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Abstract. Let X = (Xt)t�0 be a nonnegative semimartingale and H = (Ht)t�0 be a predictable
process taking values in [−1,1] . Let Y denote the stochastic integral of H with respect to X .
We show that

(i) If X is a supermartingale, then

||sup
t�0

Yt ||1 � 3||sup
t�0

Xt ||1

and the constant 3 is the best possible.
(ii) If X is a submartingale satisfying ||X ||∞ � 1 , then

||sup
t�0

Yt ||p � 2Γ(p+1)1/p, 1 � p < ∞.

The constant 2Γ(p+1)1/p is the best possible.

1. Introduction

Let (Ω,F ,P) be a complete probability space, equippedwith nondecreasing right-
continuous family (Ft)t�0 of sub-σ -fields of F . Assume that F0 contains all the
events of probability 0. Suppose that X = (Xt)t�0 is an adapted real-valued right-
continuous semimartingale with left limits. Let Y denote the Itô integral of H with
respect to X , given by

Yt = H0X0 +
∫
(0,t]

HsdXs, t � 0.

Here H is a predictable process, taking values in the interval [−1,1] . Let ||X ||p =
supt�0 ||Xt ||p , 1 � p � ∞ , and X∗ = supt�0 Xt .

The problem of controlling the size of Y or Y ∗ by the size of |X |∗ has gained some
interest in the literature. In [3], Burkholder introduced a method of proving maximal
inequalities for martingales and obtained the following sharp estimate.
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THEOREM 1.1. If X is a martingale and Y is as above, then we have

||Y ||1 � γ|| |X |∗||1, (1.1)

where γ = 2,536 . . . is the unique solution of the equation

γ−3 = −exp
(1− γ

2

)
.

The constant is the best possible.

It was then proved by the author in [4], that if X is positive, then the optimal
constant γ in (1.1) decreases to 2+(3e)−1 = 2,1226 . . . . Furthermore, this inequality
carries over to the case when X is assumed to be a positive supermartingale; the (best)
constant remains the same. Then, in [5], the author studied a related problem, with
Y replaced by its one-sided supremum; the main result of that paper can be stated as
follows.

THEOREM 1.2. If X is a martingale and Y is as above, then the following in-
equality is sharp:

||Y ∗||1 � β0|| |X |∗||1, (1.2)

where β0 = 2,0856 . . . is the positive solution to the equation

2log

(
8
3
−β0

)
= 1−β0.

Furthermore, if X is nonnegative, then the best constant in (1.2) equals 14
9 = 1,555 . . . .

There is a natural question about the best constant in the inequality (1.2) in the
case when X is a nonnegative supermartingale. It turns out that, in contrast with the es-
timate (1.1), the constant differs from the one in the setting of nonnegative martingales.
Surprisingly, it differs quite much.

THEOREM 1.3. If X is a nonnegative supermartingale and Y is as above, then

||Y ∗||1 � 3||X∗||1 (1.3)

and the inequality is sharp. It is already sharp if the integrated process H takes values
in {−1,1} .

As usual, the inequalities for stochastic integrals are accompanied by discrete-time
versions. Suppose that (Ω,F ,P) is a probability space, filtered by (Fn)n�0 . Let f =
( fn)n�0 be an adapted nonnegative supermartingale, with the corresponding difference
sequence (d fn)n�0 given by d f0 = f0 and d fn = fn − fn−1 for n � 1. Assume that
g = (gn)n�0 is a transform of f by a predictable sequence v = (vn)n�0 bounded in
absolute value by 1. That is, we have

gn =
n

∑
k=0

vkd fk, n = 0, 1, 2, . . . ,
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and by predictability of v we mean that each term vk is measurable with respect to
F(k−1)∨0 . In the special case when each vk is deterministic and takes values in {−1,1} ,
we will say that g is a ±1 transform of f . We will also use the notation || f ||p =
supn || fn||p for 1 � p � ∞ , f ∗n = maxk�n fk and f ∗ = supk fk .

Here is the discrete-time version of Theorem 1.3.

THEOREM 1.4. Let f , g be as above. Then

||g∗||1 � 3|| f ∗||1 (1.4)

and the constant 3 is the best possible. It is already the best possible for ±1 transforms.

The proofs of Theorem 1.3 and Theorem 1.4 are based on Burkholder’s technique,
which translates the problem of proving a given (sub-, super-)martingale inequality
into the problem of finding a certain special function (for description of this method,
see e.g. [3] or [4]). It turns out that the function we invent in order to deal with (1.3) and
(1.4) can be used to obtain a related maximal inequality for bounded submartingales.
Here is the precise statement, both in the continuous and discrete-time setting.

THEOREM 1.5. (i) If X is a nonnegative submartingale satisfying ||X ||∞ � 1 and
Y is as above, then

||Y ∗||p � 2Γ(p+1)1/p, 1 � p < ∞, (1.5)

and the inequality is sharp. It is already sharp if the integrated process H takes values
in {−1,1} .

(ii) If f is a nonnegative submartingale satisfying || f ||∞ � 1 and g is as above,
then

||g∗||p � 2Γ(p+1)1/p, 1 � p < ∞. (1.6)

The constant 2Γ(p+ 1)1/p is the best possible. It is already the best possible for ±1
transforms.

The paper is organized as follows. Section 2 contains some preliminary reductions
in (1.3)–(1.6), which are needed to make Burkholder’s technique applicable. In the next
section we introduce the special function and study its properties. Then we provide the
proofs of the announced inequalities and in the final section we show that the constants
involved are the best possible.

2. Standard reductions

The first observation we make is that it suffices to deal with the discrete-time
versions of the results above. This follows by approximation theorems of Bichteler [1].
Secondly, with no loss of generality we may restrict ourselves to processes f satisfying
P( f0 > 0) = 1. In addition, we may assume that v0 ≡ 1 (so g0 = f0 > 0): indeed, ig
it is not the case, then replacing v0 with 1 makes g∗ increase and we obtain stronger
statements to prove. Moreover, we may consider simple processes f only, that is, we
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may assume that for any integer n the random variable fn takes only a finite number of
values and there exists a number N such that fN = fN+1 = . . . with probability 1. The
next observation is that it suffices to prove Theorems 1.4 and 1.5 (ii) for ±1 transforms.
To see this, we present the following extension of the Lemma A.1 from [2]. The proof
is identical as in the original setting and hence it is omitted.

LEMMA 2.1. Let g be the transform of a nonnegative supermartingale f (re-
spectively, nonnegative submartingale bounded by 1 ) by a real-valued predictable se-
quence v uniformly bounded in absolute value by 1 , satisfying v0 ≡ 1 . Then there ex-
ist nonnegative supermartingales F j = (F j

n )n�0 (respectively, nonnegative submartin-
gales bounded by 1 ) such that, for j � 1 and n � 0 ,

fn = F j
2n+1, f ∗ = (F j)∗,

gn =
∞

∑
j=1

2− jG j
2n+1,

where Gj is the transform of F j by ε = (εk)k�0 with εk = (−1)k .

Now assume we have established the estimate (1.4) for ±1 transforms (the argu-
mentation for (1.6) goes along the same lines). Lemma 2.1 gives us the processes F j ,
j � 1. Note that Gj

0 = F j
0 � 0 with probability 1. Therefore we have the following

chain of inequalities:

||g∗||1 �
∣∣∣∣∣
∣∣∣∣∣
∞

∑
j=1

2− j sup
n

(
Gj

2n+1

)∣∣∣∣∣
∣∣∣∣∣
1

�
∞

∑
j=1

2− j
∣∣∣∣∣∣(Gj)∗∣∣∣∣∣∣

1

� 3
∞

∑
j=0

2− j||(F j)∗||1 = 3|| f ∗||1

and we have a similar chain corresponding to (1.6). As a by-product, we see that we
may assume that both f and g are simple. Such processes are in particular bounded;
this will guarantee that the variables considered below are integrable.

The final reduction is that it suffices to prove that for any integer n we have

E [g∗n−3 f ∗n ] � 0, (2.1)

in the case of Theorem 1.4, and

E(g∗n)
p � 2pΓ(p+1) (2.2)

in the case of Theorem 1.5 (ii). This is due to the condition P(g0 � 0) = 1, which, as
we have seen, can be assumed with no loss of generality.
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3. A special function

We start with an auxiliary function u : [0,1]× (−∞,0]→ R given by

u(x,y) =

{
2x− xlog(x− y)−3 if x− y � 1,

2xexp
[ 1

2 (−x+ y+1)
]−3 if x− y > 1,

with the convention 0 log0 = 0. The main object in the paper is the function U :
[0,∞)×R× (0,∞)×R→ R defined by the formula

U(x,y,z,w) = y∨w+(x∨ z)u
(

x
x∨ z

,
y− (y∨w)

x∨ z

)
, (3.1)

where a∨ b (respectively, a∧ b ) denotes the maximum (minimum) of a and b . It
follows directly from the definition that U enjoys the following properties: for any
(x,y,z,w) lying in the domain,

U(tx,ty,tz,tw) = tU(x,y,z,w) for any t > 0, (3.2)

U(x,y,z,w) = U(x,y,x∨ z,y∨w) (3.3)

and, for any a ∈ R ,

U(x,y+a,z,w+a) = U(x,y,z,w)+a. (3.4)

The lemma below is devoted to the main property of U . For fixed y, w ∈ R and z > 0,
let F1 = F1,y,z,w , F−1 = F−1,y,z,w be functions from R+ to R given by

F1(t) = U(t,y+ t,z,w), F−1(t) = U(t,y− t,z,w).

LEMMA 3.1. The functions F±1 are concave and nondecreasing on [0,z] . Fur-
thermore, if F = F1 or F = F−1 , then

F(t) � F(z)+F ′(z−)(t− z), for t > z. (3.5)

REMARK 3.1. In other words, the function F can be majorized by concave func-
tion Φ which coincides with F on [0,z] . As a consequence, we have the following
property: suppose x ∈ [0,z] , z > 0 and y, w ∈ R . Let X � −x be a random variable
with nonpositive mean. Then, by Jensen’s inequality, if F = F1 or F = F−1 ,

EF(x+X) � EΦ(x+X) � Φ(x+EX) = F(x+EX) � F(x). (3.6)

Proof of Lemma 3.1. First, observe that we may assume z = 1 and w = 0, in view
of (3.2) and (3.4). We will consider the functions F1 and F−1 separately.

The function F1 . Let us start with the concavity. If y � −1, then this is obvious:
F1(t) = 2t exp( 1

2(y+1))−3 for t ∈ [0,1] . If y > −1, then

F1(t) =

{
2t− t log(−y)−3 if t � −y,

y+3t− t logt−3 if t ∈ (−y,1],
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which is concave. Moreover, observe that F ′
1(1−) = 2[exp( 1

2 (y+ 1))∧ 1] > 0 which,
together with the concavity just established, yields the monotonicity. To check (3.5),
note that for t > 1,

F1(t) =

{
2t exp( y+t

2t )−3t if t < −y,

y if t � −y.

It is straightforward to check that F1 is convex and limt→∞F ′
1(t) = 0 < F ′

1(1−) . This
gives (3.5).

The function F−1 . As previously, first we deal with the concavity on [0,1] . We
have, for t lying in this interval,

F−1(t) =

⎧⎪⎨
⎪⎩

y+ t− t log t−3 if y � t,

2t− t log(2t− y)−3 if t > y � −1+2t,

2t exp( y−2t+1
2 )−3 if y < −1+2t,

a concave function on [0,1] . The monotonicity is a consequence of F ′
−1(1−) = 0,

which can be derived directly from the formula above.
It remains to show (3.5). If t > 1, then

F−1(t) =

{
y−2t if y > t,

2t exp( y−t
2t )−3t if y � t,

which is a convex function satisfying limt→∞F ′
−1(t) = 2e−1/2−3 < 0 = F−1(1−) . This

proves the claim. �
We will also need the following majorization property.

LEMMA 3.2. For any (x,y,z,w) from the domain of U we have

U(x,y,z,w) � y∨w−3x∨ z. (3.7)

Proof. The properties (3.2), (3.3) and (3.4) imply that we may assume x � z = 1
and y � w = 0. Then the majorization is equivalent to u(x,y) �−3 on [0,1]×(−∞,0] ,
which can be easily seen directly from the definition of u . �

4. Proofs of (2.1) and (2.2)

4.1. Proof of (2.1)

First we will show that the process (U( fn,gn, f ∗n ,g∗n))n�0 is a supermartingale. To
this end, fix n � 1 and observe that, in view of (3.3),

E(U( fn,gn, f ∗n ,g∗n)|Fn−1) = E(U( fn,gn, f ∗n−1 ∨ fn,g
∗
n−1∨gn)|Fn−1)

= E(U( fn,gn, f ∗n−1,g
∗
n−1)|Fn−1)

= E(U( fn−1 +d fn,gn−1 + εd fn, f ∗n−1,g
∗
n−1)|Fn−1),
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where ε ∈ {−1,1} . Using the functions F±1 from the previous section, we see that

E(U( fn−1 +d fn,gn−1 + εd fn, f ∗n−1,g
∗
n−1)|Fn−1)

= E(Fε,gn−1−ε fn−1, f
∗
n−1,g

∗
n−1

( fn−1 +d fn)|Fn−1).

Now apply (3.6) conditionally on Fn−1 , with x = fn−1 and X = d fn , to bound the
expression from above by

Fε,gn−1−ε fn−1, f ∗n−1,g
∗
n−1

( fn−1) = U( fn−1,gn−1, f ∗n−1,g
∗
n−1).

This gives the supermartingale property. Hence, applying (3.7), we may write, for any
n � 0,

Eg∗n−3E f ∗n � EU( fn,gn, f ∗n ,g∗n) � EU( f0,g0, f ∗0 ,g∗0),

which is nonpositive: this is due to

U( f0,g0, f ∗0 ,g∗0) = U( f0,g0, f0,g0) = g0 + f0u(1,0) = g0− f0 � 0.

The proof is complete.

4.2. Proof of (2.2) in the case p = 1

Let us introduce the special function W1 : [0,1]×R×R→ R by

W1(x,y,w) = U(1− x,y,1,w)+3.

It follows immediately from Lemma 3.1 and Lemma 3.2, that W1 has the following
properties:

if ε ∈ {−1,1} and y, w ∈ R, then the function
t 	→W1(t,y+ εt,w), t ∈ [0,1], is concave and nonincreasing.

(4.1)

W1(x,y,w) � y∨w. (4.2)

The condition (4.1) implies that the process (W1( fn,gn,g∗n))n�0 is a supermartingale.
To see this, we proceed as previously: for n � 1, there is ε ∈ {−1,1} such that we
have

E(W1( fn,gn,g
∗
n)|Fn−1) = E(W1( fn−1 +d fn,gn−1 + εd fn−1,g

∗
n−1|Fn−1)

� W1( fn−1,gn−1,g
∗
n−1),

where in the last passage we have used (4.1) and Jensen’s inequality. Together with
(4.2) and (4.1) again, this gives

Eg∗n � EW1( fn,gn,g
∗
n) � EW1( f0,g0,g

∗
0) � EW1(0,0,0) = 2,

which is the desired bound.
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4.3. Proof of (2.2) in the case p > 1

As previously, we start with defining the special function. Let Wp : [0,1]×R×
R → R be given by

Wp(x,y,w) = p(p−1)
∫ ∞

0
ap−2W1(x,y−a,(w−a)∨0)da.

By (4.1), for any ε ∈ {−1,1} and y,w ∈ R , a > 0, the function

t 	→W1(t,y−a+ εt,(w−a)∨0)

is concave and nonincreasing. This implies that t 	→Wp(t,y+ t,w) also has analogous
property, which, in turn, yields that the process (Wp( fn,gn,g∗n))n�0 is a supermartin-
gale. On the other hand, by (4.2), we have

Wp(x,y,w) � p(p−1)
∫ ∞

0
ap−2 [(y−a)∨ (w−a)∨0]da

= p(p−1)
∫ y∨w

0
ap−2((y∨w)−a)da = (y∨w)p.

Therefore,

E(g∗n)
p � EWp( fn,gn,g

∗
n) � EWp( f0,g0,g

∗
0) � Wp(0,0,0)

= p(p−1)
∫ ∞

0
ap−2W1(0,−a,0)da = 2pΓ(p+1),

as claimed.

5. Sharpness

We will show the optimality of the constants appearing in Theorems 1.3, 1.4 and
1.5 by providing appropriate examples.

5.1. The constant 3 is the best in (1.3) and (1.4)

Clearly, it suffices to show the sharpness of (1.4). For a fixed δ ∈ (0,1) , let
(Xn)n�0 be a sequence of independent random variables such that P(X0 = 1) = 1 and,
for k � 1,

P(X2k−1 = −δ ) = 1,

P(X2k = δ −1) = δ = 1−P(X2k = δ ).

As EXn � 0 for n � 1, the process Sn = X0 +X1 +X2 + . . .+Xn , n = 0, 1, 2, . . . , is a
supermartingale. Let τ = inf{n : Sn = 0} and observe that P(τ < ∞) = 1 and τ takes
only even values, with

P(τ = 2k) = (1− δ )k−1δ , k = 1, 2, . . . .
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Now define fn = Sτ∧n and dgn = (−1)nd fn . Then f is a nonnegative supermartingale
satisfying P( f ∗ = 1)= 1 and g is its ±1 transform. Note that P(dg0 = 1)= 1, dgn = δ
for 1 � n < τ and dgτ = δ −1, which implies g∗ = g∗τ = gτ−1 = 1+(τ−1)δ . Hence

Eg∗ =
∞

∑
k=1

(1+(2k−1)δ )(1− δ )k−1δ = 3− δ .

As δ was arbitrary, the constant 3 can not be replaced by a smaller number in (1.3)
and (1.4).

5.2. The constant 2Γ(p+1)1/p is the best in (1.5) and (1.6)

Again, we may restrict ourselves to the discrete-time case. Fix δ ∈ (0,1) and let
(Sn) , τ be the random variables considered above. Define

fn = 1−Sτ∧n, dgn = (−1)n+1d fn.

Then f is a nonnegative submartingale bounded from above by 1 and g is its ±1
transform. We see that P(dg0 = 0) = 1, dgn = δ for 1 � n < τ and dgτ = δ −1, from
which it follows that g∗ = g∗τ = gτ−1 = (τ−1)δ . Therefore

E(g∗)p =
∞

∑
k=1

[(2k−1)δ ]p(1− δ )k−1δ

=
(1− δ )−1/2

2
·2δ

∞

∑
k=1

[(2k−1)δ ]p
[
(1− δ )1/(2δ )

](2k−1)δ
.

The above expression can be easily shown to converge to

1
2

∫ ∞

0
sp exp(−s/2)ds = 2pΓ(p+1),

as δ → 0. This proves the claim.
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