
Mathematical
Inequalities

& Applications
Volume 14, Number 3 (2011), 647–655

SHARP INEQUALITIES BETWEEN MEANS

YUMING CHU AND BOYONG LONG

(Communicated by K. B. Stolarsky)

Abstract. For p ∈ R the p -th power mean Mp(a,b) , arithmetic mean A(a,b) , geometric mean
G(a,b) , and harmonic mean H(a,b) of two positive numbers a and b are defined by

Mp(a,b) =

⎧⎨
⎩

(
ap+bp

2

)1/p
, p �= 0,√

ab, p = 0,

A(a,b) = (a+b)/2, G(a,b) =
√

ab , and H(a,b) = 2ab/(a+b) , respectively.
In this paper, we answer the questions: For α ∈ (0,1) , what are the greatest values p, r

and m , and the least values q, s and n , such that the inequalities Mp(a,b) � Aα(a,b)G1−α (a,b) �
Mq(a,b),Mr(a,b) � Gα (a,b)H1−α (a,b) � Ms(a,b) and Mm(a,b) � Aα(a,b)H1−α (a,b) �Mn(a,b)
hold for all a,b > 0 ?

1. Introduction

For p ∈ R the p -th power mean Mp(a,b) of two positive numbers a and b is
defined by

Mp(a,b) =

⎧⎨
⎩

(
ap+bp

2

)1/p
, p �= 0,√

ab, p = 0,

It is well-known that Mp(a,b) is continuous and strictly increasing with respect to
p ∈ R for fixed a and b with a �= b . In the recent past, the power mean has been the
subject of intensive research. In particular, many remarkable inequalities for Mp(a,b)
can be found in literature [1, 3, 4, 6-8, 10-15]. Let A(a,b) = (a+b)/2, G(a,b) =

√
ab ,

and H(a,b) = 2ab/(a+ b) be the arithmetic, geometric, and harmonic means of two
positive numbers a and b , respectively. Then

min{a,b} � H(a,b) = M−1(a,b) � G(a,b) = M0(a,b)
� A(a,b) = M1(a,b) � max{a,b}.
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In [2], Alzer and Janous established the following sharp double inequality (see
also [5, p. 350]):

M ln2
ln3

(a,b) � 2
3
A(a,b)+

1
3
G(a,b) � M 2

3
(a,b)

for all a,b > 0.
For α ∈ (0,1) , Janous [9] found the greatest value p and least value q such that

Mp(a,b) � αA(a,b)+ (1−α)G(a,b) � Mq(a,b) for all a,b > 0.

However the following problems remain: For α ∈ (0,1) , what are the greatest
values p, r and m , and the least values q, s and n , such that the inequalities

Mp(a,b) � Aα(a,b)G1−α(a,b) � Mq(a,b),

Mr(a,b) � Gα(a,b)H1−α(a,b) � Ms(a,b)

and
Mm(a,b) � Aα(a,b)H1−α(a,b) � Mn(a,b)

hold for all a, b > 0 ? In this paper we solve these problems.

2. Main Results

THEOREM 2.1. If α ∈ (0,1) , then Aα(a,b)G1−α(a,b) � Mα(a,b) for all a,b >
0 , with equality if and only if a = b, and the constant α in Mα(a,b) cannot be im-
proved.

Proof. If a = b , clearly Aα(a,b)G1−α(a,b) = Mα(a,b) = a . Otherwise a > b
without loss of generality.

Let t = a/b> 1 and f (t) = logMα(a,b)− log[Aα(a,b)G1−α(a,b)] . Then we have

f (t) =
1
α

log
1+ tα

2
−α log

1+ t
2

− 1−α
2

log t,

f (1) = 0, (2.1)

f ′(t) =
1

2t(1+ t)(1+ tα)
g(t), (2.2)

where g(t) = (1−α)tα+1 +(1+α)tα− (α+1)t− (1−α) ,

g(1) = 0, (2.3)

g′(t) =
1+α

t
h(t), (2.4)

where h(t) = (1−α)tα+1 +αtα − t,

h(1) = 0, (2.5)
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h′(t) = (1−α2)tα +α2tα−1−1, (2.6)

h′(1) = 0 (2.7)

and
h′′(t) = α(1−α)tα−2[(1+α)t−α] > 0 (2.8)

for t ∈ (1,+∞) .
From (2.1)–(2.8) we get f (t) > 0 for t ∈ (1,+∞) .
Next, we prove that the constant α in Mα(a,b) cannot be improved.
For any ε ∈ (0,α) and x ∈ (0,1) one has

[Mα−ε(1+ x,1)]α−ε − [Aα(1+ x,1)G1−α(1+ x,1)]α−ε

=
1
2

[
1+(1+ x)α−ε

]−(
1+

x
2

)α(α−ε)
(1+ x)

(1−α)(α−ε)
2

=
[
1+

α− ε
2

x+
(α− ε)(α− ε−1)

4
x2 +o(x2)

]
−

{
1+

α(α − ε)
2

x

+
α(α− ε)[α(α− ε)−1]

8
x2 +o(x2)

}{
1+

(1−α)(α− ε)
2

x

+
(1−α)(α− ε)

4

[
(1−α)(α− ε)

2
−1

]
x2 +o(x2)

}

=− 1
8
ε(α− ε)x2 +o(x2) (x → 0). (2.9)

Equation (2.9) implies that for any ε ∈ (0,α) , there exists δ = δ (ε,α) > 0, such
that Mα−ε(1+ x,1) < Aα(1+ x,1)G(1−α)(1+ x,1) for x ∈ (0,δ ) . �

REMARK 2.2. If α ∈ (0,1) , then Aα(a,b)G1−α(a,b) � M0(a,b) for all a,b > 0,
with equality if and only if a = b , and the constant 0 in M0(a,b) cannot be improved.
In fact, if a = b , then clearly Aα(a,b)G1−α(a,b) = M0(a,b) = a . Otherwise a �= b
and

Aα(a,b)G1−α(a,b)
M0(a,b)

=
(

a+b

2
√

ab

)α
> 1.

Next, we show that the constant 0 in M0(a,b) cannot be improved.
For α ∈ (0,1) and any ε ∈ (0,α) , it is easy to see that

lim
t→+∞

[Mε(t,1)−Aα(t,1)G1−α(t,1)]

= lim
t→+∞

[(
1+ tε

2

)1/ε
−

(
1+ t

2

)α
(1+ t)(1−α)/2

]

=+∞. (2.10)

Equation (2.10) implies that for α ∈ (0,1) and any ε ∈ (0,α) , there exists T =
T (ε,α) > 1, such that Mε(t,1) > Aα(t,1)G1−α(t,1) for t ∈ (T,+∞) . �
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THEOREM 2.3. If α ∈ (0,1) , then Gα(a,b)H1−α(a,b)� Mα−1(a,b) for all a,b >
0 , with equality if and only if a = b, and the constants α−1 in Mα−1(a,b) cannot be
improved.

Proof. If a = b , clearly Gα(a,b)H1−α(a,b) = Mα−1(a,b) = a . Otherwise a > b
without loss of generality. Let t = a/b > 1 and f (t) = log[Gα(a,b)H1−α(a,b)]−
logMα−1(a,b) . Then we have

f (t) =
α
2

logt +(1−α) log
2t

1+ t
− 1
α−1

log
1+ tα−1

2
,

f (1) = 0, (2.11)

f ′(t) =
1

t2(1+ t)(1+ tα−1)
g(t), (2.12)

where g(t) = αt2/2− (1−α/2)t1+α+(1−α/2)t−αtα/2,

g(1) = 0, (2.13)

g′(t) = αt− (1− α
2

)(1+α)tα − α2

2
tα−1 +(1− α

2
),

g′(1) = 0, (2.14)

g′′(t) = α−α(1− α
2

)(1+α)tα−1− α2

2
(α−1)tα−2,

g′′(1) = 0 (2.15)

and

g′′′(t) = α(1−α)tα−3[(1+
α
2
− α2

2
)t +

α2

2
−α] > 0 (2.16)

for t ∈ (1,+∞) .
From (2.11)–(2.16) we get f (t) > 0 for t ∈ (1,+∞) .
Next, we prove that the constant α−1 in Mα−1(a,b) cannot be improved.
For any ε ∈ (0,1−α) and x ∈ (0,1) one has

[Mα−1+ε(1+ x,1)]1−α−ε− [Gα(1+ x,1)H1−α(1+ x,1)]1−α−ε

=
2(1+ x)1−α−ε

1+(1+ x)1−α−ε −
(1+ x)(1−α/2)(1−α−ε)

(1+ x/2)(1−α)(1−α−ε)

=
F(x)

[1+(1+ x)1−α−ε][(1+ x/2)(1−α)(1−α−ε)]
, (2.17)

where

F(x) = 2(1+x)1−α−ε(1+x/2)(1−α)(1−α−ε)− [1+(1+x)1−α−ε](1+x)(1−α/2)(1−α−ε).
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By a Taylor series expansion

F(x) =2

[
1+(1−α− ε)x− 1

2
(α + ε)(1−α− ε)x2 +o(x2)

]

×
{

1+
1
2
(1−α)(1−α− ε)x

+
1
8
(1−α)(1−α− ε)

[
(1−α)(1−α− ε)−1

]
x2 +o(x2)

}

−
[
2+(1−α− ε)x− 1

2
(α + ε)(1−α− ε)x2 +o(x2)

]

×
{

1+(1− α
2

)(1−α− ε)x

+
1
2
(1− α

2
)(1−α− ε)[(1− α

2
)(1−α− ε)−1]x2 +o(x2)

}

=
1
4
ε(1−α− ε)x2 +o(x2) (x → 0). (2.18)

Equations (2.17) and (2.18) imply that for α ∈ (0,1) and any ε ∈ (0,1−α) , there
exists δ = δ (α, ε) > 0, such that Mα−1+ε(1+ x,1) > Gα(1+ x,1)H1−α(1+ x,1) for
x ∈ (0,δ ) . �

REMARK 2.4. If α ∈ (0,1) , then Gα(a,b)H1−α(a,b) � M0(a,b) for all a,b > 0,
with equality if and only if a = b , and the constant 0 in M0(a,b) cannot be improved.
In fact, if a = b , then clearly Gα(a,b)H1−α(a,b) = M0(a,b) = a . Otherwise a �= b
and

M0(a,b)
Gα(a,b)H1−α(a,b)

=
(

a+b

2
√

ab

)1−α
> 1.

Next, we show that the constant 0 in M0(a,b) cannot be improved.
For α ∈ (0,1) and any ε ∈ (0,α) , it is easy to see that

lim
t→+∞

[Gα(t,1)H1−α(t,1)−M−ε(t,1)]

= lim
t→+∞

[
tα/2

(
2t

1+ t

)1−α
−

(
1+ t−ε

2

)−1/ε
]

=+∞. (2.19)

Equation (2.19) implies that for α ∈ (0,1) and any ε ∈ (0,α) , there exists T =
T (ε,α) > 1, such that M−ε(t,1) < Gα(t,1)H1−α(t,1) for t ∈ (T,+∞) . �

THEOREM 2.5. For α ∈ (0,1) and all a,b > 0 , we have
(1) If α = 1/2 , then Aα(a,b)H1−α(a,b) = M2α−1(a,b);
(2) If 0 < α < 1/2 , then Aα(a,b)H1−α(a,b) � M2α−1(a,b) , with equality if and

only if a = b, and the constant 2α−1 in M2α−1(a,b) cannot be improved;
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(3) If 1/2 < α < 1 , then Aα(a,b)H1−α(a,b) � M2α−1(a,b) , with equality if and
only if a = b, and the constant 2α−1 in M2α−1(a,b) cannot be improved.

Proof. (1) α = 1/2. Then clearly Aα(a,b)H1−α(a,b) = M0(a,b) =
√

ab ;

(2) 0 < α < 1/2. If a = b , clearly Aα(a,b)H1−α(a,b) = M2α−1(a,b) = a . Oth-
erwise a > b without loss of generality. Let t = a/b > 1 and f (t) = logM2α−1(a,b)−
log[Aα(a,b)H1−α(a,b)] . Then we have

f (t) =
1

2α−1
log

1+ t2α−1

2
−α log

1+ t
2

− (1−α) log
2t

1+ t
, (2.20)

f (1) = 0, (2.21)

f ′(t) =
1

t2(1+ t)(1+ t2α−1)
g(t), (2.22)

where g(t) = (1−α)t2α+1 +αt2α −αt2− (1−α)t ,

g(1) = 0, (2.23)

g′(t) = (1−α)(2α+1)t2α +2α2t2α−1−2αt− (1−α), (2.24)

g′(1) = 0, (2.25)

g′′(t) = 2α(1−α)(2α+1)t2α−1 +2α2(2α−1)t2α−2−2α, (2.26)

g′′(1) = 0 (2.27)

and
g′′′(t) = 2α(1−α)(1−2α)t2α−3[2α− (2α+1)t]. (2.28)

From 0 < α < 1/2 and (2.28) we know that

g′′′(t) < 0 (2.29)

for t ∈ (1,+∞) .
Therefore, f (t) < 0 for t ∈ (1,+∞) follows from (2.20)–(2.27) and (2.29).
Next, we prove that the constant 2α−1 in M2α−1(a,b) cannot be improved.
For any ε ∈ (0,1−2α) and x ∈ (0,1) one has

[M2α−1+ε(1+ x,1)]1−2α−ε− [Aα(1+ x,1)H1−α(1+ x,1)]1−2α−ε

=
2(1+ x)1−2α−ε

1+(1+ x)1−2α−ε −
(1+ x)(1−α)(1−2α−ε)

(1+ x/2)(1−2α)(1−2α−ε)

=
G(x)

[1+(1+ x)1−2α−ε][(1+ x/2)(1−2α)(1−2α−ε)]
, (2.30)

where

G(x)= 2(1+x)1−2α−ε(1+x/2)(1−2α)(1−2α−ε)− [1+(1+x)1−2α−ε](1+x)(1−α)(1−2α−ε).
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By a Taylor series expansion

G(x) =2

[
1+(1−2α− ε)x− 1

2
(1−2α− ε)(2α+ ε)x2 +o(x2)

]

×
{

1+
1
2
(1−2α)(1−2α− ε)x

+
1
8
(1−2α)(1−2α− ε)[(1−2α)(1−2α− ε)−1]x2 +o(x2)

}

−
[
2+(1−2α− ε)x− 1

2
(2α + ε)(1−2α− ε)x2 +o(x2)

]

×
{

1+(1−α)(1−2α− ε)x

+
1
2
(1−α)(1−2α− ε) [(1−α)(1−2α− ε)−1]x2 +o(x2)

}

=
1
4
ε(1−2α− ε)x2 +o(x2) (x → 0). (2.31)

Equations (2.30) and (2.31) imply that for any α ∈ (0,1/2) and ε ∈ (0,1−2α) ,
there exists δ = δ (α, ε) > 0, such that M2α−1+ε(1+x,1)> Aα(1+x,1)H1−α(1+x,1)
for x ∈ (0,δ ) ;

(3) 1/2 < α < 1. If a = b , then clearly Aα(a,b)H1−α(a,b) = M2α−1(a,b) = a .
Otherwise a > b without loss of generality. Let t = a/b > 1 and f (t)= logM2α−1(a,b)−
log[Aα(a,b)H1−α(a,b)] . Then from 1/2 < α < 1 and (2.28) we have

g′′′(t) > 0 (2.32)

for t ∈ (1,+∞) .
Therefore, f (t) > 0 for t ∈ (1,+∞) follows from (2.20)–(2.27) and (2.32).
Next, we prove that the constant 2α−1 in M2α−1(a,b) cannot be improved.
For any ε ∈ (0,2α−1) and x ∈ (0,1) one has

[Aα(1+ x,1)H1−α(1+ x,1)]2α−1−ε− [M2α−1−ε(1+ x,1)]2α−1−ε

=
(
1+

x
2

)(2α−1)(2α−1−ε)
(1+ x)(1−α)(2α−1−ε)− 1

2

[
1+(1+ x)2α−1−ε]

=
{

1+
(2α−1)(2α−1− ε)

2
x

+
(2α−1)(2α−1− ε)[(2α−1)(2α−1− ε)−1]

8
x2 +o(x2)

}

×
{

1+(1−α)(2α−1− ε)x

+
1
2
(1−α)(2α−1− ε)[(1−α)(2α−1− ε)−1]x2+o(x2)

}
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−
[
1+

1
2
(2α−1− ε)x+

(2α−1− ε)(2α− ε−2)
4

x2 +o(x2)
]

=
1
8
ε(2α−1− ε)x2 +o(x2) (x → 0). (2.33)

Equation (2.33) implies that for any α ∈ (1/2,1) and ε ∈ (0,2α−1) , there exists
δ = δ (ε,α) > 0, such that M2α−1−ε(1 + x,1) < Aα(1 + x,1)H1−α(1+ x,1) for x ∈
(0,δ ) . �

REMARK 2.6. If α ∈ (0,1/2) , then Aα(a,b)H1−α(a,b) � M0(a,b) for all a,b >
0, with equality if and only if a= b , and the constant 0 in M0(a,b) cannot be improved.
In fact, if a = b , then clearly Aα(a,b)H1−α(a,b) = M0(a,b) = a . Otherwise a �= b and

M0(a,b)−Aα(a,b)H1−α(a,b) =
√

ab

[
1− (

a+b

2
√

ab
)2α−1

]
> 0.

Next, we prove that the constant 0 in M0(a,b) cannot be improved.
For α ∈ (0,1/2) and any ε ∈ (0,1−2α) , it is easy to see that

lim
t→+∞

[M−ε(t,1)]−Aα(t,1)H1−α(t,1)

= lim
t→+∞

[(
1+ t−ε

2

)−1/ε
−

(
1+ t

2

)α (
2t

1+ t

)1−α]

=−∞. (2.34)

Equation (2.34) implies that for α ∈ (0,1/2) and any ε ∈ (0,1−2α) , there exists
T = T (ε,α) > 0, such that M−ε(t,1) < Aα(t,1)H1−α(t,1) for t ∈ (T,+∞) . �

Similarly, we have

REMARK 2.7. If α ∈ (1/2,1) , then Aα(a,b)H1−α(a,b) � M0(a,b) for all a,b >
0, with equality if and only if a= b , and the constant 0 in M0(a,b) cannot be improved.
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