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MEANS INVOLVING LINEAR FUNCTIONALS

AND n–CONVEX FUNCTIONS

J. JAKŠETIĆ AND J. PEČARIĆ

(Communicated by I. Perić)

Abstract. In this article we study Cauchy type means for linear functionals. We examine their
monotonicity properties, and even more we give new type of inequalities after we proved ex-
ponential convexity. We cover a number of well-known means such as generalized Stolarsky,
Stolarsky-Tobey and Whiteley means.

1. Introduction and preliminary results

Mean-value theorems play a great role in mathematical analysis. In particular,
Lagrange and Cauchy type mean-value theorems are most frequently used. The most
common approach is to prove first the Lagrange type mean-value theorems and then
deduce from them Cauchy type mean-value theorems. Those theorems enables us to
define various classes of means that can be expressed in terms of linear functionals.
Much of the paper is devoted to monotonicity properties of these means using log-
convex properties. Positive semi-definite matrices represent a basic tool in our study
and that approach enables use of log-convex and even exponentially convex functions.
In Section 2 we define a class of linear functionals that we consider in the paper and
after we prove mean-value theorems we cover functional power means, Gini means
and means of Cauchy type introduced by Leach and Sholander in [5]. In Section 3
we examine applications of linear functional to n -convex functions, very fruitful class
of functions that enables us to treat generalized Stolarsky means, generalized Pečarić-
Šimić means, generalized Stolarsky-Tobey means and Whiteley means. Section 3 is
devoted to further generalization i.e. bilinear functionals.

In the rest of this introduction part we give definitions and results that we need
in the later sections. First, we give here definition of exponentially convex function as
originally gave Bernstein in [4] (see also [2], [6], [7]).

In the sequel, let I stands for an open interval in R .

DEFINITION 1. A function h : I → R is exponentially convex if it is continuous
and

n

∑
i, j=1

ξiξ jh(xi + x j) � 0

for all n ∈ N and all choices ξi ∈ R , i = 1, . . . ,n such that xi + x j ∈ I , 1 � i, j � n .
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In the rest of the paper we will rely on the following proposition and its corollaries.

PROPOSITION 1.1. Let h : I → R. The following propositions are equivalent.

(i) h is exponentially convex.

(ii) h is continuous and
n

∑
i, j=1

ξiξ jh

(
xi + x j

2

)
� 0,

for all n ∈ N and all choices ξi ∈ R and xi ∈ I, 1 � i � n.

COROLLARY 1.2. If h is exponentially convex then

det

[
h

(
xi + x j

2

)]n

i, j=1
� 0,

for every n ∈ N, and all xi ∈ I , i = 1, . . . ,n.

COROLLARY 1.3. If h : I → (0,∞) is exponentially convex function then h is a
log-convex function, i.e. logh is convex function on I .

We will need the following result on log-convex functions, given in [11].

LEMMA 1.4. Let f be log-convex function and if, x1 � y1, x2 � y2, x1 �= x2, y1 �=
y2, then the following inequality is valid:(

f (x2)
f (x1)

)1/(x2−x1)

�
(

f (y2)
f (y1)

)1/(y2−y1)

. (1.1)

Proof. This follows from [11], Remark 1.2. �

2. Means for positive linear functionals

Let a,b ∈ R and let C[a,b] denotes the vector space of all real-valued continuous
functions f : [a,b] → R. We consider positive linear functionals A : C[a,b] → R, that
is, we assume that

A(α f +βg) = αA( f )+βA(g) for all f ,g ∈C[a,b], α,β ∈ R (A1)

f ∈ L, f (t) � 0 on [a,b] ⇒ A( f ) � 0 (A is positive). (A2)

If additionally A satisfies A(1) = 1 we call A positive normalized functional.

THEOREM 2.1. Let Φ : [a,b] → R be a continuous function. Let A be a positive
linear functional on C[a,b] such that A(1) �= 0. Then there exists ξ ∈ [a,b] such that

Φ(ξ ) =
A(Φ)
A(1)

. (2.1)
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Proof. Let m = min
x∈[a,b]

Φ(x), M = max
x∈[a,b]

Φ(x). Then A(M −Φ) � 0 and A(Φ−
m) � 0, implies

mA(1) � A(Φ) � MA(1) (2.2)

and we have desired ξ ∈ [a,b] using continuity of Φ. �

COROLLARY 2.2. Let Φ1, Φ2 be two continuous function on [a,b] and let A be
a positive linear functional on C[a,b] such that A(1) �= 0. Then there exists ξ ∈ [a,b]
such that

Φ1(ξ )
Φ2(ξ )

=
A(Φ1)
A(Φ2)

, (2.3)

assuming both denominators not equal zero.

Proof. Let us define continuous function on [a,b], φ(t)=Φ1(t)A(Φ2)−Φ2(t)A(Φ1).
By Theorem 2.1 there exists ξ ∈ [a,b] such that A(φ)/A(1) = φ(ξ ). Since A(φ) = 0,
it follows Φ1(ξ )A(Φ2)−Φ2(ξ )A(Φ1) = 0 and (2.3) is proved. �

In the following subsections we give applications of above results to some well-
known means.

2.1. Functional power means

Theorem 2.1 enables us to define various types of means, because if Φ has inverse
we have

ξ = Φ−1
(

A(Φ)
A(1)

)
∈ [a,b]. (2.4)

Specially, let g : [a,b] → R+ be a continuous function and let B : C[a,b] → R nor-
malized positive functional. After we apply (2.4) on normalized linear functional
A, A(Ψ) := B(Ψ(g)) (now A : C[c,d] → R, where [c,d] = g([a,b])) and function
Φ(x) = xr, r �= 0, we get a functional power mean (see [11], pp. 117):

M[r](g,B) =

{
(B(gr))1/r , r �= 0;

exp(B(lng)) , r = 0.
(2.5)

In the sequel we will generate inequalities for functional power means.
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THEOREM 2.3. Let J be some open interval in R, g : [a,b] → R+ a continuous
function and let A : C(g([a,b])) → R be a positive normalized linear functional.

(i) If t �→ A(gt) is continuous function on J then it is exponentially convex function
on J.

(ii) Let n ∈ N and let t1, . . . ,tn ∈ J be arbitrary. Then the matrix

[
A

(
g

ti+t j
2

)]n

i, j=1
is a positive semi-definite matrix. In particular

det

[
A

(
g

ti+t j
2

)]n

i, j=1
� 0. (2.6)

Proof. For fixed n ∈ N,u1, . . . ,un ∈ R let us consider the following function

Ψ(x) =
n

∑
i, j=1

uiu jx
ti+t j

2 .

Since Ψ(x) =
(

n
∑
i=1

uix
ti
2

)2

� 0, we have A(Ψ(g)) � 0 i.e.

n

∑
i, j=1

uiu jA

(
g

ti+t j
2

)
� 0. (2.7)

Now (i) and (ii) are obvious. �

COROLLARY 2.4. Let g : [a,b]→ R+ be continuous function and let A be a pos-
itive normalized functional on the vector space of all real, continuous functions on
g([a,b]). If t �→ A(gt) is a continuous function on R then

A(gs)t−r � A(gr)t−sA(gt)s−r for r < s < t. (2.8)

Proof. From Theorem 2.3 it follows that t �→ A(gt) is exponentially convex func-
tion and hence it is log-convex function. Assume first that A(gs) and A(gr) are strictly
greater than zero. Using Lemma 1.4 we have

(
A(gs)
A(gr)

) 1
s−r

�
(

A(gt)
A(gs)

) 1
t−s

which validates (2.8). If A(gs) = 0 then (2.8) obviously holds. If A(gr) = 0 then using
log-convexity of t �→ A(gt) we have

(A(gs))2 � A(g2s−r)A(gr) = 0

concluding A(gs) = 0 and again (2.8) is valid. �
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REMARK 2.5. Let us note that usual condition 0 < r < s < t in Lyapunov in-
equality is dropped (see [11] pp. 117).

Previous remark enables us to use Lyapunov inequality (2.8) to prove the following
corollary.

COROLLARY 2.6. Let g be a positive continuous function on [a,b] and A be a
normalized positive linear functional on C[a,b]. Let us assume that t �→ A(gt) is a
continuous on R.

(a) Then for p < q, p,q �= 0

M[p](g,A) � M[q](g,A). (2.9)

(b) If p �→M[p](g,A) is continuous for p = 0, then (2.9) is valid for all p,q∈R, p <
q.

Proof. (a) The proof is deduced observing three different cases for p and q in
(2.9).

(Case I.) 0 < p < q. If we put r = 0, s = p, t = q in (2.8) we get

A(gp)q � A(gq)p

and after we raise both sides of this inequality to the power 1/pq we get (2.9).
(Case II.) p < 0 < q. In this case we put r = p, s = 0, t = q in (2.8) and we get

A(gq)p � A(gp)q.

Raising both sides of this inequality to the power 1/pq we get (2.9).
(Case III.) p < q < 0. In this case we put r = p, s = q, t = 0 in (2.8) and we get

A(gq)−p � A(gp)−q.

Raising both sides of this inequality to the power −1/pq we get (2.9).
(b) part of Corollary is obvious. �

2.2. Hölder inequality

Starting from (2.9) we will here prove the well known Hölder inequality.

THEOREM 2.7. Let B : C[a,b] → R be a positive, normalized linear functional.
Let p > 1 and q = p/(p− 1) so that p−1 + q−1 = 1. If w, f ,g � 0 on [a,b] and
w f p,wgq,w fg ∈C[a,b], then we have

B(w fg) � B1/p(wf p)B1/q(wgq). (2.10)

In the case 0 < p < 1 and B(wgq) > 0 (or p < 0 and B(wf p) > 0 ), the inequality
(2.10) is reversed.
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Proof. [Sketch of the proof] First we assume that B(wgq) > 0, and p > 1. Then
we apply inequality (2.9) for normalized linear functional A defined with A(h) :=
B(wh)/B(w) and we get (

B(wh)
B(w)

)p

� B(whp)
B(w)

. (2.11)

We now get (2.10) replacing w → wgq,h → f g−q+1 in (2.11). All others cases can be
covered similarly as indicated in [11]. �

2.3. Gini means

Corollary 2.2 enables us to define new types of means, because if Φ1/Φ2 has an
inverse, from (2.3) we conclude

ξ =
(
Φ1

Φ2

)−1(A(Φ1)
A(Φ2)

)
(2.12)

If Φ1(x) = xp, Φ2(x) = xq, p,q �= 0, we get Gini means(see [11], pp. 119)

Ep,q(g,B) =

⎧⎨
⎩
(

B(gp)
B(gq)

) 1
p−q

, p �= q;

exp(B(gp lng)/B(gp)), p = q,
(2.13)

for p,q ∈ R. Again we assume that g : [a,b] → R+ is continuous function and B :
C[a,b] → R normalized positive functional.

THEOREM 2.8. Let p � u, q � v, p �= q, u �= v and let t �→ B(gt) be continuous
positive function. Then

Ep,q(g,B) � Eu,v(g,B). (2.14)

Proof. From Theorem 2.3 we have log-convexity of t �→ B(gt). The proof now
follows using Lemma 1.4. �

2.4. Means of Cauchy type

Let f : [a,b] → R and denote by [x0,x1, . . . ,xn; f ] divided difference of the func-
tion f on the knots x0,x1, . . . ,xn ∈ [a,b]. The following mean-value result from [5] is
known:

THEOREM 2.9. Let x0,x1, . . . ,xn be mutually different real numbers, f ,g ∈
Cn[minxi,maxxi] with f (n)(t) �= 0 for all t ∈ [minxi,maxxi]. Then there there exists
ξ ∈ [minxi,maxxi], such that

[x0,x1, . . . ,xn;g]
[x0,x1, . . . ,xn; f ]

=
g(n)(ξ )
f (n)(ξ )

. (2.15)
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REMARK 2.10. When the number ξ from Theorem 2.9 is uniquely determined,
we call it the ( f ,g) extended mean of x = (x0, . . . ,xn) and denote

ξ = E(x; f ,g). (2.16)

In [5] one may also find

[x0,x1, . . . ,xn; f ] =
∫

Sn

f (n)

(
n

∑
k=0

ukxk

)
du1 · · ·dun (2.17)

where u0 = 1−∑n
k=1 uk and Sn represents Euclidean simplex in R

n :

Sn = {(u1 . . . ,un) ∈ R :
n

∑
k=1

uk � 1, and uk � 0, k = 1, . . . ,n}. (2.18)

If f (n)/g(n) has inverse, combining (2.15) and (2.17) we get

E(x; f ,g) =

(
f (n)

g(n)

)−1(
A( f (n))
A(g(n))

)
. (2.19)

where

A(h) =

∫
Sn

h(∑n
k=0 ukxk)du1 · · ·dun

vol(Sn)
. (2.20)

2.5. Generalized Stolarsky-Tobey means

We will here replace linear functional (2.20) with the following one: for given
x = (x0, . . . ,xn) ∈ R

n+1
+

B(h) =
∫

Sn

h

⎛
⎝
(

n

∑
k=0

ukx
r
k

)1/r
⎞
⎠dν(u), (2.21)

where ν represents a probability measure on Sn. Using equation (2.4) and (2.21) we
define new means:

Eh(x;ν) = h−1 (B(h)) . (2.22)

In particular, if we take h(x) = xs−r in (2.22) we will get Stolarsky-Tobey means intro-
duced in [14]:

Er,s(x;ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∫
Sn

(
n
∑

k=0
ukxr

k

) s−r
r

dν(u)

)1/(s−r)

, r(s− r) �= 0;

exp

(∫
Sn

(
n
∑

k=0
ukxr

k

) 1
r

dν(u)

)
, s = r �= 0;

(∫
Sn

(
n
∏
k=0

xuk
k )sdν(u)

) 1
s

, r = 0, s �= 0;

exp

(∫
Sn

ln(
n
∏
k=0

xuk
k )dν(u)

)
, r = s = 0.

(2.23)
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Further, using equation (2.12) and (2.21) we define new means:

E(x; f ,g;ν) =
(

f
g

)−1(B( f )
B(g)

)
. (2.24)

Particulary, if we take f (x) = xp−r and g(x) = xq−r in (2.22) we will get quotient of
Stolarsky-Tobey means.

Ep,q;r(x;ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∫
Sn (∑n

k=0 ukx
r
k)

p−r
r dν(u)∫

Sn (∑n
k=0 ukx

r
k)

q−r
r dν(u)

)1/(p−q)

, r(p−q) �= 0;

exp

(∫
Sn (∑n

k=0 ukx
r
k)

q−r
r ln(∑n

k=0 ukx
r
k)

1/rdν(u)∫
Sn (∑n

k=0 ukx
r
k)

q−r
r dν(u)

)
, p = q �= r �= 0,

(∫
Sn ∏

n
k=0 x

puk
k dν(u)∫

Sn ∏
n
k=0 x

quk
k dν(u)

)1/(p−q)

, r = 0, p �= q,

exp

(∫
Sn (∏n

k=0 x
quk
k )(∑n

k=0 uk lnxk)dν(u)∫
Sn ∏

n
k=0 x

quk
k dν(u)

)
, r = 0, p = q �= 0,

∏n
k=0 x

∫
Sn ukdν(u)

k , r = p = q = 0.
(2.25)

Means Ep,q;r(x;ν) we call generalized Stolarsky-Tobey means.
Since, all conditions of Theorem 2.8 are satisfied the following theorem is valid.

THEOREM 2.11. Let p � u, q � v. Then

Ep,q;r(x;ν) � Eu,v;r(x;ν), (2.26)

for all r ∈ R and (x0,x1, . . . ,xn) ∈ R
n+1
+ .

Proof. From Theorem 2.8 we have

Ep,q;r(x;ν) � Eu,v;r(x;ν),

for p � u, q � v, p �= q, u �= v. Now, using continuity we have (2.26). �

2.6. Generalized Whiteley means

An important example of probability measure on simplex Sn is the Dirichlet mea-
sure μb (see[1] Sec. 4.4).

Let b = (b0,b1, . . . ,bn) ∈R
n+1
+ , n∈ N. The beta function of n variables is defined

by

B(b) =
Γ(b0)Γ(b1) · · ·Γ(bn)
Γ(b0 +b1 + · · ·+bn)

,

where Γ is the gamma function. The Dirichlet measure μb is defined on Sn by

dμb(u) :=
1

B(b)

n

∏
i=0

ubi−1
i du0du1 · · ·dun−1
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where un = 1−∑n−1
i=0 ui.

Generalized Whiteley means are (see [10])

w[r,b]
n (x) =

∫
Sn

(
n

∑
k=0

xkuk

)r

dμb(u). (2.27)

Now, if we define linear functional

A(h) =
∫

Sn

h

(
n

∑
k=0

ukxk

)
μb(u)

using (2.12) we can define new means

W [p,q;b]
n (x) =

(
f
g

)−1(A( f )
A(g)

)

where f (x) = xp, g(x) = xq, and we get

W [p,q;b]
n (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
w

[p,b]
n (x)

w
[q,b]
n (x)

) 1
p−q

, p �= q;

exp
(∫

Sn (∑n
k=0 ukxk)q ln(∑n

k=0 ukxk)dμb(u)∫
Sn (∑n

k=0 ukxk)qdμb(u)

)
, p = q.

(2.28)

In [10] it is shown that following inequality holds.

THEOREM 2.12. Let p,q,u,v be real numbers such that p � u, q � v, q < p, v <
u. Then the following inequality is valid

(
w[p,b]

n (x)

w[q,b]
n (x)

) 1
p−q

�
(

w[u,b]
n (x)

w[v,b]
n (x)

) 1
u−v

.

We can conclude even more:

THEOREM 2.13. Let p,q,u,v be real numbers such that p � u, q � v. Then the
following inequality is valid

W [p,q;b]
n (x) � W [u,v;b]

n (x).

Proof. Using Theorem 2.8 we first conclude

W [p,q;b]
n (x) � W [u,v;b]

n (x), for p � u, q � v, q �= p, v �= u.

Using continuous extensions we now cover cases q = p and v = u. �
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We can generalize means W [p,q;b]
n (x) adding one more parameter using linear

functional similar to (2.21), and we get the new means:

W [p,q;r;b]
n (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w

[p/r,b]
n (xr)

w
[q/r,b]
n (xr)

) 1
p−q

, r(p−q) �= 0;

exp

(∫
Sn (∑n

k=0 ukx
r
k)

q
r ln(∑n

k=0 ukx
r
k)

1/rdμb(u)∫
Sn (∑n

k=0 ukx
r
k)

q
r dμb(u)

)
, r �= 0, p = q,

(∫
Sn ∏

n
k=0 x

puk
k dμ(u)∫

Sn ∏
n
k=0 x

quk
k dμ(u)

)1/(p−q)

, r = 0, p �= q,

exp

(∫
Sn (∏n

k=0 x
quk
k )(∑n

k=0 uk lnxk)dμb(u)∫
Sn ∏

n
k=0 x

quk
k dμb(u)

)
, r = 0, p = q �= 0,

∏n
k=0 x

∫
Sn ukdμb(u)

k , r = p = q = 0.
(2.29)

THEOREM 2.14. Let p � u, q � v. Then

W [p,q;r;b]
n (x) � W [u,v;r;b]

n (x), (2.30)

for all r ∈ R and (x0,x1, . . . ,xn) ∈ R
n+1
+ .

Proof. Again we use Theorem 2.8 to first conclude

W [p,q;r;b]
n (x) � W [u,v;r;b]

n (x), for r(p−q)(u− v) �= 0.

Using continuous extensions we now cover all other possible cases. �

REMARK 2.15. Let us observe that taking p → p− r, q → q− r in (2.29) we get
a special type of generalized Stolarsky-Tobey means introduced in previous subsection.

3. Means involving linear functionals and n -convex functions

Let D ⊂R, and let S(D) be one of normed subspaces of all real functions defined
on D with respect to some norm ‖ · ‖1 . On C[a,b] we take sup-norm and we will
consider continuous linear operators A : C[a,b] → S(D). The set of all functions that
are convex of order n and continuous on [a,b] (continuous from the right at a and
continuous from the left at b ) will be denoted by Kn[a,b]. For i ∈ N0 we define

ei(t) = ti, t ∈ [a,b]. (3.1)

Further, for t,c ∈ [a,b] we define function wn(t,c) by

wn(t,c) =
(

t− c+ |t− c|
2

)n−1

= (t− c)n−1
+ , n ∈ N. (3.2)
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In [11] pp. 263 the following characterization of positivity of continuous operators on
the set Kn[a,b] can be found:

THEOREM 3.1. Assume that A : C[a,b] → S(D) is a linear and continuous oper-
ator. Then

f ∈ Kn[a,b]⇒ A f � 0 (3.3)

if and only if

Aei = 0 for i = 0,1, . . . ,n−1 and (3.4)

Awn(t,c) � 0 for every c ∈ [a,b]. (3.5)

Throughout this section, in our applications, we will use one fixed continuous
linear functional A : C[a,b] → R that satisfies (3.3).

In the following Lemma we have well known example of n -convex functions that
is connected with Stolarsky means (see [5],[15]).

LEMMA 3.2. If fλ : [a,b] → R (0 < a < b < ∞)

fλ (t) =

{
tλ

λ (λ−1)···(λ−n+1) , λ /∈ {0,1, . . . ,n−1};
t j lnt

(−1)n−1− j j!(n−1− j)! , λ = j ∈ {0,1, . . . ,n−1}, (3.6)

then fλ is n-convex function.

Proof. From f (n)
λ (t) = tλ−n > 0, t ∈ [a,b], we conclude fλ ∈ Kn[a,b]. �

THEOREM 3.3. Let A : C[a,b] → R be a linear and continuous functional which
satisfies (3.3) and let J be some open interval in R.

(a) If λ �→ A( fλ ) is continuous function on J then it is exponentially convex function
on J.

(b) Let r1, . . .rm ∈ J be arbitrary. The matrix

[
A( f ri+r j

2
)
]m

i, j=1
is a positive semi-

definite matrix. Particularly

det

[
A

(
f ri+r j

2

)]m

i, j=1
� 0.

Proof. Let u1, . . . ,um be arbitrary real numbers. Consider the following function

Φ(x) =
m

∑
i, j=1

uiu j f ri+r j
2

(x).

Since Φ(n)(x) =
m
∑

i, j=1
uiu jx

ri+r j
2 −n =

(
m
∑
i=1

uix
ri−n

2

)2

� 0, we have A(Φ) � 0 i.e.
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m

∑
i, j=1

uiu jA

(
f ri+r j

2

)
� 0. (3.7)

(i) and (ii) now follow easily. �

REMARK 3.4. The same conclusions of Theorem 3.3 are valid if we replace func-
tion fλ with function

gλ (t) =

{
eλ t

λ n , λ �= 0;
tn
n! , λ = 0.

(3.8)

It is easy to see that g(n)
λ (t) = eλ t > 0 which means gλ ∈ Kn[a,b], [a,b] ⊆ R.

THEOREM 3.5. Let f ∈ Cn[a,b] and let A : C[a,b] → R be a linear continuous
functional which satisfies (3.3). Then there exists ξ ∈ [a,b] such that

f (n)(ξ )A(g0) = A( f ). (3.9)

Proof. Let m = min f (n), M = max f (n). Let us observe that function ϕ(x) =
M xn

n! − f (x) = Mg0(x)− f (x) is n -convex function since ϕ(n)(x) = M− f (n)(x) � 0.
Hence, A(ϕ) � 0 and we conclude

A( f ) � MA(g0).

Similarly,
mA(g0) � A( f ) � MA(g0).

Now we have (3.9). �

COROLLARY 3.6. Let f ,g ∈Cn[a,b], let A : C[a,b] → R be a linear and contin-
uous functional which satisfies (3.3) and let additionally A(g0) �= 0. Then there exists
ξ ∈ [a,b] such that

f (n)(ξ )
g(n)(ξ )

=
A( f )
A(g)

, (3.10)

assuming both denominators not equal zero.

Proof. Let us define the function: φ(x) = f (x)A(g)− g(x)A( f ). By Theorem
3.5 there exists ξ ∈ [a,b] such that A(φ) = φ (n)(ξ )A(g0). From A(φ) = 0 it follows
f (n)(ξ )A(g)−g(n)(ξ )A( f ) = 0 and (3.10) is proved. �

Corollary 3.6 enables us to define various types of means, because if f (n)/g(n)

has an inverse, from (3.9) we conclude

ξ =

(
f (n)

g(n)

)−1(
A( f )
A(g)

)
∈ [a,b]. (3.11)
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Specially, if we take f (x) = fp(x), g(x) = fq(x), (see Lemma 3.2) we get

F(A; p,q) := ξ =
(

A( fp)
A( fq)

) 1
p−q

(3.12)

COROLLARY 3.7. Let p � r, q � s, and let t �→ A( ft ) be a continuous function.
Then

F(A; p,q) � F(A;r,s). (3.13)

Proof. From (a) part of Theorem 3.3 we conclude that t �→ A( ft) is exponentially
convex function and hence log-convex function. Now using Lemma 1.4 we have in-
equality (3.13). �

3.1. Popoviciu legacy

Theorem 3.1 represents generalization of the next theorem proved by Popoviciu
(see [12], [13]).

THEOREM 3.8. Let f : I → R be n− convex function, let xi ∈ I (i = 1, . . . ,m)
and let p = (p1, . . . , pm) be a real m-tuple. The inequality

m

∑
i=1

pi f (xi) � 0 (3.14)

holds for every x1 � x2 � · · · � xm, pi �= 0 (i = 1, . . . ,m) and every n-convex function
f if and only if

m

∑
i=1

pix
k
i = 0 for k = 0,1, . . . ,n−1 (3.15)

and

−
k

∑
r=1

pr(xr − t)n−1 =
m

∑
r=k+1

pr(xr − t)n−1 � 0 (3.16)

holds for every t ∈ (xk,xk+1] and k = 1, . . . ,m−n.

In case n = 2 (convex functions) we have a more compact form (see [9]).

THEOREM 3.9. The inequality (3.14) holds for all m-tuples x and p and all con-
vex functions f if and only if ∑m

i=1 pi = 0 and

m

∑
i=1

pi|xi− xk| � 0, for k = 1, . . . ,m.
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Very simple form of linear functional A( f ) =
m
∑
i=1

pi f (xi) that naturally follows

from Theorem 3.8 enables us to cover limit cases in an explicit way for means F(A; p,q)
defined in (3.12) where we assume that p = (p1, . . . , pm) and x = (x1, . . . ,xm) satisfy
(3.15) and (3.16).

F(x; p,q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏n−1

k=0(q−k)

∏n−1
k=0(p−k)

∑m
i=1 pix

p
i

∑m
i=1 pix

q
i

) 1
p−q

, (p−q)∏n−1
k=0 [(q−k)(p−k)]�=0;

(
∏n−1

k=0(q−k)
(−1)n−1− j j!(n−1− j)!

∑m
i=1 pix

j
i lnxi

∑m
i=1 pix

q
i

) 1
j−q

, ∏n−1
k=0(q−k) �=0,

p= j∈{0,1,...,n−1};

exp
(
∑m

i=1 pix
p
i lnxi

∑m
i=1 pix

p
i

−∑n−1
k=0

1
p−k

)
, p=q/∈{0,1,...,n−1};

exp

⎛
⎝ ∑m

i=1 pix
j
i lnx2

i

2∑m
i=1 pix

j
i lnxi

−
n−1
∑

k=0
k �= j

1
p−k

⎞
⎠ , p=q= j∈{0,1,...,n−1} .

3.2. Generalized Stolarsky means

Generalized Stolarsky means are introduced in [5] using functions from Lemma
3.2 and means from subsection 2.3:

If x = (x0,x1, . . . ,xn) ∈ R
n+1 is n + 1-tuple of mutually different numbers then

generalized Stolarsky mean of order (p,q) (p �= q) is

Ep,q(x) =
(

[x0, . . . ,xn; fp]
[x0, . . . ,xn; fq]

) 1
p−q

, (3.17)

where fp and fq are functions defined in Lemma 3.6. However, we will first cover
limit cases and for that purpose we introduce the following notation.

With V (x; f ) we denote

V (x; f ) :=

∣∣∣∣∣∣∣∣
1 x0 x2

0 · · · xn−1
0 f (x0)

1 x1 x2
1 · · · xn−1

1 f (x1)
· · · · · · · · · · · · · · · · · ·
1 xn x2

n · · · xn−1
n f (xn)

∣∣∣∣∣∣∣∣
Particulary, for f (t) = tr lnk t we will denote

V (x;r,k) :=

∣∣∣∣∣∣∣∣
1 x0 x2

0 · · · xn−1
0 xr

0 lnk x0

1 x1 x2
1 · · · xn−1

1 xr
1 lnk x1

· · · · · · · · · · · · · · · · · ·
1 xn x2

n · · · xn−1
n xr

n lnk xn

∣∣∣∣∣∣∣∣
.
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Similarly, we denote

W (x;r,k) :=

∣∣∣∣∣∣∣∣
1 lnx0 ln2 x0 · · · lnn−1 x0 xr

0 lnk x0

1 lnx1 ln2 x1 · · · lnn−1 x1 xr
1 lnk x1

· · · · · · · · · · · · · · · · · ·
1 lnxn ln2 xn · · · lnn−1 xn xr

n lnk xn

∣∣∣∣∣∣∣∣
,

It is known that for mutually different numbers x0,x1, . . . ,xn .

[x0,x1, . . . ,xn; f ] =
V (x; f )

V (x;n,0)
. (3.18)

Using above notation we can here cover all limit cases (see also [16]):

Ep,q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏n−1

k=0(q−k)

∏n−1
k=0(p−k)

V (x;p,0)
V (x;q,0)

) 1
p−q

, (p−q)∏n−1
k=0 [(q−k)(p−q)]�=0;

(
∏n−1

k=0(q−k)
(−1)n−1− j j!(n−1− j)!

V (x; j,1)
V (x;q,0)

) 1
j−q

, q �=p= j∈{0,1,...,n−1};

(
(−1)k− j

(n−1
j

)(n−1
k

)−1 V (x; j,1)
V (x;k,1)

) 1
j−k

, p=k �= j=q, k, j∈{0,1,...,n−1};

exp

(
V (x;q,1)
V (x;q,0) −

n−1
∑

k=0

1
q−k

)
, p=q/∈{0,1,...,n−1};

exp

⎛
⎝ V (x;q,2)

2V (x;q,1) −
n−1
∑

k=0
k �=q

1
q−k

⎞
⎠ , p=q∈{0,1,...,n−1}.

(3.19)

If we take g(t) = t in Gini means (2.13) we get generalized Stolarsky means. So we
conclude that following corollary is valid.

COROLLARY 3.10. Let p � u, q � v. Then

Ep,q(x) � Eu,v(x), (3.20)

for all x0,x1, . . . ,xn mutually different, positive real numbers.

3.3. Generalized Pečarić-Šimić means

We now make step further adding one more parameter in the generalized Stolarsky
means Ep,q(x) using the same technique from previous sections. Using abbreviations
xr = (xr

0,x
r
1, . . . ,x

r
n) and lnx = (lnx0, lnx1, . . . , lnxn) we have new means Ep,q;r(x) of
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Cauchy type called generalized Pečarić-Šimić means (they are first considered in [16]):

Ep,q;r(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏n−1

k=0(q−rk)

∏n−1
k=0(p−rk)

V (xr; p
r ,0)

V (xr; q
r ,0)

) 1
p−q

, r(p−q)∏n−1
k=0[(q−rk)(p−rq)]�=0;

(
∏n−1

k=0(q−rk)
rn(−1)n−1− j j!(n−1− j)!

V (xr; j,1)
V (xr; q

r ,0)

) 1
jr−q

, r(p−q)∏n−1
k=0[(q−rk)(p−rq)]�=0,

p= jr, j∈{0,1,...,n−1} ;

(
(−1)k− j

(n−1
j

)(n−1
k

)−1 V (xr; j,1)
V (xr ;k,1)

) 1
( j−k)r

, r(p−q) �=0, p= jr, q=kr,
0� j �=k�n−1 ;

exp

(
V (xr; q

r ,1)
rV (xr; q

r ,0) −
n−1
∑

k=0

1
q−kr

)
, r∏n−1

k=0 [(q−rk)(p−rq)]�=0, p=q;

exp

⎛
⎝ V (xr; j,2)

2V (xr; j,1) −
n−1
∑

k=0
k �= j

1
q−kr

⎞
⎠ , r �=0, p=q= jr, j∈{0,1,...,n−1};

((
q
p

)n W (x;p,0)
W (x;q,0)

) 1
p−q

, pq(p−q) �=0, r=0;

(
n!
qn

W(x;q,0)
W(x;0,n)

) 1
q
, q �=0, p=r=0;

exp
(

W(x;q,1)
W(x;q,0) − n

q

)
, p=q �=0, r=0;

n+1
√

x0 · x1 · · ·xn, p=q=r=0.

Using Corollary 3.10 we have

COROLLARY 3.11. Let p � u, q � v. Then

Ep,q;r(x) � Eu,v;r(x), (3.21)

for all r ∈ R and for all x0,x1, . . . ,xn mutually different, positive real numbers.

4. Means involving bilinear functionals and n -convex functions

The following theorem is a version of Theorem 3.1 for bilinear operators. The
proof of theorem can be found in [11] p. 265.

THEOREM 4.1. Let the operator A :C[a,b]×C[a,b]→ S(D) be bilinear and con-
tinuous operator. Then for every pair of functions ( f ,g)

( f ,g) ∈ Kn[a,b]×Kn[a,b]⇒ A( f ,g) � 0 for n � 2 (4.1)

is valid iff
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(i) A(ei,e j) = 0 for 0 � i, j � n−1,

(ii) A(ei,wn(t,c)) = A(wn(t,c),e j) = 0 for every c ∈ [a,b] and every i, j = 0,1, . . . ,
n−1, and

(iii) A(wn(t,c1),wn(t,c2)) � 0 for every (c1,c2) ∈ [a,b]× [a,b].

Throughout this section we will use one fixed continuous bilinear functional A :
C[a,b]×C[a,b]→ R that satisfies (4.1), and functions fλ and gλ are functions defined
in Lemma 3.2 and Remark 3.4.

The proof of the next theorem and its corollaries follows the same line of reasoning
as proofs in Sections 3 and 4 and therefore are omitted.

THEOREM 4.2. Let A : C[a,b]×C[a,b] → R be a bilinear and continuous oper-
ator which satisfies (4.1), g ∈ Kn[a,b] and let J be some open interval in R.

(a) If λ �→ A( fλ ,g) is continuous function on J then it is exponentially convex func-
tion on J.

(b) Let r1, . . . rm ∈ J be arbitrary. The matrix

[
A( f ri+r j

2
,g)
]m

i, j=1
, is a positive semi-

definite matrix. Particulary

det

[
A

(
f ri+r j

2
,g

)]m

i, j=1
� 0.

COROLLARY 4.3. Let g ∈ Kn[a,b], t �→ A( ft ,g) be a continuous function and let
A( ft ,g) > 0, for all t ∈ R.

(a) If p � r, q � s, p �= q, r �= s then

{
A( fp,g)
A( fq,g)

} 1
p−q

�
{

A( fr,g)
A( fs,g)

} 1
r−s

. (4.2)

(b) If r < s < t
A( fs,g)t−r � A( fr,g)t−sA( ft ,g)s−r. (4.3)

COROLLARY 4.4. Let f ∈Cn[a,b] and g ∈ Kn[a,b]. Then there exists ξ ∈ [a,b]
such that

f (n)(ξ )A(g0,g) = A( f ,g). (4.4)

COROLLARY 4.5. Let h1,h2 ∈Cn[a,b],g ∈ Kn[a,b] and let bilinear functional A
additionally satisfies conditions A(g0,g) �= 0. Then there exists ξ ∈ [a,b] such that

h(n)
1 (ξ )

h(n)
2 (ξ )

=
A(h1,g)
A(h2,g)

, (4.5)

assuming both denominators not equal zero.
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If h(n)
1 /h(n)

2 has an inverse, from (4.5) we then conclude

ξ =

(
f (n)

g(n)

)−1(
A(h1,g)
A(h2,g)

)
(4.6)

and we can define various means.
Specially, if we take h1(x) = fp(x), h2(x) = fq(x), we get

ξ =
(

A( fp,g)
A( fq,g)

) 1
p−q

(4.7)

Mean defined in (4.7) we will denote by T (A;g; p,q).

COROLLARY 4.6. Let p � r, q � s,g ∈ Kn[a,b] and let t �→ A( ft ,g) be a contin-
uous function. Then

T (A;g; p,q) � T (A;g;r,s). (4.8)
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