0,5] :
Q={(x1,%):0<x; <a,0<x <b}.

Assume that € > 0 is a small positive parameter, € = %, N>1, NeN, and 6§ =
const,0 < 6 < 1. Moreover, let

I'.= {()Cl,xz) €oQ: X1 = 0}.
We suppose that I" is represented in the form:

F=TcUYe, Ie = U(Flg)7 Ye = U(}/,-g% rEnyt =g,

i i
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mes T = €8, mes (I UYY) =g,

where I'Y and y{ are alternating (see Figure 2).

Z,
eﬁjj r

Figure 1: The domain Q.

Denote by _
I = {(x1,%2) €Q:0<x; <a,x; €T},

I == {(x1,x2) €Q:0<x; <a,x €¥}.

I, = I, M, = IS,

4

Fix a parameter 6 > 0. Define the set Q% := {x = (x;,x2) € Q: x; > 0}. The sets
H’I’B,HQQ,H? and Hg are defined analogously. Moreover, we use the notation

B(x,r) :={(y1,y2) €R*: (y1 —x1)* + (2 —x02)> <},
and the average value of the function u over B(-,r) € R? is defined as

up = ! /u(x)dx.

o
B

Let u be a locally integrable function on R?. The maximal functions M(u) and Mg (u)
of u are defined by

M(u)(x) := supug, Mg(u)(x) := sup ugp.
r>0 0<r<R

Let us define the Sobolev space
H' (Q,Te) = {ue e HY(Q) : uelr, =0}.
Analogously,

C”(Q,T¢) = {us € C°(Q) : ug = 0 in a neighborhood of I's = 0}.
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Let x € Q, p(x) = dist(x,T"). Define the following functions:

ri(x) = p(x), ra(x) =dist(x, T¢) := inrf dist(x,y).
yele

According to the geometrical construction of the domain,
ri(x) <r(x) <p(x)+(1—0)5 (see Figure 2).

1. 000

Figure 2: Periodical structure of the domain.

We need to derive the following auxiliary Lemma of independent interest:

LEMMA 2.1. Let u; € H'(Q,T¢). Then the Friedrichs type inequality

/ugdng(a,£78)/|Vu€|2dx, 2.1)
11, Q

holds with K(a,e,8) =2 (az% Fe(1- 5)2) .

Proof. Fix the point (x1,x;) € ITj. By using the Newton-Leibnitz formula, we
have

a
Jue

e (x1,%2) = ue(x1,x2) — u(0,x2) = ——dx;

Hence,

2 a
du
xhxz /—gdxl ga/\Vu£\2dx1.
0

Then, by integrating the last inequality with respect to x, and after that with respect to
x1 over IT}, we obtain that

/ugdx<a2/|Vug|2dx. (2.2)

I I
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Now choose the point (x1,x7) € Hé such that x; = %xz -+ €68. This means that
(x1,%2) € I} if and only if (x1,x2) € IT}. By again using the Newton-Leibnitz for-
mula, we fined that

Consequently,

X
2, %) < 2u2(x1,x2)—|—2()72—x2)/\Vug|2d)72.

X2

Integrating the last inequality over Hé and substituting the integral on the right-hand
side by the greater integral, we get that

1= _
/ugdxldxz <2T/u§dx1dx2+282(1—5)2/\vug\zdxldxz.

IL I IL

Finally, by applying the estimate (2.2) to the first integral on the right-hand side and
substituting both integrals by the greater integral, we obtain that

/ugdx<2<a21;—5+82(1—5)2) / \Vue|? dx. (2.3)

I T UIT,

By summarizing up the inequalities (2.2) and (2.3) with respect to i, we obtain the
desired estimate:

/ugdx: /u%dxéZ(az%—Fsz(l—S)z) / |Vue > dx

= U, u(Imur)
1

i

) (ﬁ% (1 —5)2) /\Vug\zdx. 0

Q
We also need the following well-known Lemmas:
LEMMA 2.2. Let u € W} (B). Then

[Vu(y)|
b=y

lu(x) —ug| < 2/

B

dy.

For the proof see in [3, Lemma 7.16].
The following important inequality was derived in [4]:
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LEMMA 2.3. Let B=B(x,r) CQ, uc C*(Q), I C dQ. Then
YL

cI'NB —Z X—2Z
etta) = =]

LEMMA 2.4. If 0 < ot < 2 and r > 0, then there exists a constant ¢y, ¢y <
-2
(%)a , such that for each x € R?,

u()|
(/) mdy < czraM(u)(x).
B(x,r

For the proof we refer to [15, Lemma 2.8.3]. We will use this result for the case ot = 1.
Here, as usual, M(u) stands for the Hardy-Littlewood maximal operator. Moreover,
the following important theorem (the Hardy-Littlewood theorem on Maximal Operator)
will be used:

THEOREM 2.1. If u € Ly(R?), then there exist a constant c3 > 0 such that

1M ()12 < es]lull2.

For the proof see e.g. in [15, Theorem 2.8.2].

3. The main results

Consider the function

{p(x), if x € 114, a1

px)+(1-6)5, ifxell.
Our first main result is the following pointwise inequality:

THEOREM 3.1. Let u; € C*(Q,T¢). Then there exist a constant C, C < 4, such
that the pointwise inequality

|ue ()] < Cpe (X)Mp, ()| Vite | XB(x.pe (x)) (¥) (3.2)

holds, where X € T is satisfying that |x —J_c\ =p(x).

Proof. Choose the point x € Q and denote by B := B(X,p¢(x)), where p(x) is
defined in (3.1).

Then BNTe # ¢ for each x € Q. Extend the function u, in R?\ Q by reflecting
it across the boundary. By applying Lemma 2.2 to the extended u., we have for any
yeBNTe:

Jue ()] = Juae () — e (V)] < |ute (x) — e | + [ue(y) — v

Viee (2) / IVu (3.3)
ly— \ '

x —Z\

<2
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Hence, by applying Lemma 2.3 to (3.3), we obtain that

|Vite (2)|
)| < z! o (3:4)

Finally, taking into account Lemma 2.4 and (3.1), we have that

e (x)] < 202 pe (x) M, () (| Vue] ) (x)
 [aptm (\wa\) x €T NB ().
4<p(x)+(2—)8>Mp(x)+@8(|Vu8|)7 xEH20B<7c,p(x) +8¢ )
(3.5)

The proof is complete. [
The next two theorems generalize some well-known classical Hardy-type for p =

2 inequalities to a much more wide class of functions.

THEOREM 3.2. Let pg(x) be the function defined in (3.1) and 0 < o < o. Then
the estimate

/ P () (x)dx < C / P& ()| Ve (x) 2 dx (3.6)

holds for each fixed € for all functions ue € H'(Q,T'¢), where the constant C; does
not depend on ug and on €.

Proof. Fix u; € C°(Q,T¢) extended in R"\ Q. According to (3.2) the inequality

|ue ()|
Pe(x

<AM,, (o) (|Vite | X5 pe () ()

~—

holds for all x € Q. Then we have that

u
‘ e 16/M2 (IVte] Xz pe () (%)) dx.

The statement in Theorem 3.1 implies that

/M2 ‘Vug‘XBxpa( ))) (x)dx < 03/|Vug(x)|2dx.
Q

[ () e[t

Thus, it yields that

where €| = 16¢3.
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Hence, the inequality (3.6) holds with a = 0. The next step is to prove (3.6) for
lug|pg. It is not difficult to derive that

o > 0. Choose 0 > 0 and put v, =

ou e \* du

\V; 2_ (77 Jo o—1 8 20 [ T

[Vvel <8x1p8+ P oyt ) TP By, 3.7)
<2p§"\Vu£\2+20'2p82" 2 2.

By now applying (3.6) with ¢ =0 to v¢, we obtain that

/p_2+20u2dx<<51 /pgc\Vug|2dx—|— Gz/pg(oil)wg\zdx
Q

If 1 —%,0% > 0, then we have that
/p—2+20' 24 2% /p2‘7|Vu8|2dx

and denoting C; by %, we prove inequality (3.6). Fi-

Substituting o by §
nally, by approximating the functions from H'(Q,T¢) by smooth functions belonging

to C*(Q,T¢), we can complete the proof. [

Our final main result reads:

THEOREM 3.3. Let p(x) = dist(x,T),

2 (,1-8
KIZK(LI,£78,6) 4+§< T+£ (1—5))

and 0 < a<ay:= \/g Then the estimate

/p 240 (1),2(x) dx < Cla, €, 8,0 a)/pa(x)\m(x)|2dx (3.8)

Q

holds for each fixed 6 > 0 for all functions ue € H'(Q,T'¢), where the constant
4K
C(a £, 6 0 OC) m

Proof. First we note that

2
/(”—8> dx<4/\Vug\zdx<4/wug\2dx.
p e Q

1
0, then, according to the classical one-dimensional inequality (1.1)

(3.9)

Indeed, if u:(0) =

we have that 5
a /2 1 /a (ug)

U, dx; = — —

/0 e a4l \ &
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Using this fact, we obtain that

a 2 a 2
/|Vug|2dx>/ / <%> dx}l/ / (u_£> dx
. r.Jo \ 0dx| 4 Jr.Jo \x1
1
_1/ AN
=1 p
Iy

In particular, the estimate (3.9) holds in H‘f. The next step is to prove that

2
K
/<E> dx < M/Wugﬁdx. (3.10)
o 0
g Q

Using the Friedrichs inequality (2.1) and taking into account the fact that p(x) > 6
when x € Hg , we obtain the following estimate:

2
u | (a,€, 5
/(;‘9) dx < m/ugdx< /\Vug\2dx
0 1

5 2
Now, summarizing the inequalities (3.9) and (3.10), we derive the desired estimate:

S () o [(5)
< (4 (.,0) >/|Vug|2dx

We have derived the inequality (3.8) for the case o@ = 0. The proof of (3.8) for the case
o > 0 is identically to the proof of the second part of Theorem 3.2, so we omit the
details. [J

4. Concluding remarks

REMARK 4.1. The condition § = 1 in the definition (3.1) corresponds to the case
Fg - F.

REMARK 4.2. If a =0, then (3.6) takes the form

!(:Eﬁ)zd’“gquue(’“)2‘1’“’ “.1)

while (3.8) becomes

/(ue(x)))zdx<C(a7€,576,a)/Vug(x)|2dx.

p(x
Qf Q
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‘We conjecture that these Hardy-type inequalities holds also when p =2 is replaced
by any p > 1 but then another type of proof must be found.

REMARK 4.3. In this paper we have succeeded to prove a weighted Hardy-type
inequality in a fixed domain for functions vanishing on a part of the boundary. We
can see several open questions equipped with this result. For instance, one interesting
problem is to try to find a weighted Hardy-type inequality for perforated domains in the
case when the size of perforation depends on the small parameter.
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