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CHARACTERIZATIONS OF THE CONVERGENCE OF

HARMONIC AVERAGES OF DOUBLE NUMERICAL SEQUENCES

ÁRPÁD FEKETE, IRINA GEORGIEVA AND FERENC MÓRICZ

(Communicated by Zs. Páles)

Abstract. In recent years, the almost sure central limit theorem has attracted widespread atten-
tion in Probability Theory. It involves the harmonic (also called logarithmic) averages of a cer-
tain numerical sequence formed from a sequence of independent, identically distributed random
variables. The convergence behavior of the sequence of harmonic averages of a given numerical
sequence was studied in [3] by the third author. Our main goal in this paper is to extend these
characterization results from single to double numerical sequences of complex numbers.

Among others, the following Theorem 2∗ is proved. Let {xi j : i, j = 1,2, . . .} be a dou-
ble sequence of complex numbers. Necessary and sufficient condition for the existence of the
bounded limit relation

b− lim
k,�→∞

1
(lnk)(ln�)

k

∑
i=1

�

∑
j=1

xi j

i j
= ξ

is that

b− lim
m,n→∞

1
2m+n max

k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j −ξ
i j

∣∣∣ = 0,

where
Jm := {μm−1 +1,μm−1 +2, . . . ,μm}, μm := 22m

, m = 0,1, . . . .

Background in Probability Theory

In the framework of Kolmogorov’s axiomatic treatment of probability, one of the
fundamental questions is the relationship between probability and relative frequency.
The results of this investigation are called the laws of large numbers. Similarly, the
relationship between expectation of a random variable and sample mean can also be
studied by using the laws of large numbers. For example, the celebrated Kolmogorov
strong law of large numbers reads as follows. Let {Xi : i = 1,2, . . .} be a sequence of
independent, identically distributed random variables, in abbreviation: i.i.d.r.v.’s on a
probability space (Ω,F ,P) . Then the arithmetic averages

1
k

k

∑
i=1

Xi, k = 1,2, . . . ,
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converge almost surely to some constant c if and only if the expectation EX1 exists, in
which case c = EX1 ; that is,

P
[

lim
k→∞

1
k

k

∑
i=1

Xi(ω) = EX1

]
= 1.

The interested reader may consult [3] to get broad perspective of this topic.
In recent years, the so-called almost sure central limit theorem has attracted wide-

spread attention in Probability Theory, initiated by Brosamler [1]; and as to further
papers see in [2, References]. To be more specific, let {Xi : i = 1,2, . . .} be i.i.d.r.v.’s
with EX1 = 0 and EX2

1 = 1. In this case, the almost sure central limit theorem says
that

P
[

lim
k→∞

1
lnk

k

∑
i=1

1
i
IA

(X1(ω)+ . . .+Xi(ω)√
i

)
=

1√
2π

∫
A
e−u2/2du

]
= 1

for each Borel set A ⊂ R whose boundary is of zero (Lebesgue) measure, where IA(·)
is the indicator function of the set A . Here and in the sequel, the logarithm is to the
natural base e .

Now, the ratio on the left-hand side in the above equality is the harmonic average
of the sequence {

IA
(X1(ω)+ . . .+Xi(ω)√

i

)
: i = 1,2, . . .},

whose terms are nonnegative real numbers.
Our primary aim in this paper is to study the convergence behavior of the double

sequence of harmonic averages of a given double numerical sequence from the view-
point of Summability Theory. Meanwhile, we summarize briefly the analogous results
involving double sequences of arithmetic averages. These results may be of use in the
study of strong laws of large numbers as well as the almost sure central limit theorems
for random fields {Xi j : i, j = 1,2, . . .} defined on a probability space (Ω,F ,P) .

1. Known results for single sequences

Given a sequence {xi : i = 1,2, . . .} of complex numbers, its arithmetic averages
σk are defined by

σk :=
1
k

k

∑
i=1

xi, k = 1,2, . . . .

It is well known that the ordinary convergence of {xi} is a sufficient condition for the
convergence of {σk} to the same limit. On the other hand, a necessary condition for
the convergenc of {σk} is that

lim
k→∞

xk

k
= 0.

For brevity in writing, we introduce the notation

I0 := {1}, Im := {2m−1 +1,2m−1 +2, . . . ,2m}, m = 1,2, . . . . (1.1)

The next three theorems are folklore.
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THEOREM A. Necessary and sufficient condition for the existence of the finite
limit

lim
m→∞

σ2m = ξ

is that

lim
m→∞

1
2m−1 ∑

i∈Im

xi = ξ .

The ratio on the left is called the moving arithmetic awerage of the sequence {xi} .

THEOREM B. Necessary and sufficient condition for

lim
k→∞

σk = ξ (1.2)

is that

lim
m→∞

1
2m−1 max

k∈Im

∣∣∣ k

∑
i=2m−1+1

(xi − ξ )
∣∣∣ = 0.

The ratio on the left may be called the moving maximal arithmetic average of the
sequence {xi− ξ} .

THEOREM C. Necessary and sufficient condition for

lim
k→∞

1
k

k

∑
i=1

|xi − ξ |= 0 (1.3)

is that

lim
m→∞

1
2m−1 ∑

i∈Im

|xi− ξ |= 0.

We note that a sequence {xi} satisfying (1.3) is called strongly arithmetically
summable to ξ . Clearly, (1.3) implies (1.2), but the converse implication is not true
in general.

We recall that the harmonic averages τk of a sequence {xi} are defined by

τk :=
1
λk

k

∑
i=1

xi

i
, where λk :=

k

∑
i=1

1
i
, k = 1,2, . . . . (1.4)

Since

lim
k→∞

λk

lnk
= 1, (1.5)

The sequences {τk} and {τ∗k } are equiconvergent to the same limit (if one of them
exists), where

τ∗k :=
1

lnk

k

∑
i=1

xi

i
, k = 2,3, . . . .

Therefore, these τ∗k are sometimes called logarithmic averages. However, we prefer
the usage of τk rather than that of τ∗k , partly due to the fact that the definition of τ∗k
makes no sense in case k = 1.
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It is well known that (1.2) is a sufficient condition for the convergence of τk to the
same limit ξ . On the other hand, a necessary condition for the convergence of {τk} is
that

lim
k→∞

xk

k lnk
= 0.

For brevity in writing, we introduce the notations

μm := 22m
and Jm := {μm−1 +1,μm−1 +2, . . . ,μm}, m = 0,1,2, . . . ; μ−1 := 0. (1.6)

The next three theorems were proved in [2] by the third author.

THEOREM D. Necessary and sufficient condition for

lim
m→∞

τμm = ξ

is that

lim
m→∞

1
λμm −λμm−1

∑
i∈Jm

xi

i
= ξ .

The ratio on the left is called the moving harmonic average of the sequence {xi} .
We note that by (1.5) and (1.6), we have

lim
m→∞

λμm

2m = lim
m→∞

λμm −λμm−1

2m−1 = ln2. (1.7)

THEOREM E. Necessary and sufficient condition for

lim
k→∞

τk = ξ (1.8)

is that

lim
m→∞

1
λμm −λμm−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

xi − ξ
i

∣∣∣ = 0.

The ratio on the left may be called the moving maximal harmonic average of the
sequence {xi− ξ} .

THEOREM F. Necessary and sufficient condition for

lim
k→∞

1
λk

k

∑
i=1

|xi − ξ |
i

= 0 (1.9)

is that

lim
m→∞

1
λμm −λμm−1

∑
i∈Jm

|xi − ξ |
i

= 0.

We note that a sequence {xi} satisfying (1.9) is called strongly harmonically
summable to ξ . Clearly (1.9) implies (1.8), but the converse implication is not true
in general.
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One may define harmonic averages of higher order, too. For example, given a
sequence {xi} , its harmonic averages τk(2) of second order are defined by

τk(2) :=
1

λk(2)

k

∑
i=1

xi

iλi
, where λk(2) :=

k

∑
i=1

1
iλi

, k = 1,2, . . . . (1.10)

By (1.4) and (1.5), we have

lim
k→∞

λk(2)
ln lnk

= 1. (1.11)

Therefore, the sequences {τk(2)} and {τ∗k (2)} are equiconvergent with the same limit
(if one of them exists), where

τ∗k (2) :=
1

lnlnk

k

∑
i=1

xi

i ln(i+1)
, k = 3,4, . . . .

Again the usage of τk(2) instead of τ∗k (2) is explained partly by the fact that the
definition of τ∗k (2) makes no sense for k = 1 and 2.

The next three theorems were indicated in [2] by the third author. For brevity in
writing, we introduce the notation

K0 := {1,2,3,4}, Km := {2μm−1 +1, 2μm−1 +2, . . . ,2μm}, m = 1,2 . . . . (1.12)

THEOREM G. Necessary and sufficient condition for

lim
m→∞

τ2μm (2) = ξ

is that

lim
m→∞

1
λ2μm (2)−λ2μm−1 (2) ∑i∈Km

xi

iλi
= ξ .

We note that by (1.5), (1.6) and (1.10), we have

lim
m→∞

λ2μm (2)
2m = lim

m→∞

λ2μm (2)−λ2μm−1 (2)
2m−1 = ln2. (1.13)

THEOREM H. Necessary and sufficient condition for

lim
m→∞

τm(2) = ξ

is that

lim
m→∞

1
λ2μm (2)−λ2μm−1 (2)

max
k∈Km

∣∣∣ k

∑
i=2μm−1+1

xi− ξ
iλi

∣∣∣ = 0.

THEOREM I. Necessary and sufficient condition for

lim
k→∞

1
λk(2)

k

∑
i=1

|xi − ξ |
iλi

= 0

is that

lim
m→∞

1
λ2μm (2)−λ2μm−1 (2) ∑i∈Km

|xi − ξ |
iλi

= 0.
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2. New results for double sequences

Given a double sequence {xi j : i, j = 1,2, . . .} of complex numbers, its harmonic
averages τk� are defined by

τk� :=
1

λkλ�

k

∑
i=1

�

∑
j=1

xi j

i j
, k, � = 1,2, . . . ;

where λk is defined in (1.4).
We recall that the double sequence {τk�} is said to converge in Pringsheim’s sense

to the finite limit ξ if τk� converges to ξ as both k and � tend to infinity independently
of one another. That is, for every ε > 0 there exists a natural number k0 = k0(ε) such
that

|τk� − ξ |< ε whenever min{k, �} > k0.

By (1.5), the double sequences {τk�} and {τ∗k�} are equiconvergent to the same limit
(if one them exists), where

τ∗k� :=
1

(lnk)(ln�)

k

∑
i=1

�

∑
j=1

xi j

i j
, k, � = 2,3, . . . .

The usage of τk� enjoys some technical advantege in the proofs of Theorems 1-3
below (see in Section 4) over τ∗k� , partly due to the fact that the definition of τ∗k� makes
no sense in case min{k, �} = 1.

It is easy to see that a necessary condition for the convergence of {τk�} is that

lim
k,�→∞

xk�

k(lnk)�(ln�)
= 0.

This follows from the obvious equality

xk�

k�
= λkλ�τk� −λk−1λ�τk−1,� −λkλ�−1τk,�−1 +λk−1λ�−1τk−1,�−1; (2.1)

with the agreement that

λ0 = τ00 = τk0 = τ0� := 0 for k, � = 1,2, . . . .

It is also known that if a bounded sequence {xi j} converges in Pringsheim’s sense
to a finite limit ξ , then the double sequence {τmn} of its harmonic averages is also
bounded and converges to the same limit ξ . The restriction to bounded sequences is
justified by the fact that convergence in Pringsheim’s sense of a double sequence does
not imply the boundedness of its terms in general.

In the sequel, we agree to use the term of bounded convergence, in symbols:

b− lim
i, j→∞

xi j = ξ , (2.2)
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to indicate that the double sequence {xi j} converges to ξ in Pringsheim’s sense and
the terms xi j are uniformly bounded, that is,

sup
i, j�1

|xi j| < ∞.

Our main goal is to extend Theorems D,E and F in Section 1 from single to double
numerical sequences. These extensions are formulated in the next three theorems.

THEOREM 1. Necessary and sufficient condition for

b− lim
m,n→∞

τμm,μn = ξ (2.3)

is that

b− lim
m,n→∞

1
(λμm −λμm−1)(λμn −λμn−1)

∑
i∈Jm

∑
j∈Jn

xi j

i j
= ξ , (2.4)

where μm and Jm are defined in (1.6).

The ratio on the left-hand side of (2.4) may be called the moving rectangular
harmonic average of the sequence {xi j} .

THEOREM 2. Necessary and sufficient condition for

b− lim
k,�→∞

τk� = ξ (2.5)

is that

b− lim
m,n→∞

1
(λμm −λμm−1)(λμn −λμn−1)

× (2.6)

× max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣ = 0.

We may call the expression on the left in (2.6) the moving maximal rectangular
harmonic average of the sequence {xi j − ξ} .

THEOREM 3. Necessary and sufficient condition for

b− lim
k,�→∞

1
λkλ�

k

∑
i=1

�

∑
j=1

|xi j − ξ |
i j

= 0 (2.7)

is that

b− lim
m,n→∞

1
(λμm −λμm−1)(λμn −λμn−1)

∑
i∈Jm

∑
j∈Jn

|xi j − ξ |
i j

= 0. (2.8)

Observe that the maximal average is not involved in Theorem 3, in contrast to
Theorem 2. Analogously to the notion of strong harmonic summability used in the case
of a single sequence {xi} (defined in [2]), a double sequence {xi j} satisfying (2.7)
is called strongly harmonically summable to ξ . Clearly, (2.7) implies (2.5), but the
converse implication is not true in general.
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REMARK 1. By (1.7), the denominator

(λμm −λμm−1)(λμn −λμn−1)

in (2.4), (2.6) and (2.8) can be equivalently replaced by 2m+n . But in the proofs of
Theorems 1-3, the usage of the notation in terms of λ ’s and μ ’s is more convenient
to us. On the other hand, the following reformulation of Theorem 2 may be more
appropriate for possible application in Probability Theory.

THEOREM 2 ∗ . Necessary and sufficient condition for

b− lim
k,�→∞

1
(lnk)(ln �)

k

∑
i=1

�

∑
j=1

xi j

i j
= ξ

is that

b− lim
m,n→∞

1
2m+n max

k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣ = 0,

where Jm and μm are defined in (1.6).

3. Auxiliary results

Two results in Summability Theory will play crucial roles in the proofs of Theo-
rems 1-3. To this effect, let

A = (amk : k = 0,1, . . . ,m;m = 0,1, . . .) (3.1)

be an infinite triangular matrix of real or complex numbers. With every sequence s =
{sk : k = 0,1, . . .} of numbers we associate the sequence t = {tm : m = 0,1, . . .} given
by

tm = tm(A,s) :=
m

∑
k=0

amksk, m = 0,1, . . . .

The so-called summability matrix A is called regular if for every convergent sequence
s = {sk} , the sequence t = {tm} also converges to the same limit.

The following Toeplitz theorem characterizes regularity of summability matrices
applied for single sequences.

LEMMA 1. (See, e.g., [5, pp. 74–75 and 168].) The triangular summability matrix
A = (amk) given in (3.1) is regular if and only if the following three conditions are
satisfied:

(i) lim
m→∞

amk = 0 f or k = 0,1, . . . ;

(ii) sup
m=0,1,...

m

∑
k=0

|amk| < ∞,
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(iii) lim
m→∞

m

∑
k=0

amk = 1.

Condition (iii) is not needed in the case when

lim
k→∞

sk = 0.

Next, let

A = (amn
k� : k = 0,1, . . . ,m;� = 0,1, . . . ,n;m,n = 0,1, . . .) (3.2)

be matrices of real or complex numbers for all m,n = 0,1, . . . . With every double
sequence s = {sk� : k, � = 0,1, . . .} of numbers we associate the sequence t = {tmn :
m,n = 0,1, . . .} given by

tmn = tmn(A ,s) :=
m

∑
k=0

n

∑
�=0

amn
k� sk�, m,n = 0,1, . . . .

The summability matrix A = (amn
k� ) is called bounded-regular if for every double se-

quence {sk�} with
b− lim

k,�→∞
sk� = ξ ,

we have
b− lim

m,n→∞
tmn(A ,s) = ξ .

The following characterization of the bounded-regularity of summability matrices
applied for double sequences is due to Robison [4].

LEMMA 2. The triangular summability matrix A = (amn
k� ) given in (3.2) is bounded-

regular if and only if the following four conditions are satisfied:

(i) lim
m,n→∞

m

∑
k=0

|amn
k� | = 0 f or � = 0,1, . . . ;

(ii) lim
m,n→∞

n

∑
�=0

|amn
k� | = 0 f or k = 0,1, . . . ;

(iii) sup
m,n=0,1,...

m

∑
k=0

n

∑
�=0

|amn
k� | < ∞,

(iv) lim
m,n→∞

m

∑
k=0

n

∑
�=0

amn
k� = 1.

Condition (iv) is not needed in the case when

b− lim
k,�→∞

sk� = 0.
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We note that both Lemmas 1 and 2 are valid in the more general setting when the
summability matrices A = (amk) and A = (amn

k� ) are not triangular. But in this paper,
we do not need these more general formulations.

We also note that the limit relation

lim
m→∞

λμm−1

λμm

=
1
2

(3.3)

will be frequently used in Section 4, where λk and μm are defined in (1.4) and (1.6),
respectively; and (3.3) is an immediate consequence of (1.5). In particular, it follows
from (3.3) that

lim
m→∞

λμm

λμm −λμm−1

= 2 and lim
m→∞

λμm−1

λμm −λμm−1

= 1.

4. Proofs of Theorems 1–3

Proof of Theorem 1. Necessity. Assume (2.3). By this and (3.3), we obtain

1
(λμm −λμm−1)(λμn −λμn−1)

∑
i∈Jm

∑
j∈Jn

xi j

i j

=
1

(λμm −λμm−1)(λμn −λμn−1)
(λμmλμnτμm,μn −λμm−1λμnτμm−1,μn

−λμmλμn−1τμm,μn−1 +λμm−1λμn−1τμm−1,μn−1)

→ 4ξ −2ξ −2ξ + ξ = ξ as m,n → ∞.

This proves (2.4).
Sufficiency. Assume (2.4). By (3.3), we find that (2.4) is equivalent to the follow-

ing bounded convergence:

φmn :=
1

λμmλμn
∑
i∈Jm

∑
j∈Jn

xi j − ξ
i j

→ 0 as m,n → ∞. (4.1)

For all m,n � 1, we may write that

τμm,μn − ξ =
1

λμmλμn

μm

∑
i=1

μn

∑
j=1

xi j − ξ
i j

=
1

λμmλμn

m

∑
k=0

n

∑
�=0
∑
i∈Jk

∑
j∈J�

xi j − ξ
i j

=
m

∑
k=0

n

∑
�=0

amn
k� φk�, where amn

k� :=
λμkλμ�

λμmλμn

.

It is easy to check that in this case the summability matrix A = (amn
k� ) of form (3.2)

satisfies the conditions (i)-(iii) of Lemma 2. Taking into account that now the limit in
(4.1) equals 0, so we can conclude (2.3) to be proved. �
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Proof of Theorem 2. We begin with the observation that the bounded convergence
in (2.6) is equivalent to the following one:

b− lim
m,n→∞

1
λμmλμn

max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣ = 0, (4.2)

again due to (3.3).
Necessity. Assume (2.5), by which we may apply the necessity part of Theorem 1

to obtain (2.4), or equivalently (4.2).
First, let k ∈ Jm for some m � 1 and let n � 1 be arbitrary. We give a lower

estimate as follows:

|τk,μn−1 − ξ |=
∣∣∣ 1
λkλμn−1

{ μm−1

∑
i=1

μn−1

∑
j=1

+
k

∑
i=μm−1+1

μn−1

∑
j=1

}xi j − ξ
i j

∣∣∣
� 1

λμmλμn−1

(∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣− ∣∣∣μm−1

∑
i=1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣),

whence we conclude that
max
k∈Jm

|τk,μn−1 − ξ | (4.3)

� 1
λμmλμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣−|τμm−1,μn−1 − ξ |.

By (2.5), the left-hand side as well as the second term on the right-hand side of in-
equality (4.3) boundedly converge to 0 as m,n → ∞ . Therefore, the first term on the
right-hand side of (4.3) must also converge boundedly to 0:

b− lim
m,n→∞

1
λμmλμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣ = 0. (4.4)

Second, the symmetric counterpart of (4.4) gives

b− lim
m,n→∞

1
λμm−1λμn

max
�∈Jn

∣∣∣ μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣ = 0. (4.5)

Third, let k ∈ Jm and � ∈ Jn be arbitrary for some m,n � 1. We give a lower
estimate as follows:

|τk� − ξ |=
∣∣∣ 1
λkλ�

{ μm−1

∑
i=1

μn−1

∑
j=1

+
k

∑
i=μm−1+1

μn−1

∑
j=1

(4.6)

+
μm−1

∑
i=1

�

∑
j=μn−1+1

+
k

∑
i=μm−1+1

�

∑
j=μn−1+1

}xi j − ξ
i j

∣∣∣
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� 1
λμmλμn

(∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣− ∣∣∣μm−1

∑
i=1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣

−
∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣− ∣∣∣μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣).

Hence we conclude that

max
k∈Jm,�∈Jn

|τk� − ξ | (4.7)

� 1
λμmλμn

max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣

−|τμm−1,νn−1 − ξ |− 1
λμmλμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣

− 1
λμm−1λμn

max
�∈Jn

∣∣∣ μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣.
By (2.5), the left-hand side as well as the second term on the right-hand side of

inequality (4.7) boundedly converge to 0 as m,n →∞ . Furthermore, by (4.4) and (4.5),
the third and fourth terms on the right-hand side of (4.7) also boundedly converge to 0 as
m,n → ∞ . Therefore, the first term on the right-hand side of (4.7) must also boundedly
converge to 0 as m,n → ∞ . This proves (4.2), which is equivalent to (2.6).

Sufficiency. Assume (2.6). Since condition (2.6) implies (2.4), applying the suffi-
ciency part of Theorem 1 gives (2.3).

Similarly to the equivalence of (2.4) and (4.1), this time (2.6) is equivalent to the
following bounded convergence:

ψmn :=
1

λμm−1λμn−1

max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣ → 0 as m,n → ∞. (4.8)

After these preliminaries, let k ∈ Jm and � ∈ Jn for some m,n � 1. We give an
upper estimate (cf. (4.6) and (4.7)) as follows:

|τk� − ξ |� 1
λμm−1λμn−1

(∣∣∣ μm−1

∑
i=1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣+ ∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣

+
∣∣∣ μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣+ ∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣).
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Hence we conclude that

max
k∈Jm,�∈Jn

|τk� − ξ | (4.9)

� |τμm−1,μn−1 − ξ |+ 1
λμm−1λμn−1

{
max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣
+max

�∈Jn

∣∣∣ μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣+ max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣}
=: |τμm−1,μn−1 − ξ |+Bmn +Cmn +Dmn, say.

As we have noted above, the first term on the right-hand side of (4.9) boundedly
converges to 0 as m,n → ∞ . In the case of the second term on the right, we give an
upper estimate as follows:

Bmn :=
1

λμm−1λμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

μn−1

∑
j=1

xi j − ξ
i j

∣∣∣
=

1
λμm−1λμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

n−1

∑
�=0

μ�

∑
j=μ�−1+1

xi j − ξ
i j

∣∣∣
�

n−1

∑
�=0

1
λμm−1λμn−1

max
k∈Jm

∣∣∣ k

∑
i=μm−1+1

∑
j∈J�−1

xi j − ξ
i j

∣∣∣
�

n−1

∑
�=0

λμ�−1

λμn−1

ψm�,

where ψm� is defined in (4.8). Due to (3.3), we may apply Lemma 1 to conclude that

b− lim
m,n→∞

Bmn = 0. (4.10)

Analogously, in the case of the third term on the right-hand side of (4.9) we obtain
that

Cmn : =
1

λμm−1λμn−1

max
�∈Jn

∣∣∣ μm−1

∑
i=1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣
�

m−1

∑
k=0

λμk−1

λμm−1

ψkn,

and again by Lemma 1, we have

b− lim
m,n→∞

Cmn = 0. (4.11)

Finally, in the case of the fourth term on the right-hand side of (4.9), we observe
that

Dmn :=
1

λμm−1λμn−1

max
k∈Jm,�∈Jn

∣∣∣ k

∑
i=μm−1+1

�

∑
j=μn−1+1

xi j − ξ
i j

∣∣∣
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is identical with ψmn defined in (4.8), so we have

b− lim
m,n→∞

Dmn = 0. (4.12)

Putting together (4.9), (2.3), (4.10)-(4.12) yields (2.5) to be proved. �

Proof of Theorem 3. We begin with the observation that condition (2.8) is equiva-
lent to the following bounded convergence:

χmn :=
1

λμmλμn
∑
i∈Jm

∑
j∈Jn

|xi j − ξ |
i j

→ 0 as m,n → ∞. (4.13)

This equivalence is due again to (3.3).
Furthermore, we claim that (2.7) is equivalent to the following bounded conver-

gence:

b− lim
m,n→∞

1
λμmλμn

μm

∑
i=1

μn

∑
j=1

|xi j − ξ |
i j

= 0. (4.14)

Indeed, this claim immediately follows from the following pair of inequalities: for any
k ∈ Jm and � ∈ Jn , we have

1
λμmλμn

μm−1

∑
i=1

μn−1

∑
j=1

|xi j − ξ |
i j

� 1
λkλ�

k

∑
i=1

�

∑
j=1

|xi j − ξ |
i j

� 1
λμm−1λμn−1

μm

∑
i=1

μn

∑
j=1

|xi j − ξ |
i j

, m,n = 1,2, . . . .

Now, it remains to take into account (3.3) and this pair of inequalities justifies (4.14).
Necessity. Assume (2.7), then in particular we have (4.14). This latter one clearly

implies (4.13), which in turn is equivalent to (2.8) to be proved.
Sufficiency. Assume (2.8), which is equivalent to (4.13). Clearly, we have

1
λμmλμn

μm

∑
i=1

μn

∑
j=1

|xi j − ξ |
i j

=
1

λμmλμn

m

∑
k=0

n

∑
�=0
∑
i∈Jk

∑
j∈J�

|ξi j − ξ |
i j

=
m

∑
k=0

n

∑
�=0

λμkλμ�

λμmλμn

χk�,

where χk� is defined in (4.13). It remains to apply Lemma 2 to conclude (4.14), which
is equivalent to (2.7) to be proved. �

5. Concluding remarks

REMARK 2. We recall that the arithmetic averages σk� of the double sequence
{xi j : i, j = 1,2, . . .} of complex numbers are defined by

σk� :=
1
k�

k

∑
i=1

�

∑
j=1

xi j, k, � = 1,2, . . . .
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It is well known that (2.2) (the bounded convergence of {xi j}) is a sufficient con-
dition for the bounded convergence of {σk�} to the same limit, in symbols:

b− lim
k,�→∞

σk� = ξ . (5.1)

On the other hand, a necessary condition for the bounded convergence of {σk�} is that

lim
k,�→∞

xk�

k�
= 0,

which follows from the equality

xk� = k�σk�− (k−1)�σk−1,�− k(�−1)σk,�−1 +(k−1)(�−1)σk−1,�−1, (5.2)

with the agreement that

σ00 = σi0 = σ0 j = 0 for i, j = 1,2, . . . .

Making use of the arguments analogous to those in the proofs of Theorems 1-3,
the following three theorems can be easily proved.

THEOREM A ∗ . Necessary and sufficient condition for

b− lim
m,n→∞

σ2m,2n = ξ

is that

b− lim
m,n→∞

1
2m−12n−1 ∑

i∈Im
∑
j∈In

xi j = ξ ,

where Im is defined in (1.1).

THEOREM B ∗ . Necessary and sufficient condition for (5.1) is that

b− lim
m,n→∞

1
2m−12n−1 max

k∈Im ,�∈In

∣∣∣ k

∑
i=2m−1+1

�

∑
j=2n−1+1

(xi − ξ )
∣∣∣ = 0.

THEOREM C ∗ . Necessary and sufficient condition for

b− lim
k,�→∞

1
k�

k

∑
i=1

�

∑
j=1

|xi j − ξ |= 0

is that

b− lim
m,n→∞

1
2m−12n−1 ∑

i∈Im
∑
j∈In

|xi j − ξ |= 0.

REMARK 3. It is easy to check that (2.2) implies (2.5). More generally, we claim
that even (5.1) implies (2.5). Indeed by (5.2), we may write that

τk� =
1

λkλ�

k

∑
i=1

�

∑
j=1

{σi j −σi−1, j −σi, j−1 +σi−1, j−1 (5.3)
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+
1
i
(σi−1, j −σi−1, j−1)+

1
j
(σi, j−1−σi−1, j−1)+

1
i j
σi−1, j−1}.

The next three limit relations are consequences of the uniform boundedness of the dou-
ble sequence {σk�} :

b− lim
k,�→∞

1
λkλ�

k

∑
i=1

�

∑
j=1

(σi j −σi−1, j −σi, j−1 +σi−1, j−1)

= b− lim
k,�→∞

σk�

λkλ�
= 0,

b− lim
k,�→∞

1
λkλ�

k

∑
i=1

�

∑
j=1

1
i
(σi−1, j −σi−1, j−1)

= b− lim
k,�→∞

1
λkλ�

�

∑
j=1

σk, j−1

j
= 0,

b− lim
k,�→∞

1
λkλ�

k

∑
i=1

�

∑
j=1

1
j
(σi, j−1 −σi−1, j−1)

= b− lim
k,�→∞

1
λkλ�

k

∑
i=1

σi−1,�

i
= 0.

Making use of the implication (2.2) ⇒ (2.5) with σi−1, j−1 in place of xi j gives

b− lim
k,�→∞

1
λkλ�

k

∑
i=1

�

∑
j=1

σi−1, j−1

i j
= ξ .

Putting together (5.3) and the last four limit relations yields the implication (5.1) ⇒
(2.5), as we have claimed above.

The converse implication, that is, (2.5) ⇒ (5.1) is not true in general. To justify
this claim, we define the double sequence {xk�} by means of its harmonic means {τk�}
as follows: set

τk� :=

{
(pq)−1/2 if k = 2p and � = 2q for some p,q = 1,2, . . . ;

0 otherwise for k, � = 1,2, . . . ;

and define the sequence {xk�} by

xk� := k�(λkλ�τk� −λk−1λ�τk−1,�−λkλ�−1τk,�−1 +λk−1λ�−1τk−1,�−1)

(cf. (2.1)) with the agreement that

τ00 = τk0 = τ0� := 0 for k, � = 1,2, . . . .

According to [2, Example 1 on p. 377], we have

σ2p,2q → ∞ as p,q → ∞,
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whereas
b− lim

k,�→∞
τk� = 0.

REMARK 4. One may define harmonic averages of higher order for double se-
quences {xi j} , too. For example, given {xi j} , its harmonic averages τk� (2) of second
order are defined by

τk�(2) :=
1

λk(2)λ�(2)

k

∑
i=1

�

∑
j=1

xi j

iλi jλ j
, k, � = 1,2, . . . ,

where λi and λk(2) are defined in (1.4) and (1.10), respectively.
By (1.11), the double sequences {τk�(2)} and {τ∗k�(2)} are equiconvergent with

the same limit (if one of them exists), where

τ∗k�(2) :=
1

(ln lnk)(ln ln�)

k

∑
i=1

�

∑
j=1

xi j

i(ln(i+1)) j ln( j +1)
, k, � = 3,4, . . . .

The following Theorems 4-6 are the extensions of Theorems G, H and I in Section
1 from single to double numerical sequences. Their proofs can be carried out along
lines analogous to the proofs of Theorems 1-3 in Section 4.

THEOREM 4. Necessary and sufficient condition for

b− lim
m,n→∞

τ2μm ,2μn (2) = ξ

is that

b− lim
m,n→∞

1
(λ2μm (2)−λ2μm−1(2))(λ2μn (2)−λ2μn−1 (2))

× (5.4)

× ∑
i∈Km

∑
j∈Kn

xi j

iλi jλ j
= ξ ,

where λi , μm , λk(2) and Km are defined in (1.4), (1.6), (1.10) and (1.12), respectively.

THEOREM 5. Necessary and sufficient condition for

b− lim
m,n→∞

τmn(2) = ξ

is that

b− lim
m,n→∞

1
(λ2μm (2)−λ2μm−1(2))(λ2μn (2)−λ2μn−1 (2))

× (5.5)

× max
k∈Km,�∈Kn

∣∣∣ k

∑
i=2μm−1+1

�

∑
j=2μn−1+1

xi j − ξ
iλi jλ j

∣∣∣ = 0.
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THEOREM 6. Necessary and sufficient condition for

b− lim
m,n→∞

1
λk(2)λ�(2)

k

∑
i=1

�

∑
j=1

|xi j − ξ |
iλi jλ j

= 0

is that

b− lim
m,n→∞

1
(λ2μm (2)−λ2μm−1(2))(λ2μn (2)−λ2μn−1 (2))

× (5.6)

× ∑
i∈Km

∑
j∈Kn

|xi j − ξ |
iλi jλ j

= 0.

REMARK 5. By (1.13), the denominator

(λ2μm (2)−λ2μm−1 (2))(λ2μn (2)−λ2μn−1(2))

in (5.4)–(5.6) can be equivalently replaced by 2m+n . Thus, the following reformulation
of Theorem 5 may be more appropriate for possible applications.

THEOREM 5 ∗ . Necessary and sufficient condition for

b− lim
k,�→∞

1
(ln lnk)(ln ln�)

k

∑
i=1

�

∑
j=1

xi j

i(ln(i+1)) j ln( j +1)
= ξ

is that

b− lim
m,n→∞

1
2m+n max

k∈Km,�∈Kn

∣∣∣ k

∑
i=2μm−1+1

∑
j=2μn−1+1

xi j − ξ
i(ln(i+1)) j ln( j +1)

∣∣∣ = 0,

where Km and μm are defined in (1.12) and (1.6), respectively.
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