
Mathematical
Inequalities

& Applications
Volume 14, Number 3 (2011), 605–620

ON SOME GRONWALL TYPE INEQUALITIES

INVOLVING ITERATED INTEGRALS

YEOL JE CHO, SEVER S. DRAGOMIR AND YOUNG-HO KIM

(Communicated by J. Pečarić)

Abstract. In this paper we consider simple inequalities involving iterated integrals in the inequal-
ity (1.1) for functions when the function u in the both side of the inequality (1.1) are replaced by
the function w(u) and ϕ(u) for some functions w,ϕ and provide some retarded integral inequal-
ities involving iterated integrals. Some applications are also given to illustrate the usefulness of
our results.

1. Introduction

Let u : [α,α+h]→ R be a continuous real-valued function satisfying the inequal-
ity

0 � u(t) �
∫ t

α
[a+bu(s)]ds, ∀t ∈ [α,α +h],

where a,b are nonnegative constants. Then u(t) � ahebh for all t ∈ [α,α + h]. This
result was proved by Gronwall [8] in the year 1919, and is the prototype for the study
of several integral inequalities of Volterra type, and also for obtaining explicit bounds
of the unknown function. Among the several publications on this subject, the paper of
Bellman [2] is very well known:

Let x(t) and k(t) be real valued nonnegative continuous functions for t � α. If a
is a constant, a � 0, and

x(t) � a+
∫ t

α
k(s)x(s)ds, ∀t � α,

then

x(t) � aexp

(∫ t

α
k(s)ds

)
, ∀t � α.

It is clear that Bellman’s result contains that of Gronwall. This is the reason why in-
equalities of this type were called “Gronwall-Bellman inequalities” or “Inequalities of
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Gronwall type”. The Gronwall type integral inequalities provide a necessary tool for
the study of the theory of differential equations, integral equations and inequalities of
various types (see Gronwall [8] and Guiliano [9]). Some applications of this result to
the study of stability of the solution of linear and nonlinear differential equations may
be found in Bellman [1, 2, 13]. Some applications to existence and uniqueness theory
of differential equations may be found in Nemyckii-Stepanov [12], Bihari [3] and Lan-
genhop [10]. During the past few years several authors [4–7, 11, 14–18] (see references
below and some of the references cited therein) have established several Gronwall type
integral inequalities in two or more independent real variables. Of course, such results
have application in the theory of some differential and integral equations.

Ráb proved the following interesting integral inequality, which appear in [1, p.
100]:

THEOREM 1.1. Let u(t),a(t) and b(t) be nonnegative continuous functions in
J = [α,β ], and suppose that

u(t) � a(t)+b(t)
[∫ t

α
k1(t,t1)u(t1)dt1 + · · · (1.1)

+
∫ t

α

(∫ t1

α
· · ·

(∫ tn−1

α
kn(t,t1, . . . ,tn)u(tn)dtn

)
. . .

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative continuous functions in Ji+1 for all
i = 1,2, · · · ,n. Suppose the partial derivatives ∂ki

∂ t (t,t1, . . . ,ti) exist and are nonnegative
and continuous in Ji+1 for all i = 1,2, · · · ,n. Then, for all t ∈ J,

u(t) � a(t)+b(t)
∫ t

α
(R[a]+Q[a])(s)exp

(∫ t

s
(R[b]+Q[b])(τ)dτ

)
ds,

R[w](t) = k1(t,t)w(t)+
∫ t

α
k2(t,t,t2)w(t2)dt2 +

+
n

∑
i=3

∫ t

α

(∫ t2

α
· · ·

(∫ ti−1

α
ki(t,t,t2, . . . ,ti)w(ti)dti

)
· · ·

)
dt2,

Q[w](t) =
∫ t

α

∂k1

∂ t
(t,t1)w(t1)dt1 +

+
n

∑
i=2

∫ t

α

(∫ t1

α
· · ·

(∫ ti−1

α

∂ki

∂ t
(t,t1, . . . ,ti)w(ti)dti

)
· · ·

)
dt1

for each continuous function w(t) in J.

In this paper, we consider simple inequalities involving iterated integrals in the
inequality (1.1) for functions when the function u in the both side of the inequality
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(1.1) are replaced by the function w(u) and ϕ(u) for some functions w,ϕ . We also
provide some integral inequalities involving iterated integrals and some applications
for the main results.

2. Main results

In this section, we state and prove some new nonlinear integral inequalities in-
volving iterated integrals. Throughout the paper, all the functions which appear in the
inequalities are assumed to be real-valued.

We shall introduce some notation, R denotes the set of real numbers and R+ =
[0,∞) be the given subset of R. Let J = [α,β ],α < β and set Ji = {(t1,t2, · · · ,ti) ∈ Ri :
α � ti � · · ·� t1 � β} for all i = 1,2, · · · ,n. Denote by Ci(M,N) the class of all i-times
continuously differentiable functions defined on set M to the set N for all i = 1,2, · · ·
and C0(M,N) = C(M,N). Given a continuous functions a,b : J → R+, we write

â(t) = max{a(s) : α � s � t}, b̂(t) = max{b(s) : α � s � t}, ∀t ∈ J. (2.1)

THEOREM 2.1. Let u(t),a(t) , b(t) are nonnegative continuous functions for all
t ∈ J, and w(u) be a nondecreasing continuous function for all u ∈ R+ with w(u) > 0
for all u > 0. Let ϕ ∈C(R+,R+) be an increasing function with ϕ(∞) = ∞.

(1) Let φ ∈C1(J,J)be increasing with φ(t) � t on J. Suppose that

ϕ(u(t)) � a(t)+b(t)
[∫ φ(t)

φ(α)
k1(t,t1)w(u(t1))dt1 + · · · (2.2)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)w(u(tn))dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n. Suppose that the partial derivative ∂ki

∂ t (t,t1, · · · , ti) exists and are
nonnegative, continuous in Ji+1 for all i = 1,2, · · · ,n. Then

u(t) � ϕ−1
{

G−1
[
G(â(t))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)]}

(2.3)
for all t ∈ [α,T ], where â(t) and b̂(t) are defined in (2.1), T ∈ J is chosen so that

G(â(t))+ b̂(t)
(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)
∈ Dom(G−1),

the function G is defined by

G(r) =
∫ r

r0

ds
w(ϕ−1(s))

, ∀r � r0 > 0, (2.4)
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G−1 denotes the inverse function of G, and

R[x](t,s) = k1(t,s)x(s)+
∫ φ(s)

φ(α)
k2(t,s,t2)x(t2)dt2 (2.5)

+
n

∑
i=3

∫ φ(s)

φ(α)

(∫ φ(t2)

φ(α)
· · ·

(∫ φ(ti−1)

φ(α)
ki(t,s,t2, · · · ,ti)x(ti)dti

)
· · ·

)
dt2,

Q[x](t) =
∫ φ(t)

φ(α)

∂k1

∂ t
(t,t1)x(t1)dt1 (2.6)

+
n

∑
i=2

∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(ti−1)

φ(α)

∂ki

∂ t
(t,t1, . . . ,ti)x(ti)dti

)
· · ·

)
dt1

for all x(t) ∈C(J,J) and t,s ∈ J.

(2) Let φ ∈C1(J,J) be nondecreasing with φ(t) � t on J. Suppose that

ϕ(u(t)) � a(t)+b(t)
[∫ φ(t)

φ(α)
k1(t,t1)w(u(t1))dt1 + · · · (2.7)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)w(u(tn))dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n, which are nondecreasing in t ∈ J for all fixed (t1, · · · ,ti) ∈ Ji for all
i = 1,2, · · · ,n. Then we have

u(t) � ϕ−1
[
G−1

(
G(â(t))+ b̂(t)

∫ φ(t)

φ(α)
R[1](t,σ)dσ

)]
(2.8)

for all t ∈ [α,T1], where â(t) and b̂(t) are defined in (2.1), T1 ∈ J is chosen so that

G(â(t))+ b̂(t)
∫ φ(t)

φ(α)
R[1](t,σ)dσ ∈ Dom(G−1),

the functions G is defined in (2.4), G−1 is the inverse function of G, and R[x](t,s) is
defined in (2.5).

Proof. (1) First, we note that R[w] and Q[w] are linear functional,

R[w1] � R[w2], Q[w1] � Q[w2]

if w1(t) � w2(t) , for all t ∈ J, and

R[w1w2] � R[w1]w2, Q[w1w2] � Q[w1]w2
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if w1(t) is nonnegative in J and w2(t) is nondecreasing in J. For any fixed T ∈ (α,β ]
and α � t � T , we define a function v(t) by

v(t) = â(T )+ b̂(T )
[∫ φ(t)

φ(α)
k1(t,t1)w(u(t1))dt1 + · · · (2.9)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)w(u(tn))dtn

)
· · ·

)
dt1

]
.

Then v(t) is nondecreasing and continuous function, v(α)= â(T ) and u(t)�ϕ−1(v(t)).
Taking the derivative to v(t), we have

v′(t) = b̂(T )[R[w(u)](t,φ(t))φ ′(t)+Q[w(u)](t)]
� b̂(T )[R[1](t,φ(t))φ ′(t)+Q[1](t)]w(ϕ−1(v(t)))

or
v′(t)

w(ϕ−1(v(t)))
� b̂(T )[R[1](t,φ(t))φ ′(t)+Q[1](t)]. (2.10)

By taking t = s in (2.10) and then integrating it from α to any t ∈ J , changing the
variables to the right-hand side and using the definition of the function G , one get the
inequality

G(v(t)) � G(v(α))+ b̂(T )
[∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

]

or

v(t) � G−1
[
G(â(T ))+ b̂(T )

(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)]
(2.11)

for all t ∈ [α,T ], where T is chosen so that he quality in the braces of (2.11) in the
range of G−1. Now, for T = t , we find the desired inequality in (2.3) follows by the
inequality u(t) � ϕ−1(v(t)).

(2) For any fixed T ∈ (α,β ] and α � t � T , we define a function v(t) by

v(t) = â(T )+ b̂(T )
[∫ φ(t)

φ(α)
k1(T,t1)w(u(t1))dt1 + · · · (2.12)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(T,t1, · · · , tn)w(u(tn))dtn

)
· · ·

)
dt1

]
.

Then v(α)= â(T ), the function v(t) is nondecreasing continuous and u(t)�ϕ−1(v(t)).
Since ∂ki

∂ t (T, t1, · · · , ti) = 0 for all i = 1,2, · · · ,n and t ∈ J = [α,β ], we have

v′(t) = b̂(T )[R[w(u)](T,φ(t))]φ ′(t). (2.13)
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The equality (2.13) implies the estimate

v′(t) � b̂(T )[R[1](T,φ(t))]φ ′(t)w(ϕ−1(v(t))). (2.14)

From the equality (2.14), we derive the equation

v′(t)
w(ϕ−1(v(t)))

� b̂(T )[R[1](T,φ(t))]φ ′(t). (2.15)

By taking t = s in (2.15) and then integrating it from α to any t ∈ J , changing the
variables to the right-hand side and using the definition of the function G , one get the
inequality

G(v(t)) � G(v(α))+ b̂(T )
∫ φ(t)

φ(α)
R[1](T,σ)dσ

or

v(t) � G−1
(

G(â(T ))+ b̂(T )
∫ φ(t)

φ(α)
R[1](T,σ)dσ

)
(2.16)

for all t ∈ [α,T1], where T1 is chosen so that he quality in the braces of (2.16) in the
range of G. In particular, for T = t , we find the desired inequality in (2.8) follows by
the inequality u(t) � ϕ−1(v(t)). This completes the proof. �

Let ϕ(u) = up ( p > 0, p �= 1 is a constant) in Theorem 2.1, we get the following
retarded integral inequality with iterated integrals immediately.

COROLLARY 2.2. Let u(t),a(t),b(t) and w(u) be as in Theorem 2.1 and p >
0, p �= 1, be a constant.

(1) Let φ ∈C1(J,J) be increasing with φ(t) � t on J. Suppose that

up(t) � a(t)+b(t)
[∫ φ(t)

φ(α)
k1(t,t1)w(u(t1))dt1 + · · · (2.17)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)w(u(tn))dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n. Suppose that the partial derivative ∂ki

∂ t (t,t1, · · · , ti) exists and are
nonnegative, continuous in Ji+1 for all i = 1,2, · · · ,n. Then

u(t) �
{

G−1
p

[
Gp(â(t))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)]} 1
p

(2.18)
for all t ∈ [α,T2], where T2 ∈ J is chosen so that

[
Gp(â(t))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)]
∈ Dom(G−1

p ),
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the function Gp is defined by

Gp(r) =
∫ r

r0

ds

w(s1/p)
, ∀r � r0 > 0, (2.19)

G−1
p denotes the inverse function of Gp, R[x](t,s) and Q[x](t) are defined in Theorem

2.1.

(2) Let φ ∈ C1(J,J) be nondecreasing with φ(t) � t on J such that (2.17) is
satisfied for any t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in
Ji+1 for all i = 1,2, · · · ,n, which are nondecreasing in t ∈ J for all fixed (t1, · · · ,ti) ∈ Ji

for all i = 1, · · · ,n. Then

u(t) �
[
G−1

p

(
Gp(â(t))+ b̂(t)

∫ φ(t)

φ(α)
R[1](t,σ)dσ

)] 1
p

for all t ∈ [α,T2], where T2 ∈ J is chosen so that
(

Gp(â(t))+ b̂(t)
∫ φ(t)

φ(α)
R[1](t,σ)dσ

)
∈ Dom(G−1

p ),

the function Gp is defined in (2.19), G−1
p denotes the inverse function of Gp , and

R[x](t,s) is defined in Theorem 2.1.

Proof. The proof follows by an argument similar to that in the proof of Theorem
2.1 with suitable modification. We omit the details here. �

COROLLARY 2.3. If, under the conditions of (1) of Theorem 2.1, the functions
a(t) and b(t) are also nondecreasing in J, then

u(t) � ϕ−1
{

G−1
[
G(a(t))+b(t)

(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)]}

(2.20)
for all t ∈ [α,T ], where T ∈ J is chosen so that

G(a(t))+b(t)
(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)
∈ Dom(G−1).

If, under the conditions of (2) of Theorem 2.1, the functions a(t) and b(t) are also
nondecreasing in J, then

u(t) � ϕ−1
[
G−1

(
G(a(t))+b(t)

∫ φ(t)

φ(α)
R[1](t,σ)dσ

)]
(2.21)

for all t ∈ [α,T1], where T1 ∈ J is chosen so that

G(a(t))+b(t)
∫ φ(t)

φ(α)
R[1](t,σ)dσ ∈ Dom(G−1).
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Proof. The proof follows by an argument similar to that in the proof of Theorem
2.1 with suitable modification. We omit the details here. �

REMARK 2.1. (1) When w(u) = ϕ ′(u) in (1) of Theorem 2.1, we get following
result:

u(t) � ϕ−1(â(t))+ b̂(t)
(∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ +

∫ t

α
Q[1](σ)dσ

)
.

(2) When w(u) = ϕ ′(u) in (2) of Theorem 2.1, we get following result:

u(t) � ϕ−1(â(t))+ b̂(t)
∫ φ(t)

φ(α)
R[1](φ−1(σ),σ)dσ .

Theorem 2.1 can easily be applied to generate other useful nonlinear integral in-
equalities in more general situations. For example, we have the following results.

THEOREM 2.4. Let the functions u(t),a(t),b(t),w(u) and ϕ are as in Theorem
2.1.

(1) Let φ ∈C1(J,J) be increasing with φ(t) � t on J, ϕ ′ is nondecreasing and
suppose

ϕ(u(t)) � a(t)+b(t)
[∫ φ(t)

φ(α)
k1(t,t1)ϕ ′(u(t1))w(u(t1))dt1 + · · · (2.22)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)ϕ ′(u(tn))w(u(tn))dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n. Suppose that the partial derivative ∂ki

∂ t (t,t1, · · · , ti) exists and are
nonnegative, continuous in Ji+1 for all i = 1,2, · · · ,n. Then

u(t) � G−1
1

[
G1(ϕ−1(â(t)))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)]
(2.23)

for all t ∈ [α,T3], where â(t) and b̂(t) are defined in (2.1), T3 ∈ J is chosen so that

G1(ϕ−1(â(t)))+ b̂(t)
(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)
∈ Dom(G−1

1 ),

the function G1 is defined by

G1(r) =
∫ r

r0

ds
w(s)

, ∀r � r0 > 0, (2.24)

G−1
1 denotes the inverse function of G1, the functions R[x](t,s) and Q[x](t) are defined

in (2.5) and (2.6), respectively.
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(2) Let φ ∈ C1(J,J) be nondecreasing with φ(t) � t on J, ϕ ′ is nondecreasing
and such that (2.22) is satisfied for any t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative,
continuous functions in Ji+1 for all i = 1,2, · · · ,n, which are nondecreasing in t ∈ J
for all fixed (t1, · · · , ti) ∈ Ji for all i = 1,2, · · · ,n, then

u(t) � G−1
1

[
G1(ϕ−1(â(t)))+ b̂(t)

∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds

]
(2.25)

for all t ∈ [α,T4], where â(t) and b̂(t) are defined in (2.1), T4 ∈ J is chosen so that

G1(ϕ−1(â(t)))+ b̂(t)
∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds ∈ Dom(G−1

1 ),

the function G1 is defined in (2.24) and G−1
1 is the inverse function of G1 , R[x](t,s) is

defined in (2.5).

Proof. (1) For any fixed T ∈ (α,β ] and α � t � T , we define a function v(t) by

v(t) = â(T )+ b̂(T )
[∫ φ(t)

φ(α)
k1(t,t1)ϕ ′(u(t1))w(u(t1))dt1 + · · · (2.26)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t, t1, · · · ,tn)ϕ ′(u(tn))

×w(u(tn))dtn

)
· · ·

)
dt1

]
.

Then v(α)= â(T ), the function v(t) is nondecreasing continuous and u(t)�ϕ−1(v(t)).
Taking derivative to v(t), we have

v′(t) = b̂(T )[R[ϕ ′(u)w(u)](t,φ(t))φ ′(t)+Q[ϕ ′(u)w(u)(t)]
� b̂(T ){R[w(ϕ−1(v(t)))](t,φ(t))φ ′(t)+Q[w(ϕ−1(v(t)))](t)}ϕ ′(ϕ−1(v(t)))

or

v′(t)
ϕ ′(ϕ−1(v(t)))

� b̂(T ){R[w(ϕ−1(v))](t,φ(t))φ ′(t)+Q[w(ϕ−1(v))](t)}. (2.27)

By taking t = s in (2.27) and then integrating it from α to any t ∈ J and changing the
variables to the right-hand side, one get the inequality

ϕ−1(v(t)) � ϕ−1(v(α))

+ b̂(T )
[∫ t

α
{R[w(ϕ−1(v))](s,φ(s))φ ′(s)+Q[w(ϕ−1(v))](s)}ds

]
. (2.28)

We denote the right-hand side of (2.28) by p(t). Then p(α) = ϕ−1(â(T )), the function
p(t) is positive and nondecreasing in t ∈ [α,β ], u(t) � ϕ−1(v(t)) � p(t) and

p′(t) � b̂(T ){R[w(ϕ−1(v))](t,φ(t))φ ′(t)+Q[w(ϕ−1(v))](t)}. (2.29)
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The inequality (3.29) implies the estimate

p′(t) � b̂(T ){R[1](t,φ(t))φ ′(t)+Q[1](t)}w(p(t)). (2.30)

From the inequality (2.30), we derive the equation

p′(t)
w(p(t))

� b̂(T ){R[1](t,φ(t))φ ′(t)+Q[1](t)}. (2.31)

By taking t = s in (2.31) and then integrating it from α to any t ∈ J , changing the
variables to the right-hand side and using the definition of the function G1 , one get the
inequality

G1(p(t)) � G1(p(α))+ b̂(T )
(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)
,

or

p(t) � G−1
1

[
G1(ϕ−1(â(T )))+ b̂(T )

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)]
.

(2.32)
for all t ∈ [α,T2], where T2 is chosen so that he quality in the braces of (2.32) in the
range of G1. In particular, for T = t , we find the desired inequality in (2.23) follows
by the inequality u(t) � ϕ−1(v(t)) � p(t).

(2) The proof of the remaining inequality can be completed by combining at the
proofs of the (2) of Theorem 2.1 and (1) of Theorem 2.4 with suitable modifications.
This completes the proof. �

Let ϕ(u) = up ( p � 1 is a constant) in Theorem 2.4, we get the following retarded
integral inequality with iterated integrals immediately.

COROLLARY 2.5. Let the functions u(t),a(t),b(t), and w(u) are as in Theorem
2.4 and p � 1 is a constant.

(1) Let φ ∈C1(J,J) be increasing with φ(t) � t on J, and suppose

up(t) � a(t)+ pb(t)
[∫ φ(t)

φ(α)
k1(t,t1)up−1(t1)w(u(t1))dt1 + · · · (2.33)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)up−1(tn)w(u(tn))dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n. Suppose that the partial derivative ∂ki

∂ t (t,t1, · · · , ti) exists and are
nonnegative, continuous in Ji+1 for all i = 1,2, · · · ,n. Then

u(t) � G−1
1

[
G1(â

1
p (t))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)]
(2.34)
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for all t ∈ [α,T3], where â(t) and b̂(t) are defined in (2.1), T3 ∈ J is chosen so that

G1(â
1
p (t))+ b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)
∈ Dom(G−1

1 ),

the functions R[x](t,s), Q[x](t) and G1 are defined in (2.5), (2.6) and (2.24), respec-
tively.

(2) Let φ ∈ C1(J,J) be nondecreasing with φ(t) � t on J, ϕ ′ is nondecreasing
and such that (2.33) is satisfied for any t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative,
continuous functions in Ji+1 , for all i = 1,2, · · · ,n, which are nondecreasing in t ∈ J
for all fixed (t1, · · · , ti) ∈ Ji for all i = 1,2, · · · ,n. Then

u(t) � G−1
1

[
G1(â

1
p (t))+ b̂(t)

∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds

]
(2.35)

for all t ∈ [α,T4], where â(t) and b̂(t) are defined in (2.1), T4 ∈ J is chosen so that

G1(â
1
p (t))+ b̂(t)

∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds ∈ Dom(G−1

1 ).

Proof. The proof follows by an argument similar to that in the proof of Theorem
2.4 with suitable modification. We omit the details here. �

Let w(u) = up ( p > 0, p �= 1 is a constant) in Theorem 2.4, we get the following
retarded integral inequality with iterated integrals immediately.

COROLLARY 2.6. Let the functions u(t),a(t),b(t),ϕ and ϕ ′ are as in Theorem
2.4 and p � 0, p �= 1, is a constant.

(1) Let φ ∈C1(J,J) be increasing with φ(t) � t on J . Suppose that

ϕ(u(t)) � a(t)+b(t)
[∫ φ(t)

φ(α)
k1(t,t1)ϕ ′(u(t1))up(t1)dt1 + · · · (2.36)

+
∫ φ(t)

φ(α)

(∫ φ(t1)

φ(α)
· · ·

(∫ φ(tn−1)

φ(α)
kn(t,t1, · · · ,tn)ϕ ′(u(tn))up(tn)dtn

)
· · ·

)
dt1

]

for all t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in Ji+1 for
all i = 1,2, · · · ,n. Suppose that the partial derivative ∂ki

∂ t (t,t1, · · · , ti) exists and are
nonnegative, continuous in Ji+1 for all i = 1,2, · · · ,n. Then

u(t) �
[
[ϕ−1(â(t))]1−p +(1− p)b̂(t)

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)] 1
1−p

for all t ∈ J.
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(2) Let φ ∈C1(J,J) be nondecreasing with φ(t) � t on J, and such that (2.36)
is satisfied for any t ∈ J, where ki(t,t1, · · · ,ti) are nonnegative, continuous functions in
Ji+1 for all i = 1,2, · · · ,n, which are nondecreasing in t ∈ J for all fixed (t1, · · · ,ti) ∈ Ji

for all i = 1,2, · · · ,n, then

u(t) �
[
[ϕ−1(â(t))]1−p +(1− p)b̂(t)

∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds

] 1
1−p

for t ∈ J.

Proof. The proof follows by an argument similar to that in the proof of Theorem
2.4 with suitable modification. We omit the details here. �

REMARK 2.2. (1) If, under the conditions of (1) of Theorem 2.4, the functions
a(t) and b(t) are also nondecreasing in J, then

u(t) � G−1
1

[
G1(ϕ−1(a(t)))+b(t)

(∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds+

∫ t

α
Q[1](s)ds

)]
.

(2) If, under the conditions of (2) of Theorem 2.4, the functions a(t) and b(t) are
also nondecreasing in J, then

u(t) � G−1
1

[
G1(ϕ−1(a(t)))+b(t)

∫ φ(t)

φ(α)
R[1](φ−1(s),s)ds

]
.

3. Applications

In this section, we show that our results are useful in showing the global exis-
tence of solutions to certain integro-differential equations. First consider the following
retarded integro-differential equation

pxp−1(t)x′(t)

= F

(
t, f1(t,x(t)),

∫ t

α
f2(t,t1,x(t1))dt1,

∫ t

α

∫ t1

α
f3(t,t1,t2,x(t2))dt2dt1

)
(3.1)

for all t ∈ J, where p > 0, p �= 1, is constant, F ∈C(J×R3,R), fi ∈C(Ji ×R,R) for
all i = 1,2,3. The following theorem deals with a bound on the solution of the problem
(3.1).

THEOREM 3.1. Assume that F : I ×R2 → R is a continuous function for which
there exists continuous nonnegative nondecreasing functions a(t) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|F(t,u1,u2,u3)| � a(t)(|u1|+ |u2|+ |u3|),
| f1(t,v)| � k1(t)w(|v|),
| f2(t,t1,v)| � k2(t,t1)w(|v|),
| f3(t,t1,t2,v)| � k3(t,t1,t2)w(|v|),

(3.2)
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where function w(u) be a nondecreasing continuous function for all u ∈ R+ with
w(u) > 0 for all u > 0, and ki(t,t1, · · · ,ti−1) are nonnegative, continuous functions
in Ji for i = 1,2,3. If x(t) is any solution of the problem (3.1) with the condition (3.2),
then

| x(t) | �
{

G−1
p

[
Gp(|x(α)|p)+ â(t)

(∫ t

α
k1(t1)dt1 +

∫ t

α

∫ t1

α
k1(t1,t2)dt2 dt1

+
∫ t

α

∫ t1

α

∫ t2

α
k1(t1,t2,t3)dt3 dt2 dt1

)]} 1
p

,

where the functions Gp, G−1
p are as in Corollary 2.2 for any t1, t2,t3 ∈ J.

Proof. It is easy to see that the solution x(t) of the problem (3.1) satisfies the
equivalent integral equation

xp(t) = xp(α)

+
∫ t

α
F

(
t, f1(t,x(t)),

∫ t

α
f2(t,t1,x(t1))dt1,

∫ t

α

∫ t1

α
f3(t,t1,t2,x(t2))dt2dt1

)
ds.

From (3.2) and making the change of variables, we have

| x(t) |p � | x(α) |p +a(t)
[∫ t

α
k1(t1)w(|x(t1)|)dt1 (3.3)

+
∫ t

α

∫ t1

α
k1(t1,t2)w(|x(t2)|)dt2 dt1

+
∫ t

α

∫ t1

α

∫ t2

α
k1(t1,t2,t3)w(|x(t3)|)dt3 dt2 dt1

]
.

Now, a suitable application of the inequality given in (2) of Corollary 2.2 to (3.3) yields
the desired result. �

THEOREM 3.2. Assume that F : I ×R2 → R is a continuous function for which
there exists continuous nonnegative nondecreasing functions a(t) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|F(t,u1,u2,u3)| � a(t)(|u1|+ |u2|+ |u3|),
| f1(t,v)| � k1(t)|v|p−1w(|v|),
| f2(t,t1,v)| � k2(t,t1)|v|p−1w(|v|),
| f3(t,t1,t2,v)| � k3(t,t1,t2)|v|p−1w(|v|),

(3.4)

where the function w(u) is a nondecreasing continuous function for all u ∈ R+ with
w(u) > 0 for all u > 0 and ki(t,t1, · · · ,ti−1) are nonnegative, continuous functions in
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Ji for i = 1,2,3 and p � 1 is a constant. If x(t) is any solution of the problem (3.1)
with the condition (3.4), then

| x(t) | � G−1
1

[
G1(|x(α)| 1

p )+
1
p
â(t)

(∫ t

α
k1(t1)dt1 +

∫ t

α

∫ t1

α
k1(t1, t2)dt2 dt1

+
∫ t

α

∫ t1

α

∫ t2

α
k1(t1,t2,t3)dt3 dt2 dt1

)]
,

where the functions G1,G
−1
1 are as in Corollary 2.5 for any t1,t2,t3 ∈ J.

Proof. The proof follows by an argument similar to that in the proof of Theorem
3.1 with suitable modification using the inequality given in (2) of Corollary 2.5. We
omit the details here. �

We next consider the following integro-differential equation

(
x(t)
h(t)

)′
= F

(
t, f1(t,x(t)),

∫ t

α
f2(t,t1,x(t1))dt1,

∫ t

α

∫ t1

α
f3(t, t1, t2,x(t2))dt2dt1

)
(3.5)

for all t ∈ J, where F ∈C(J×R3,R), fi ∈C(Ji×R,R) for i = 1,2,3 and h(t) �= 0. The
following theorem deals with a bound on the solution of the problem (3.5).

THEOREM 3.3. Assume that F : I ×R2 → R is a continuous function for which
there exists continuous nonnegative nondecreasing functions a(t) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|F(t,u1,u2,u3)| � a(t)(|u1|+ |u2|+ |u3|),
| f1(t,v)| � k1(t)w(|v|),
| f2(t,t1,v)| � k2(t,t1)w(|v|),
| f3(t,t1,t2,v)| � k3(t,t1,t2)w(|v|),

(3.6)

where the function w(u) is a nondecreasing continuous function for all u ∈ R+ with
w(u) > 0 for all u > 0 and ki(t,t1, · · · ,ti−1) are nonnegative, continuous functions in
Ji for i = 1,2,3. If x(t) is any solution of the problem (3.5) with the condition (3.6),
then

| x(t) | � G−1
1

[
G1

(∣∣∣∣ x(α)
h(α)

ĥ(t)
∣∣∣∣
)

+ |ĥ(t)â(t)|
(∫ t

α
k1(t1)dt1

+
∫ t

α

∫ t1

α
k1(t1,t2)dt2 dt1 +

∫ t

α

∫ t1

α

∫ t2

α
k1(t1,t2,t3)dt3 dt2 dt1

)]
,

where the functions G1,G
−1
1 are as in Corollary 2.5 for any t1,t2,t3 ∈ J.



ON SOME GRONWALL TYPE INEQUALITIES 619

Proof. It is easy to see that the solution x(t) of the problem (3.5) satisfies the
equivalent integral equation

x(t) =
x(α)
h(α)

h(t)

+ h(t)
∫ t

α
F

(
t, f1(t,x(t)),

∫ t

α
f2(t,t1,x(t1))dt1,

∫ t

α

∫ t1

α
f3(t,t1,t2,x(t2))dt2dt1

)
ds.

From (3.6) and making the change of variables, we have

| x(t) | �
∣∣∣∣ x(α)
h(α)

h(t)
∣∣∣∣+ |h(t)a(t)|

[∫ t

α
k1(t1)w(|x(t1)|)dt1 (3.7)

+
∫ t

α

∫ t1

α
k1(t1,t2)w(|x(t2)|)dt2 dt1

+
∫ t

α

∫ t1

α

∫ t2

α
k1(t1,t2,t3)w(|x(t3)|)dt3 dt2 dt1

]
.

Now, a suitable application of the inequality given in (2) of Corollary 2.5 to (3.7) yields
the desired result. �
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