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Abstract. Our aim in this paper is to establish some explicit bounds of solutions of a certain
class of nonlinear dynamic inequalities on a time scale T which is unbounded above. Also, we
establish some sufficient conditions for global existence and an estimate of the rate of decay of
the solutions. These on the one hand generalizes and on the other hand furnish a handy tool for
the study of qualitative as well as quantitative properties of solutions of dynamic equations on
time scales.

1. Introduction

It is well known that the dynamic inequalities play important roles in the devel-
opment of the qualitative theory of dynamic equations on time scales. During the past
decade a number of dynamic inequalities has been established by some authors which
are motivated by some applications, for example, when studying the behavior of so-
lutions of certain class of dynamic equations on time scales, the bounds provided by
earlier inequalities are inadequate in applications and we need some new and specific
type of dynamic inequalities in time scales. For contributions, we refer the reader to
[1], [2], [3], [4], [5], [9], [10], [14] and the references cited therein. In [4, Theorem 6.1]
it is proved that if y, a and p ∈Crd and p ∈ R+, then

yΔ(t) � f (t)+ p(t)y(t), for all t ∈ [t0,∞)T, (1.1)

implies

y(t) � y(t0)ep(t,t0)+
∫ t

t0
ep(t,σ(s)) f (s)Δs, for all t ∈ [t0,∞)T, (1.2)

where R+ := {a ∈ R : 1+ μ(t)a(t) > 0, t ∈ T} and R is the class of rd-continuous
and regressive functions. Using this comparison result, the authors in [4, Theorem 6.4]
proved a new Gronwall dynamic inequality which proves that: If y, a and p ∈Crd and
p ∈ R+, then

y(t) � a(t)+
∫ t

t0
p(s)y(s)Δs, for all t ∈ [t0,∞)T, (1.3)
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implies that

y(t) � a(t)+
∫ t

t0
ep(t,σ(s))a(s)p(s)Δs, for all t ∈ [t0,∞)T. (1.4)

Since (1.4) provides an explicit bound to the unknown function y(t) and a tool to the
study of many qualitative as well as quantitative properties of solutions of dynamic
equations, it has become one of the very few classic and most influential results in the
theory and applications of inequalities. Because of its fundamental importance, over
the years, many generalizations and analogous results of (1.4) have been established.

In this paper, we consider the nonlinear dynamic inequality

(up(t))Δ � β (t)+α(t)uq(t)−ϕ(t)up(σ(t)), for all t ∈ [t0,∞)T, (1.5)

and its integral form on a time scale T where t0 � 0 is a fixed number. One of our aims
in this paper is establish some sufficient conditions for global existence and an estimate
of the rate of decay of solutions. Note that the dynamic inequality (1.1) is a special case
of (1.5) with ϕ(t) = 0 and q = 1. For (1.5) we will assume the following hypotheses:

(H1)
{
β , ϕ , α and u are rd-continuous positive functions defined on [t0,∞)T,
p and q are positive constants such that q � 1 and p � 1.

The inequality (1.5) is of interest in the study of the continuous and discrete dy-
namical systems and nonlinear evolution equations as well as in oscillation theory of
dynamic equations on time scales. Also, it can be applied in studying the global exis-
tence of solutions of nonlinear partial dynamic equations on time scales.

Also in this paper, we are concerned with the nonlinear dynamic inequality

uγ(t) � a(t)+b(t)
∫ t

t0

[
f (s)uδ (s)+g(s)uα(s)

]
Δs, for all t ∈ [t0,∞)T, (1.6)

and investigate new nonlinear dynamic inequalities which provide some explicit bounds
on the unknown function u(t) .

For (1.6) we will assume the following hypotheses:

(H2)
{

u, a, b, f and g are rd-continuous positive functions defined on [t0,∞)T,
α, δ and γ are positive constants such that γ � 1 and δ , α � γ .

Our motivations for considering the inequality (1.6) are the results obtained by Ou-
Iang [12], Dafermos [6] and Pachpatte [13] when T = R . Ou-Iang [12] in his study of
the boundedness of certain second order differential equations established the following
result which is generally known as Ou-Iang’s inequality: If u and f are non-negative
functions defined on [0,∞) such that

u2(t) � k2 +2
∫ t

0
f (s)u(s)ds, or all t ∈ [0,∞), (1.7a)
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where k � 0 is a constant, then u(t) � k+
∫ t
0 f (s)ds , for all t ∈ [0,∞).

Dafermos [6] established a generalization of Ou-Iang’s inequality in the process of
investigation the connection between stability and the second law of thermodynamics.
He proved that if u ∈ L∞[0,r] and f ∈ L1[0,r] are non-negative functions satisfying

u2(t) � M2u2(0)+2
∫ t

0
[N f (s)u(s)+Ku2(s)]ds, for all t ∈ [0,r], (1.8)

where M, N, K are non-negative constants, then u(t) �
[
Mu(0)+N

∫ t
0 f (s)ds

]
eKt .

Pachpatte [13] established the following further generalizations of the result of
Dafermos [6] and proved that: If u, f , g are continuous non-negative functions on
[0,∞) satisfying

u2(t) � k2 +2
∫ t

0
[ f (s)u(s)+g(s)u2(s)]ds, for all t ∈ [0,∞), (1.9)

where k � 0 is a constant, then u(t) �
(
k+

∫ t
0 f (s)ds

)
exp

(∫ t
0 g(s)ds

)
, for all t ∈

[0,∞).

Our aim in this paper, is to establish some sufficient conditions for global existence
and an estimate of the rate of decay of solutions of (1.5) and give an explicit bound of
the unknown function of its integral from. Also, we give an explicit bound of the
unknown function of the inequality (1.6). The results will be different from the results
established by Ou-Iang [12], Dafermos [6] and Pachpatte [13]. The results will be
proved in Section 2 by employing the Bernoulli inequality.

The study of dynamic equations and inequalities on time scales, which goes back
to its founder Stefan Hilger [7], is an area of mathematics that has recently received a lot
of attention. The general idea is to prove a result for a dynamic equation or a dynamic
inequality where the domain of the unknown function is a so-called time scale T , which
may be an arbitrary closed subset of the real numbers R . Since we are interested in the
asymptotic behavior of solutions near infinity, we assume that supT = ∞ , and define
the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞)∩T. The book on the subject of
time scale by Bohner and Peterson [4] summarizes and organizes much of time scale
calculus. The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung [8]), i.e, when
T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. There are applications of
dynamic equations on time scales to quantum mechanics, electrical engineering, neural
networks, heat transfer, and combinatorics. A recent cover story article in New Scientist
[15] discusses several possible applications.

For completeness in the following, we recall the following concepts related to the
notion of time scales. A function f : T → R is said to be right–dense continuous (rd–
continuous) provided g is continuous at right–dense points and at left–dense points in
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T, left hand limits exist and are finite. The set of all such rd-continuous functions is
denoted by Crd(T). The graininess function μ for a time scale T is defined by μ(t) :=
σ(t)− t , and for any function f : T → R the notation f σ (t) denotes f (σ(t)) where
σ(t) is the forward jump operator defined by σ(t) := inf{s ∈ T : s > t}. We will make
use of the following product and quotient rules for the derivative of the product f g and
the quotient f/g (where ggσ �= 0, here gσ = g ◦σ ) of two differentiable function f
and g

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ , and

(
f
g

)Δ
=

f Δg− f gΔ

ggσ
. (1.10)

We say that a function p : T → R is regressive provided 1+ μ(t)p(t) �= 0, t ∈ T. The
set of all regressive functions on a time scale T forms an Abelian group under the
addition ⊕ defined by p⊕q := p+q+ μ pq.

We denote the set of all f : T→R which are rd-continuous and regressive by R. If
p∈R , then we can define the exponential function by ep(t,s)= exp

(∫ t
s ξμ(τ)(p(τ))Δτ

)
,

for t ∈ T, s ∈ T
k, where ξh(z) is the cylinder transformation, which is given by

ξh(z) =
{ log(1+hz)

h , h �= 0,
z, h = 0.

Alternatively, for p ∈ R one can define the exponential function ep(·, t0), to be the
unique solution of the IVP xΔ = p(t)x, with x(t0) = 1. We define R+ := { f ∈ R :
1+ μ(t) f (t) > 0, t ∈ T}. Form the properties of the exponential function, see Bohner
and Peterson [4], we will use the following properties eΔp(t,t0) = p(t)ep(t,t0) and

ep(σ(t),t0) = [1+ μ(t)p(t)]ep(t,t0).

Also if p ∈ R , then ep(t,s) is real-valued and nonzero on T . If p ∈ R+, then
ep(t,t0) is always positive, ep(t,t) = 1 and e0(t,s) = 1. Note that If T = R , then

ep(t,t0) = exp(
∫ t
t0

p(s)ds), if T = N , then ep(t,t0) =
t−1
∏

s=t0
(1 + p(s)), and if T =qN0 ,

then ep(t, t0) =
t−1
∏

s=t0
(1+(q−1)sp(s)).

2. Main Results

Before we state and prove the main results we present some Lemmas which play
important roles in the proofs of the main results.

LEMMA 2.1. ([11, Bernoulli’s inequality]) Let 0 < γ � 1 and x > −1. Then
(1+ x)γ � 1+ γx.

LEMMA 2.2. ([3, 5]) Let T be an unbounded time scale with t0 and t ∈ T .
Suppose that y, a, b, p ∈Crd and b, p � 0. If

y(t) � a(t)+b(t)
∫ t

t0
p(s)y(s)Δs, for all t ∈ [t0,∞)T, (2.1)
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then

y(t) < a(t)+b(t)
∫ t

t0
a(s)p(s)ebp(t,σ(s))Δs, for all t ∈ [t0,∞)T. (2.2)

In the following, we consider the nonlinear dynamic inequality (1.5) and establish
some sufficient conditions for global existence and an estimate of the rate of decay of
its solutions.

THEOREM 2.1. Assume that (H1) holds and there exists a positive rd -continuous
function π(t) , π ∈C1

r [t0,∞)T such that

β (t)+
α(t)
πq(t)

� 1
(πσ (t))p

[
ϕ(t)− (π p)Δ(t)

π p(t)

]
. (2.3)

Let u(t) � 0 is a solution of the inequality (1.5) such that

π p(t0)u(t0) < 1. (2.4)

Then u(t) exists globally and the following estimate holds:

0 � u(t) <
1

π(t)
, for t � t0.

Consequently, if limt→∞ π(t) = ∞ , then limt→∞ u(t) = 0.

Proof. Let
w(t) := up(t)eϕ(t,t0).

Using the product rule in (1.10), we have

wΔ(t) = (up(t))Δ eϕ(t,t0)+ϕ(t)(uσ )p eϕ(t,t0).

This and (1.5) imply that

wΔ(t) � eϕ (t, t0)
[
β (t)−ϕ(t)(uσ (t))p +α(t)uq(t)

]
+ϕ(t)up(σ(t))eϕ (t,t0)

= eϕ (t, t0)β (t)−ϕ(t)eϕ(t,t0)up(σ(t))
+α(t)eϕ(t,t0)uq(t)+ϕ(t)up(σ(t))eϕ(t, t0)

= eϕ (t, t0)β (t)+α(t)eϕ(t,t0)uq(t)

= b(t)+a(t)wλ (t), (2.5)

where

λ =
q
p
, b(t) := eϕ (t,t0)β (t) and a(t) := α(t)

(
eϕ (t,t0)

)1−λ
> 0. (2.6)

Define

η(t) :=
eϕ(t,t0)
π p(t)

. (2.7)
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From (2.4) and (2.7), we have

w(t0) = u(t0) <
1

π p(t0)
= η(t0), (2.8)

where eϕ(t0, t0) = 1. It follows from the inequalities (2.3), (2.5) and (2.8) that

wΔ(t0) � β (t0)+α(t0)uq(t0) � β (t0)+
α(t0)
πq(t0)

� 1
(πσ (t0))

p

[
ϕ(t0)− (π p)Δ(t0)

π p(t0)

]

=
eϕ(t0,t0)
(πσ (t0))

p

[
ϕ(t0)− (π p)Δ(t0)

π p(t0)

]
. (2.9)

Using the quotient rule in (1.10), we note that

eϕ (t, t0)
(πσ (t))p

[
ϕ(t)− (π p)Δ(t)

π p(t)

]
=

ϕ(t)eϕ(t,t0)
(πσ (t))p − eϕ(t,t0)(π p)Δ(t)

π p(t)(πσ (t))p

=
ϕπ p(t)eϕ (t, t0)− eϕ(t,t0)(π p)Δ(t)

π p(t)(πσ (t))p

=
(

eϕ(t,t0)
π p(t)

)Δ
. (2.10)

This, (2.7) and (2.9) imply that

wΔ(t0) �
(

eϕ(t,t0)
π p(t)

)Δ
∣∣∣∣∣
t=t0

= ηΔ(t0). (2.11)

From (2.8) and (2.11), it follows that there exists ε > 0, such that

w(t) � η(t), for t0 � t � T, (2.12)

where ε is chosen so that T = t + ε ∈ T . Now, we prove that if (2.12) holds, then

wΔ(t) � ηΔ(t), for t ∈ [t0,T1], for T1 > t0. (2.13)

From (2.5), (2.6) and (2.12), we see that

wΔ(t) � eϕ(t,t0)β (t)+α(t)
(
eϕ(t,t0)

)1−λ
wλ (t)

� eϕ(t,t0)β (t)+α(t)
(
eϕ(t,t0)

)1−λ ηλ (t)

= eϕ(t,t0)β (t)+α(t)
(
eϕ(t,t0)

)1−λ
(

eϕ(t,t0)
π p(t)

)λ

= eϕ(t,t0)β (t)+
α(t)eϕ (t,t0)

πq(t)
, where λ =

q
p
.
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This, (2.10) and (2.3) imply that

wΔ(t) � eϕ(t,t0)
[
β (t)+

α(t)
πq(t)

]
� eϕ(t,t0)

(πσ (t))p

[
ϕ(t)− (π p)Δ(t)

π p(t)

]

=
(

eϕ(t,t0)
π p(t)

)Δ
= ηΔ(t), for t � T1.

Denote

T1 := sup{δ ∈ R : w(t) < η(t), for t ∈ [t0,t0 + δ ]T}.
Now, we claim that T1 = ∞ , which says that every nonnegative solution u(t) to in-
equality (1.6) satisfying assumption (2.4) is defined globally. Assume the contrary, i.e.,
T1 < ∞. From the definition of T1 , one gets w(T1) < η(T1). It follows from this and
(2.13) that

wΔ(t) � ηΔ(t), for t ∈ [t0,T1]T. (2.14)

This implies, after integrating from t0 to T1 , that

w(T1)−w(t0) =
∫ T1

t0
wΔ(s)Δs �

∫ T1

t0
ηΔ(s)Δs = η(T1)−η(t0).

Since w(t0) < η(t0) by assumption (2.4), we see that

w(T1) < η(T1). (2.15)

It follows from (2.14) and (2.15), as above with t0 = T1 , there exists ε1 > 0 such
that w(t) < η(t) , for T1 � t � T1 + ε1, where ε is chosen so that T1 + ε ∈ T . This
contradicts the definition of T1 and the contradiction proves the desired conclusion
T1 = ∞. It follows from the definitions of w(t), η(t) , and from the relation T1 = ∞ ,
that

u(t) =
(

w(t)
eϕ(t,t0)

) 1
p

<

(
η(t)

eϕ(t,t0)

) 1
p

=
1

π(t)
, for t � t0.

From this we see that if limt→∞ π(t) = 0, then limt→∞ u(t) = 0. The proof is com-
plete. �

REMARK 2.1. In Theorem 2.1, if we assume that there exists a positive function
f (t) such that

ϕ(t)− (π p)Δ(t)
π p(t)

= f (t),

then π p(t) = eϕ− f (t,t0) , with π(t0) = 1. Using this in Theorem 2.1, we get the follow-
ing result.
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THEOREM 2.2. Assume that (H1) holds and there exists a positive rd-continuous
function f (t) such that

β (t)+
α(t)(

eϕ− f (t,t0)
) q

p
� f (t)(

eϕ− f (σ(t),t0)
) .

Let u(t) � 0 is a solution of the inequality (1.6) such that u(t0) < 1. Then u(t) exists
globally and the following estimate holds:

0 � u(t) <
1

eϕ− f (t,t0)
, for t � t0.

Consequently, if ϕ(t) > f (t) , then limt→∞ u(t) = 0.

With an appropriate choice of the functions α , β , ϕ , f and π one can derive
from Theorem 2.1 a number of results. For example, one can derive the following
result.

COROLLARY 2.1. Assume that (H1) holds and there exists a positive rd -continuous
function π(t) > 0 , π ∈C1

r [t0,∞)T , and θ ∈ (0,1) such that

α(t) � θ
(πσ (t))p

[
ϕ(t)− (π p)Δ(t)

π p(t)

]
, β (t) � 1−θ

(πσ (t))p

[
ϕ(t)− (π p)Δ(t)

π p(t)

]
.

Let u(t) � 0 is a solution of the inequality (1.6) such that π(t0)u(t0) < 1. Then u(t)
exists globally and 0 � u(t) < 1/π(t) , for t � t0. Consequently, if limt→∞ π(t) = ∞ ,
then limt→∞ u(t) = 0.

Next, in the following, we consider the integral form of (1.6) on a time scale T .
This inequality given by

up(t) � a(t)+b(t)
∫ t

t0
[ f (s)uq(s)−g(s)up(σ(s))]Δs, for all t ∈ [t0,∞)T. (2.16)

Our aim is to establish an explicit bound of the unknown function u(t) where u(t) � 0.
For (2.16) we will assume the following hypotheses:

(H3)

⎧⎨
⎩

a, f and g are positive rd-continuous functions defined on [t0,∞)T,
u(t) � 0, for all t � t0, where t0 � 0 is a fixed number,
p, q are positive constants such that p > q � 1.

THEOREM 2.3. Let T be an unbounded time scale with t0 and t ∈ T . Assume
that (H3) holds. Then (2.16) implies

u(t) � a
1
p (t)+

q
p
a

1
p−1(t)b(t)

⎡
⎣∫ t

t0
e(

a
q
p f

)(t,σ(s)) f (s)a
q
p−1(s)Δs

⎤
⎦ , t ∈ [t0,∞)T.

(2.17)
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Proof. Define a function z(t) by

z(t) =
∫ t

t0
[ f (s)uq(s)−g(s)up(σ(s))]Δs. (2.18)

Then z(t0) = 0, and (2.16) can be written as

up(t) � a(t)+b(t)z(t).

From this, we get that

u(t) � (a(t)+b(t)z(t))
1
p = a

1
p (t)

(
1+

b(t)
a(t)

z(t)
) 1

p

. (2.19)

This implies that

uq(t) � a
q
p (t)(1+

z(t)
a(t)

)
q
p . (2.20)

Applying Lemma 2.1 on (2.19) and (2.20), we have (note that p � 1),

u(t) � (a(t)+b(t)z(t))
1
p = a

1
p (t)+

1
p
a

1
p−1(t)b(t)z(t)

� a
1
p (t)+a

1
p−1(t)b(t)z(t), (2.21)

and
uq(t) � a

q
p (t)+

q
p
a

q
p−1(t)z(t).

From (2.18), we see that

zΔ(t) = f (t)uq(t)−g(t)up(σ(t)) � f (t)uq(t) = a
q
p (t) f (t)+

q
p

f (t)a
q
p−1(t)z(t).

So that
zΔ(t) � a

q
p (t) f (t)+

q
p

f (t)a
q
p−1(t)z(t).

Using the fact that z(t0) = 0 and the comparison theorem [4, Theorem 6.1], we see that

z(t) � q
p

∫ t

t0
e
a

q
p f

(t,σ(s)) f (s)a
q
p−1(s)Δs, for all t ∈ [t0,∞)T. (2.22)

Substituting (2.22) into (2.21), we have

u(t) � a
1
p (t)+

q
p
a

1
p−1(t)b(t)

[∫ t

t0
e
a

q
p f

(t,σ(s)) f (s)a
q
p−1(s)Δs

]
,

which is the desired inequality (2.17). The proof is complete. �

From Theorem 2.3, when T = R , a(t) = k2, b(t) = 2, g(t) = 0, q = 1 and p = 2,
we have the following result which is different from the result established by Ou-Iang
[12].
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COROLLARY 2.2. Let T = R with t0 , t ∈ R . Assume that k > 0 and f is a
positive function. Then

u2(t) � k2 +2
∫ t

0
f (s)u(s)ds, or all t ∈ [0,∞).

implies

u(t) � k+
∫ t

t0
f (s)exp

(
k
∫ t

s
f (θ )dθ

)
ds, t � t.

REMARK 2.2. As in Corollary 2.2, one can use Theorem 2.3 to establish some
new explicit bounds for the inequalities (1.8) and (1.9). The new bounds will be differ-
ent form the results that has been established by Dafermos [6] and Pachpatte [13]. The
details are left to the interested reader.

Now, we consider (1.6) and give an explicit bound of the unknown function u(t) .
We introduce the following notations:

A(t) : = F(t)+
∫ t

t0
F(s)G(s)eG(t,σ(s))Δs,

F(t) : =
∫ t

t0
[ f (s)a

δ
γ (s)+g(s)a

α
γ (s)]Δs,

G(t) : = b(t)
[
δ
γ

a
δ
γ −1(t) f (t)+

α
γ

a
α
γ −1(t)g(t)

]
.

THEOREM 2.4. Let T be an unbounded time scale with t0 and t ∈ T . Assume
that (H2) holds, and δ � γ , and α � γ . Then

uγ(t) � a(t)+b(t)
∫ t

t0

[
f (s)uδ (s)+g(s)uα(s)

]
Δs, for t ∈ [t0,∞)T, (2.24)

implies that

u(t) � a
1
γ (t)+

1
γ
a

1
γ −1(t)b(t)A(t), t ∈ [t0,∞)T. (2.25)

Proof. Define a function y(t) by

y(t) :=
∫ t

t0

[
f (s)uδ (s)+g(s)uα(s)

]
Δs.

This reduces (2.24) to

uγ(t) � a(t)+b(t)y(t), for t ∈ [t0,∞)T. (2.26)

This implies that

u(t) � (a(t)+b(t)y(t))
1
γ , for t ∈ [t0,∞)T. (2.27)
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Applying Lemma 2.1 on (2.27), we see that

u(t) � a
1
γ (t)+

1
γ
a

1
γ −1(t)b(t)y(t), for t ∈ [t0,∞)T. (2.28)

From (2.26) we obtain

uα(t) � a
α
γ (t)

[
1+

b(t)y(t)
a(t)

] α
γ
, for t ∈ [t0,∞)T. (2.29)

Applying Lemma 2.1 again on (2.29) (where α � γ) , we obtain

uα(t) � a
α
γ (t)

[
1+

α
γ

b(t)
a(t)

y(t)
]

= a
α
γ (t)+

α
γ

a
α
γ −1(t)b(t)y(t), t ∈ [t0,∞)T. (2.30)

Also from (2.26), we obtain

uδ (t) � a
δ
γ (t)

[
1+

b(t)y(t)
a(t)

] δ
γ
, for t ∈ [t0,∞)T. (2.31)

Applying Lemma 2.1 on (2.31) (where δ � γ) , we have

uδ (t) � a
δ
γ (t)

[
1+

δ
γ

b(t)
a(t)

y(t)
]

= a
δ
γ (t)+

δ
γ

a
δ
γ −1(t)b(t)y(t), t ∈ [t0,∞)T. (2.32)

Combining (2.28), (2.30) and (2.32), we see that

y(t) =
∫ t

t0

[
f (s)uδ (s)+g(s)uα(s)

]
Δs

�
∫ t

t0
f (s)a

δ
γ (s)Δs+

δ
γ

∫ t

t0
f (s)a

δ
γ −1(s)b(s)y(s)Δs

+
∫ t

t0
g(s)a

α
γ (s)Δs+

α
γ

∫ t

t0
a
α
γ −1(s)g(s)b(s)y(s)Δs

= F(t)+
∫ t

t0
G(s)y(s)Δs, for t ∈ [t0,∞)T.

Now an application of Lemma 2.2 gives us that

y(t) < F(t)+
∫ t

t0
F(s)G(s)eG(t,σ(s))Δs, for t ∈ [t0,∞)T. (2.33)

Substituting (2.33) into (2.28), we obtain the desired inequality (2.25). The proof is
complete. �

From Theorem 2.4, we have the following results.
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COROLLARY 2.3. Let T be an unbounded time scale with t0 and t ∈ T . Assume
that (H2) holds and δ = γ . Then

uγ(t) � a(t)+b(t)
∫ t

t0
[ f (s)uγ (s)+g(s)uα(s)]Δs, for all t ∈ [t0,∞)T, (2.34)

implies

u(t) � a
1
γ (t)+a

1
γ −1(t)b(t)B(t), t ∈ [t0,∞)T, (2.35)

where

B(t) : = F1(t)+
∫ t

t0
F1(s)G1(s)eG1(t,σ(s))Δs,

F1(t) : =
∫ t

t0
[ f (s)a(s)+g(s)a

α
γ (s)]Δs,

G1(t) : = b(t)
[

f (t)+
α
γ

a
α
γ −1(t)g(t)

]
.

COROLLARY 2.4. Let T be an unbounded time scale with t0 , t ∈ T . Assume that
(H2) holds and δ = γ = α . Then

uγ(t) � a(t)+b(t)
∫ t

t0
[ f (s)+g(s)]uγ(s)Δs, for all t ∈ [t0,∞)T,

implies

u(t) � a
1
γ (t)+a

1
γ −1(t)b(t)C(t), t ∈ [t0,∞)T.

where

C(t) : = F2(t)+
∫ t

t0
F2(s)G2(s)eG2(t,σ(s))Δs,

F2(t) : =
∫ t

t0
a(s)[ f (s)+g(s)]Δs,

G2(t) : = b(t) [ f (t)+g(t)] .
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