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Abstract. In this note we show that if T belongs to the class A(s,t) for some 0 < s,t � 1 then
Weyl’s and generalized Weyl’s theorems hold for f (T ) for every analytic function f on some
open neighborhood of σ(T ) . We also show that operators in A(s,t) satisfy the Bishop’s property
(β ).

1. Introduction

Let B(H ) be the algebra of all bounded linear operators acting on an infinite
dimensional separable Hilbert space H . We denote by σ(T ) , σs(T ) , σa(T ) , σp(T ) ,
σ jp(T ) , and σ ja(T ) , the spectrum, the surjectivity spectrum, the approximate point
spectrum, the point spectrum, the joint point spectrum and the joint approximate point
spectrum of T , respectively. If T ∈ B(H ) we shall write ker(T ) and R(T ) for the
null space and range of T , respectively.

An operator T is said to be p -hyponormal, for p ∈ (0,1] , if (T ∗T )p � (TT ∗)p

[4]. An 1-hyponormal operator is hyponormal and 1
2 -hyponormal is said to be semi-

hyponormal. An invertible operator T is said to be log-hyponormal if log |T |� log |T ∗|
[37]. p -hyponormality and log-hyponormality were defined as extension of hyponor-
mality.

An operator T is said to be paranormal if
∥∥T 2x

∥∥ � ‖Tx‖2 for every unit vec-
tor x . Paranormal operators have been studied by many authors, for examples [8, 17,
21, 23, 40]. Particularly, p -hyponormal operators and log-hyponormal operators are
paranormal [40].

An operator T belongs to class A(k) for k > 0 if

(T ∗|T |2kT )
1

k+1 � |T |2.
When k = 1 we say that T belongs to class A . Furuta et al. [23] showed that every
p -hyponormal or log-hyponormal operator belongs to class A and that every class A
is paranormal.

As a further generalization of class A(k) , Fujii et al. [24] introduced the class
A(s,t) : T belongs to class A(s,t) for s > 0 and t > 0 if

(|T ∗|t |T |2s|T ∗|t) t
t+s � |T ∗|2t .
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Class AI(s, t) is the class of all invertible class A(s,t) operators for s > 0 and t > 0.
It was pointed out in [42] that class A(k,1) equals class A(k) . They showed several
properties of class A(s,t) and class AI(s,t) as extensions of the properties of class
A(k) shown in [23]. Particularly, they showed that T is log-hyponormal if and only if
T belongs to class AI(s,t) for all s,t > 0.

Let T be an operator whose polar decomposition is T = U |T | , where |T | =√
T ∗T . For s, t > 0, the generalized Aluthge transformation T̃s,t of T is

T̃s,t = |T |sU |T |t .

When s = t = 1
2 , then T̃s,t is called the Aluthge transformation of T and denoted by T̃ ,

[4]. The relations between T and its transformation T̃s,t are

T̃s,t |T |s = |T |sU |T |t |T |s = |T |sT, (1.1)

and
U |T |t T̃s,t = U |T |t |T |sU |T |t = TU |T |t , (1.2)

for each s, t > 0 such that s+ t = 1.

Aluthge and Wang [5] introduced w-hyponormal operators defined as follows:
An operator T is said to be w-hyponormal if

|T̃ | � |T | � |T̃ ∗|.

As a generalization of w-hyponormality, Ito [28] introduced the class wA(s,t) :

DEFINITION 1.1. ([28]) An operator T belongs to the class wA(s,t) for s > 0
and t > 0 if

(|T ∗|t |T |2s|T ∗|t) t
t+s � |T ∗|2t (1.3)

and
|T |2s � (|T |s|T ∗|2t |T |s) s

s+t . (1.4)

Ito pointed out the following fact which states that wA(s, t) can be expressed via gen-
eralized Aluthge transformation.

PROPOSITION 1.2. ([28]) An operator T belongs to the class wA(s,t) for s > 0
and t > 0 if and only if

|T̃s,t | 2t
s+t � |T |2t and |T |2s � |T̃ ∗

s,t |
2s
s+t .

In this note we study Weyl’s theorem for operators belong to A(s,t) . In Section 2
we prove some properties of operator T belongs to A(s,t) which we need in the sequel.
In Section 3 we study the Weyl’s and Browder’s theorems for operators in A(s, t) .
Section 4 is devoted to generalized Weyl’s theorem.
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2. Properties of class A(s,t) for some 0 < s,t � 1

THEOREM 2.1. ([39]) Let T belong to the class A(s,t) for 0 < s,t � 1 and let
λ �= 0 . Then

(T −λ )x = 0 =⇒ (T −λ )∗x = 0,x ∈ H .

LEMMA 2.2. ([29]) Class A(s,t) coincides with wA(s,t) for each s > 0 and
t > 0 .

LEMMA 2.3. ([24]) For s > 0 and t > 0 , T belongs to the class A(s,t) if and
only if T belongs to the class AI(s,t) and T is invertible if and only if T is log-
hyponormal.

LEMMA 2.4. If T̃s,t is invertible, then |T |t is invertible for each t > 0 .

Proof. Suppose that |T |t is not invertible for each t > 0. Then |T |s is not invert-
ible for each s > 0. Hence, either the range R(|T |s) of |T |s is not dense or |T |s is not
bounded below. Since T̃s,tx = |T |s(U |T |t x) , x ∈ H , R(T̃s,t) ⊂ R(|T |s) . If R(|T |s) is
not dense, then R(T̃s,t) is not dense and hence T̃s,t is not invertible. On the other hand,
if |T |t is not bounded below, then there is a sequence {xn} of unit vectors such that

‖|T |t xn‖→ 0. Since
∥∥∥T̃s,t xn

∥∥∥ � ‖|T |sU‖‖|T |t xn‖ , then
∥∥∥T̃s,t xn

∥∥∥ → 0. Thus, T̃s,t is not

bounded below and is therefore not invertible. The proof is complete. �

LEMMA 2.5. The operator T is invertible if and only if T̃s,t is invertible.

Proof. If T is invertible, then clearly T̃s,t is invertible. If T̃s,t is invertible, then
Lemma 2.4 implies that |T |t is invertible for each t > 0. Since T = |T |−sT̃s,t |T |1−t , T
is invertible. �

THEOREM 2.6. Let T be an invertible operator in the class A(s, t) for some 0 <
s,t � 1 , then so is T−1 .

Proof. If T is invertible belong to the class A(s,t) , then T is log-hyponormal,
so T−1 is log-hyponormal. Therefore T−1 belongs to the class A(s,t) for some 0 <
s,t � 1. �

We write W (T ) for the numerical range. W (T ) is convex and convσ(T ) ⊆
clW (T ) . An operator is called convexoid if convσ(T ) = clW (T ) .

REMARK 2.7. The class A(s,t) operators is a subclass of the class of the nor-
maloid operators, see [41, 24].

LEMMA 2.8. Let T belong to the class A(s,t) for some 0 < s,t � 1 , λ ∈ C , and
assume that σ(T ) = {λ} . Then T = λ .
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Proof. We consider two cases:
Case I (λ = 0) : Since T belongs class A(s,t) for some 0 < s, t � 1, T is nor-

maloid. Therefore T = 0.
Case II (λ �= 0) : Here T is invertible, and since T belongs the class A(s,t) for

some 0 < s, t � 1, we see that T−1 is also belongs class A(s,t) for some 0 < s,t � 1.
Therefore T−1 is normaloid. On the other hand, σ(T−1) = { 1

λ } , so ‖T‖‖T−1‖ =
|λ || 1

λ | = 1. It follows that T is convexoid, so W(T) = {λ} . Therefore T = λ . �

LEMMA 2.9. Let T belong to the class A(s,t) for some 0 < s,t � 1 , λ = |λ |eiθ ∈
C , and λs+t = |λ |s+teiθ , then ker(T −λ ) = ker(T̃s,t −λs+t) .

Proof. The inclusion ker(T −λ ) ⊆ ker(T̃s,t −λs+t) follows from [6, 39]. For the
other inclusion ker(T̃s,t −λs+t) ⊆ ker(T −λ ) , let λ �= 0 and 0 �= x ∈ ker(T̃s,t −λs+t) .
By [28], T̃s,t is min(s,t)

s+t -hyponormal and we have

|T̃s,t |x = |λ |s+tx = |T̃ ∗
s,t |x,

|T̃s,t |2β1 −|T̃ ∗
s,t |2β1 � |T̃s,t |2β1 −|T |2β1(s+t) � 0,

where β1 = min(s,t)
s+t . Hence,

(|T̃s,t |2β1 −|T |2β1(s+t))x = 0,∥∥∥|T |2β1(s+t)x−|λ |2β1(s+t)x
∥∥∥ �

∥∥∥|T |2β1(s+t)x−|T̃s,t|2β1

∥∥∥
+

∥∥∥|T̃s,t |2β1x−|λ |2β1(s+t)x
∥∥∥ = 0.

On the other hand, T̃ ∗
s,tx = |λ |s+t e−iθx implies that |T |sU∗x = |λ |se−iθx , T ∗ = |λ |e−iθ .

Therefore,

‖(T −λ )x‖2 = ‖Tx‖2 −λ 〈x,Tx〉−λ 〈Tx,x〉+ |λ |2‖x‖2

= ‖|T |x‖2 −λ 〈T ∗x,x〉−λ 〈x,T ∗x〉+ |λ |2‖x‖2 = 0.

If λ = 0, let 0 �= x ∈ T̃s,t , then x ∈ ker(T ) = ker(|T |) . So that ker(T̃s,t − λs+t) ⊆
ker(T −λ ) . �

For T ∈ B(H ) let λ be an isolated point in σ(T ) . We denote by Eλ the Riesz
idempotent with respect to λ defined by Eλ = 1

2π i

∫
∂Dλ

(z− T )−1dz where Dλ is a
closed disk centered at λ which satisfies Dλ ∩σ(T ) = /0 . It is well known that ker(T −
λ ) ⊆ EλH and that EλH = {x ∈ H : ‖(T −λ )nx‖ 1

n → 0} (see [35, p. 424]).

THEOREM 2.10. Let T belong to the class A(s, t) for some 0 < s, t � 1 , λ =
|λ |eiθ ∈ C such that λ ∈ isoσ(T ) , and λs+t = |λ |s+teiθ , then the following assertions
hold.
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(1) If λ �= 0 , then Eλ = Eλ (s,t) and EλH = ker(T − λ ) = ker(T − λ )∗ , where
Eλ (s, t) is the Riesz idempotent of the T̃s,t with respect to λs+t .

(2) If λ = 0 , then kerT = E0H = E0(s,t)H = ker(T̃s,t) .

Proof. (1) Since σ(T̃s,t)\{0} = σ(U |T |s+t)\{0}=
{
ρ s+teiθ : ρeiθ∈σ(T)

}
\{0}

(see [9]), then λs+t ∈ isoσ(T̃s,t ) . Hence

(Eλ (t,s)H )⊥ = ker(Eλ (t,s)) = I−Eλ (t,s)H (2.1)

by [13]. So λs+t /∈ σ(T̃s,t |(Eλ (t,s)H )⊥) . By Theorem 2.1 and Lemma 2.9, we have

T =
(
λ 0
0 T22

)
on H =(Eλ (t,s)H )⊥⊕(Eλ (t,s)H ) , where T22 = T |ker(T−λ )⊥ . Since

ker(T − λ ) is reduced by T , T22 belong also to the class A(s,t) and T̃22(s, t) =
T̃s,t |(Eλ (t,s)H )⊥ , so that λ /∈ σ(T22) because λs+t /∈ σ(T̃22(s,t)) . Hence T −λ = 0⊕
(T22 − λ ) and ker(T − λ )∗ = ker(T − λ )⊕ ker(T22 − λ )∗ = ker(T − λ ) . Meanwhile
Eλ =

∫
∂D(z−λ )−1⊕ (z−T22)−1 dz = 1⊕0 = Eλ (s,t).

(2) Since T̃s,t is min(s,t)
s+t -hyponormal [28], we only need to prove that E0H ⊆

E0(s,t)H since E0H ⊇ E0(s,t)H holds by Theorem 2.9 and [13]. We have

|T |sker(T ) ⊆ |T |sE0H . (2.2)

Let x ∈ E0H . Then it follows from Equality (1.1) that

‖T̃ n
s,t |T |sx‖

1
n = ‖|T |sT nx‖ 1

n → 0.

Thus E0H ⊆ E0(s, t)H . Hence E0(s,t)H is reduced by |T |s .
Let x∈E0H and x = x1+x2 ∈E0(s,t)H ⊕(E0(s,t)H )⊥ . Then |T |sx∈ |T |sE0H

⊆ E0(s, t)H , |T |sx1 ∈ E0(s,t)H and |T |sx2 ∈ (E0(s, t)H )⊥ by Equality ( 2.2), and
E0(s,t)H is reduced by |T |s . �

A bounded linear operator T is said to be isoloid if every isolated point of σ(T )
is an eigenvalue.

THEOREM 2.11. Let T belong to the class A(s, t) for any 0 < s, t � 1 . Then T
is isoloid.

Proof. Let λ be an isolated point in σ(T ) and let Eλ be the associated Riesz
idempotent.

If λ = 0, then σ(T |ran(Eλ )) = {0} . Since T |ran(Eλ ) is class A(s,t) operator for
each s > 0 and t > 0, so it follows by Lemma 2.8 that T |ran(Eλ ) = 0. Therefore λ = 0
is an eigenvalue of T .

If λ �= 0, then T |ran(Eλ ) is invertible belongs to the class A(s,t) for each s >

0 and t > 0 operator and hence (T |ran(Eλ ))
−1

is also belong to the class A(s,t) for
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each s > 0 and t > 0. By [39], we see
∥∥T |ran(Eλ )

∥∥ = |λ | and
∥∥(T |ran(Eλ ))−1

∥∥ = 1
|λ | .

Let x ∈ ran(Eλ ) be an arbitrary vector. Then ‖x‖ �
∥∥(T |ran(Eλ ))−1

∥∥∥∥T |ran(Eλ )x
∥∥ =

1
|λ |

∥∥T |ran(Eλ )x
∥∥ � 1

|λ | |λ |‖x‖ = ‖x‖ . This implies that 1
λ T |ran(Eλ ) is unitary with its

spectrum σ( 1
λ T |ran(Eλ )) = {1} . Hence T |ran(Eλ ) = λ and λ is an eigenvalue of T .

This ends the proof. �
T is called regular if there exist a bounded linear operator T ′ such that T =

TT ′T . A bounded linear operator is said to be reguloid if T −λ is regular of every
λ ∈ isoσ(T ) .

THEOREM 2.12. Let T belong to the class A(s,t) for some 0 < s,t � 1 . Then T
is reguloid.

Proof. If λ ∈ isoσ(T ) , then H = EλH + (I − Eλ )H , where Eλ and (I −
Eλ )H are topologically complemented. By T = T |EλH + T |(I−Eλ )H and Theorem
2.10, we have

(T −λ )H = (T |(I−Eλ )H −λ )(I−Eλ )H . (2.3)

Therefore (T −λ )H is closed because σ(T |(I−Eλ )H ) = σ(T )−{λ} . �
Recall that the ascent, a(T ) , of an operator T is the smallest non-negative integer

p such that ker(T p) = ker(T p+1) . If such integer does not exist we put a(T ) = ∞ .
Analogously, the descent, d(T ) , of an operator T is the smallest non-negative integer
q such that R(Tq) = R(Tq+1) , and if such integer does not exist we put d(T ) = ∞ .

THEOREM 2.13. Let T belong to the class A(s,t) for some 0 < s,t � 1 . Then T
is of finite ascent.

Proof. Let x ∈ ker(T 2) , then ‖Tx‖2 � ‖T 2x‖ = 0, and so x ∈ ker(T ) . Since the
non-zero eigenvalues of class A(s,t) operators for each s > 0 and t > 0 are normal
eigenvalues of T by Theorem 2.1, if 0 �= λ ∈ σp(T ) and (T −λ )2x = 0, then (T −
λ )(T −λ )x = 0 = (T −λ )∗(T −λ )x and ‖(T −λ )x‖2 = 〈(T −λ )∗(T −λ )x,x〉 = 0.
Hence, if T belongs to class A(s,t) for every s > 0 and t > 0, then a(T −λ ) = 1. �

Let Hol(σ(T )) be the space of all functions that analytic in an open neighbor-
hoods of σ(T ) . Following [20], we say that T ∈ B(H ) has the single-valued exten-
sion property (SVEP) at point λ ∈C if for every open neighborhood Uλ of λ , the only
analytic function f : Uλ −→ H which satisfies the equation (T − μ) f (μ) = 0 is the
constant function f ≡ 0. It is well-known that T ∈ B(H ) has SVEP at every point of
the resolvent ρ(T ) := C−σ(T ) and at every isolated point of σ(T ) . If T has SVEP,
then for each λ , T −λ is invertible if and only if it is surjective (see [20, 32]).

In [31, Proposition 1.8], its proved that if T is of finite ascent, then T has SVEP.
Hence it follows from last Theorem.

COROLLARY 2.14. Let T belong to the class A(s,t) for some 0 < s, t � 1 . Then
T has the SVEP.
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Following [32], an operator T is said to have Bishop’s property (β ) at λ ∈C if for
every open neighborhood G of λ , the function fn ∈Hol(σ(T )) with (T −λ ) fn(μ)→
0 uniformly on every compact subset of G implies that fn(μ) → 0 uniformly on every
compact subset of G . When T has Bishop’s property (β ) at each λ ∈ C , simply say
that T has property (β ).

LEMMA 2.15. ([30]) Let G be open subset of complex plane C and let fn ∈
Hol(G)be functions such that μ fn(μ) → 0 uniformly on every compact subset of G,
then fn(μ) → 0 uniformly on every compact subset of G.

In [19] it is shown that every p -hyponormal operator has Bishop’s property (β ) .

THEOREM 2.16. Let T belong to the class A(s,t) for some 0 < s,t � 1 . Then T
has the property (β ) .

Proof. Since T̃s,t is min(s,t)
s+t -hyponormal ([28]) it is suffices to show that T has

property (β ) if and only if T̃s,t has property (β ) .
Let G be an open neighborhood of λ and let fn ∈ Hol(σ(T )) be functions such

that (μ − T̃s,t) fn(μ) → 0 uniformly on every compact subset of G . By Equations 1.2,
(μ−T )(U |T |s fn(μ)) = U |T |s(μ− T̃s,t) fn(μ) → 0 uniformly on every compact subset
of G . Hence T̃s,t fn(μ) → 0 uniformly on every compact subset of G , and T̃s,t having
property β follows by Lemma 2.15.

Suppose that T̃s,t has property (β ) . Let G be an open neighborhood of λ and let
fn ∈ Hol(σ(T )) be functions such that (μ − T ) fn(μ) → 0 uniformly on every com-
pact subset of G . Since (T̃s,t − μ)|T |s fn(μ) = |T |s(T − μ) fn(μ) → 0 uniformly on
every compact subset of G . Hence T fn(μ) =U |T |s|T |t fn(μ) → 0 uniformly on every
compact subset of G for T̃s,t has property (β , so that μ fn(μ) → 0 uniformly on every
compact subset of G , and T has property (β ) follows by Lemma 2.15. �

3. Weyl’s Theorem

Let α(T ) := dimker(T ) , β (T ) := dimR(T ) . An operator T ∈ B(H ) is called
upper semi-Fredholm, T ∈ Φ+(H ) , if R(T ) is closed and α(T ) < ∞ . T is lower
semi-Fredholm, T ∈Φ−(H ) , if β (T ) <∞ . T is semi-Fredhom, T ∈Φ±(H ) , if T ∈
Φ−(H )∪Φ+(H ) and T is called Fredhom, T ∈Φ(H ) , if T ∈Φ−(H )∩Φ+(H ) .
The index of a semi-Fredholm operator is given by

i(T ) := α(T )−β (T ).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of finite
ascent and descent”.

The essential spectrum σF(T ) , the Weyl spectrum σW (T ) and the Browder spec-
trum σb(T ) of T are defined by

σF(T ) = {λ ∈ C : T −λ is not Fredholm}
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σW (T ) = {λ ∈ C : T −λ is not Weyl}
and

σb(T ) = {λ ∈ C : T −λ is not Browder}
respectively. Evidently

σF(T ) ⊆ σW (T ) ⊆ σb(T ) ⊆ σF(T )∪accσ(T )

where we write accK for the accumulation points of K ⊆ C .
Let

Φ−
+(H ) : = {T ∈Φ+(H ) : i(T ) � 0} .

Let K(H ) denote the ideal of compact operators in B(H ) , and consider the following
spectral subsets:

σaW (T ) : =
⋂

{σa(T +S) : S ∈ K(H )} =
{
λ ∈ C : T −λ /∈Φ−

+(H )
}

,

σab(T ) : =
⋂

{σa(T +S) : S ∈ K(H ) and TS = ST} .

Following [14], we say that Weyl’s theorem holds for T if σ(T ) \σW (T ) = π00(T ),
where π00(T ) is the set of all isolated point in σ(T ) which are eigenvalues of finite
multiplicity. And Browder’s theorem holds for T if σ(T )\σW (T ) = π0(T ), where π0

is the set of all poles of T of finite rank, and that T satisfies a-Browder’s theorem if
σSF−

+
(T ) = σa(T )\πa

0(T ), where πa
0 (T ) is the set of left poles of finite rank.

According to [34], we say that T satisfies a-Weyl’s theorem if σa(T )\σaW (T ) =
πa0(T ) , where πa0(T ) is the set of all isolated point in σa(T ) which are eigenvalues of
finite multiplicity. It follows from [18, 34] that

a-Weyl’s theorem =⇒ Weyl’s theorem =⇒ Browder’s theorem

a-Weyl’s theorem =⇒ a-Browder’s theorem =⇒ Browder’s theorem.

The investigation of operators obeying Weyl’s theorem, a -Weyl’s theorem, Brow-
der’s theorem or a -Browder’s theorem was studied by many mathematicians [1, 2, 14,
16, 18, 26, 33, 34] and the references cited therein.

THEOREM 3.1. Let T belong to the class A(s,t) for some 0 < s, t � 1 . Then the
following assertions hold.

(1) Weyl’s theorem holds for T .

(2) Σ( f (T )) = f (Σ(T )) for every f ∈ Hol(σ(T )) , where Σ(T ) denotes either of
σW (T ) or σaW (T ) .

(3) Weyl’s theorem holds for f (T ) when f ∈ Hol(σ(T )) .
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Proof. (1) Recall that if T belongs to the class A(s,t) for some 0 < s,t � 1 and
is Fredholm, then i(T ) � 0. Indeed, since T is Fredholm, |T |s is also Fredholm and
i(|T |s) = 0. By Equations 1.1 and 1.2,

i(T ) = i(|T |sT ) = i(T̃s,t |T |s) = i(T̃s,t). (3.1)

Hence, i(T ) � 0 implies i(T̃s,t) � 0.
Let λ ∈ σ(T )\σW (T ) , then T −λ is Fredholm, i(T −λ ) = 0, and dimker(T −

λ ) > 0.
If λ is an interior point of σ(T ) , there would be an open subset G⊆ σ(T ) includ-

ing λ such that i(T −μ) = i(T −λ ) = 0 for all μ ∈G (see [15]). So dimker(T −μ) >
0 for all μ ∈G , this is impossible for T has SVEP by Theorem 2.16 and [20, Theorem
10]. Thus λ ∈ ∂σ(T )\σW (T ) , λ ∈ isoσ(T ) (see [15, Theorem 6.8, page 366]), and
λ ∈ π00(T ) follows.

Let λ ∈ π00(T ) , then the Riesz idempotent Pλ has finite rank by Theorem 2.10,
and λ ∈ σ(T )\σW (T ) follows.

(2) Since T has the SVEP then it follows from [16, Corollary 2.6] and [16,
Theorem 3.1] that σW ( f (T )) = f (σW (T )) and σaW ( f (T )) = f (σaW (T )) for every
f ∈ Hol(σ(T )) .

(3) Since T is isoloid by Theorem 2.11, has the SVEP (Corollary 2.14) and satis-
fies Weyl’s theorem, then it follows from [16, Theorem 2.5] that f (T ) satisfies Weyl’s
theorem. �

THEOREM 3.2. ([39]) Let T belong to the class A(s, t) for some 0 < s, t � 1 . If
T̃s,t is normal, then T is normal.

THEOREM 3.3. Let T belong to the class A(s,t) for some 0 < s,t � 1 , then the
following assertions hold.

(1) if m2(σ(T )) = 0 where m2 means the planer Lebesgue measure, then T is nor-
mal.

(2) If σW (T ) = {0} , then T is compact and normal.

Proof. (1) It follows from (min(s,t)
s+t )-hyponormality and Putnam’s inequality for

(min(s,t)
s+t )-hyponormal operators [12], that T̃s,t is normal. Hence, (1) follows by Theo-

rem 3.2.
(2) Since σW (T ) = 0, σ(T ) \ {0} = π0(T ) ⊆ isoσ(T ) . Hence m2(σ(T )) = 0

and T is normal by (1).
Next to prove that T is compact, we may assume that σ(T ) \ {0} is a countable

infinite set for σ(T )\{0}⊆ isoσ(T ) . Let σ(T )\{0}= {λn}∞n=1 with λ1 � λ2 � · · ·�
0 and μ = lim

n→∞
|λn| , then μ = 0. Since every Eλn has finite rank by Theorem 2.10, for

every ε > 0,
⊕

|λn|>ε Eλn also has finite rank. Therefore T is compact (See [15, page
271]). �

Recall that an operator T satisfies a-Browder’s theorem if and only if σab(T ) =
σaW (T ) .
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THEOREM 3.4. Let T belong to the class A(s,t) for some 0 < s,t � 1 . Then T
and T ∗ satisfy a-Browder’s theorem.

Proof. Recall [2, Corollary 2.4] that if either T or T ∗ has SVEP, then both T
and T ∗ satisfy a -Browder’s theorem. So the result is an immediate consequence of
Corollary 2.14. �

LEMMA 3.5. Let T belong to the class A(s,t) for some 0 < s, t � 1 . If λ ∈
π00(T ∗) , then it is a pole of the resolvent of T ∗ .

Proof. If 0 �= λ ∈ π00(T ∗) , then λ ∈ isoσ(T ) , then it follows from Theorem 2.1
that λ is a normal eigenvalue of T , and hence a simple pole of the resolvent of T by
Theorem 2.10. If, instead, λ = 0, then dimker(T ∗) <∞ implies R(T ∗) is closed and
hence T ∗ ∈ Φ+(H ) implies T ∈ Φ−(H ) . Since both T and T ∗ has SVEP at 0, it
follows that, a(T ) = d(T ) <∞ by [1, Theorem 2.3]. Hence 0 is a pole of the resolvent
of T implies 0 is a pole of the resolvent of T ∗ . �

THEOREM 3.6. Let T belong to the class A(s, t) for some 0 < s,t � 1 . Then
f (T ∗) satisfies a-Weyl’s theorem for every f ∈ Hol(σ(T )) .

Proof. Recall from [1, Theorem 3.6] that for a Banach space operator T with
SVEP, T ∗ satisfies Weyl’s theorem if and only if T ∗ satisfies a -Weyl’s theorem. Since
the SVEP is stable under functional calculus, T has SVEP implies f (T ) has SVEP
for every f ∈Hol(σ(T )) . It will suffices to prove that f (T ∗) satisfies Weyl’s theorem.
Observe that if T belongs to the class A(s,t) for each s > 0 and t > 0, then a(T −λ ) <
∞ =⇒ i(T − λ ) � 0 =⇒ i(T ∗ − λ) � 0 for every λ ; hence σW (T ) = σW (T ∗) and
σ( f (T ∗)) = f (σ(T ∗))) it follows from Theorem 2.11 and proof of Theorem 3.1 that
it will suffice to prove that T ∗ satisfies Weyl’s theorem. Since T ∗ satisfies Browder’s
theorem by Theorem 3.4, σ(T ∗) \σW (T ∗) = π0(T ∗) ⊆ π00(T ∗) . Let λ ∈ π00(T ∗) ,
then λ ∈ π0(T ∗) by Lemma 3.5. Hence π0(T ∗) = π00(T ∗) . Therefore T ∗ satisfies
Weyl’s theorem. �

THEOREM 3.7. Let T belong to the class A(s,t) for some 0 < s, t � 1 . If F is
an operator that commutes with T and for which there exits a positive integer n such
that Fn is finite rank, then T +F satisfies Weyl’s theorem.

Proof. Form Theorem 2.11 and Theorem 3.1, T is isoloid and satisfies Weyl’s
theorem. Now the result follows at once from [33, Theorem 2.4]. �

4. Applications to generalized Weyl’s theorem

For each nonnegative integer n define Tn to be the restriction of T to R(Tn)
viewed as a map from R(Tn) into R(Tn) (in particular T0 = T ). If for some n , R(Tn)
is closed and Tn is an upper (resp. lower) semi-Fredholm operator then T is called
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an upper (resp. lower) semi-B-Fredholm operator. A semi-B-Fredholm operator is an
upper or lower semi-B-Fredholm operators. If moreover, Tn is a Fredholm operator
then T is called a B-Fredholm operator. The index of a semi-B-Fredholm is defined
as the index of the semi-Fredholm operator Tn (see [10]). In [10] it is proved that an
operator T is a B-Fredholm operator if and only if T = F ⊕N , where F is a Fredholm
operator and N is a nilpotent operator. An operator T ∈ B(H) is said to be a B-Weyl
operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of
T is defined by

σBW (T ) = {λ ∈ C : T −λ I is not a B-Weyl operator}.

Following [10] generalized Weyl’s theorem holds for T if

σ(T )\E(T) = σBW (T ); (4.1)

where E(T ) is the set of all isolated eigenvalues of T and generalized Browder’s the-
orem holds for T if

σ(T )\σBW (T ) = π(T );

where π(T ) is the set of all poles of T .
Let SBF+(H) be the class of all upper semi-B-Fredholm operators, and SBF−

+ (H)
the class of all T ∈ SBF+(H) such that ind(T ) � 0. Also let

σSBF−
+

(T ) = {λ ∈ C : T −λ I is not in SBF−
+ (H)},

called the semi-B-essential approximate point spectrum. We say that T obeys general-
ized a-Weyl’s theorem if

σSBF−
+

(T ) = σap(T )\Ea(T ),

where Ea(T ) is the set of all eigenvalues of T which are isolated in σap(T ) ([10,
Definition 2.13]). This also gives a generalization of a -Weyl’s theorem. We say that T
obeys generalized a-Browder’s theorem if

σSBF−
+

(T ) = σap(T )\πa(T ).

From [10, 34] we have the following implications

generalized a-Weyl’s theorem ⇒ generalized Weyl’s theorem ⇒ Weyl’s theorem ,

generalized a-Weyl’s theorem ⇒ a-Weyl’s theorem ⇒ Weyl’s theorem .

Recently, in [7] it is proved that

generalized Browder’s theorem ⇔ Browder’s theorem,

generalized a-Browder’s theorem ⇔ a-Browder’s theorem.
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PROPOSITION 4.1. Let T belong to the class A(s,t) for some 0 < s,t � 1 . Then

E(T ) = π(T ).

Proof. Let λ ∈ E(T ) then λ ∈ isoσ(T ) . If λ �= 0, then it follows from Theorem
2.1 that λ is a normal eigenvalue of T , and hence a simple pole of the resolvent of T
by Theorem 2.10. Now if λ = 0, then T is a B-Weyl operator. For n large enough,
T − 1

n is invertible then in particular a Fredholm operator. Since T − 1
n and T ∗ − 1

n
have the SVEP at 0, then it follows from [3, Theorem 2.6 and Theorem 2.8] that a(T −
1
n) = d(T − 1

n) . Hence by [25, Theorem 4.7] we have a(T ) = d(T ) < ∞. Therefore
0 ∈ π(T ) . �

THEOREM 4.2. Let T belong to the class A(s,t) for some 0 < s, t � 1 . Then the
following assertions hold.

(1) generalized Weyl’s theorem holds for T .

(2) Σ( f (T )) = f (Σ(T )) for every f ∈ Hol(σ(T )) , where Σ(T ) denotes either of
σBW (T ) or σSBF−

+
(T ) .

(3) generalized Weyl’s theorem holds for f (T ) for every f ∈ Hol(σ(T )) .

Proof. (1) Since E(T ) = π(T ) by Proposition 4.1 and Weyl’s theorem holds for
T then it follows from [7, Corollary 2.1] that generalized Weyl’s theorem holds for T .

(2) Since T satisfies the SVEP, then the result follows from [43, Theorem 2.1 and
Theorem 2.3].

(3) T is isoloid, satisfies the SVEP and generalized Weyl’s theorem holds for T ,
then it follows from [43, Theorem 2.2] that generalized Weyl’s theorem holds for f (T )
for every f ∈ Hol(σ(T )) . �
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Université Mohammed 1er

B.P 300 Selouane 62700
Nador, Morocco

e-mail: zguitti@hotmail.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


