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WEIGHTED CRITERIA FOR ONE–SIDED POTENTIALS WITH

PRODUCT KERNELS ON CONES OF DECREASING FUNCTIONS

ALEXANDER MESKHI, GHULAM MURTAZA AND MUHAMMAD SARWAR

Abstract. Necessary and sufficient conditions governing two–weight estimates for one–sided po-
tentials with multiple kernels and corresponding one–sided strong fractional maximal functions
are established. The one–weight problem for the multiple Riemann–Liouville transform is also
studied.

1. Introduction

In this paper necessary and sufficient conditions guaranteeing two–weight inequal-
ities for one–sided potentials with product kernels and appropriate strong one–sided
fractional maximal functions on the cone of decreasing functions are obtained, pro-
vided that the right-hand side weight is a product of one–dimensional weights. For
the weighted Riemann–Liouville transform with product kernels we establish the one–
weight inequality. To derive the main results of this paper first we show that the two–
sided pointwise relation Rα1,···,αn f ≈ Hn f holds on the class of functions f : R

n
+ → R+

which is non-negative and decreasing in each variable separately, where

(
Rα1,···,αn f

)
(x1, · · · ,xn) =

1

Πn
i=1x

αi
i

x1∫
0

· · ·
xn∫
0

f (t1, · · · , tn)
Πn

i=1(xi − ti)1−αi
dt1· · ·dtn, 0 < αi < 1,

and
(
Hn f

)
(x1, · · · ,xn) =

1
Πn

i=1xi

x1∫
0

· · ·
xn∫

0

f (t1, · · · ,tn)dt1 · · ·dtn.

The appropriate pointwise estimate for the multiple Weyl transform

(
Wα1,···,αn f

)
(x1, · · · ,xn) =

∞∫
x1

· · ·
∞∫

xn

f (t1, · · · ,tn)Πn
i=1t

−αi
i

Πn
i=1(ti − xi)1−αi

dt1 · · ·dtn, 0 < αi < 1,

is also discussed on the cone of increasing functions.
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A full characterization of the class of weights u for which the boundedness of the
one-dimensional Hardy transform

(
H f

)
(x) =

1
x

∫ x

0
f (t)dt

from Lp
dec(u,R+) to Lp(u,R+) holds, was given in [2]. Two-weight Hardy inequalities

on cones of decreasing (resp. increasing) functions were established in the paper [18].
We mention also [5] for other relevant references. The multidimensional analogs of
these results were studied in [3], [4], [1] (see also [17], [13] for related topics).

For the weight theory for Hardy–type and potential operators we refer to the mono-
graphs [15], [14], [8], [7], [6] and references cited therein. The monograph [12] is ded-
icated to the two–weight problem for multiple integral operators (see also the papers
[9], [10], [11] for criteria guaranteeing trace inequalities for potential operators with
multiple kernels).

Finally we mention that constants (often different constants in the same series of
inequalities) will generally be denoted by c or C . Under the symbol T f ≈ K f , where
T and K are linear positive operators defined on appropriate classes of functions, we
mean that there are positive constants c1 and c2 independent of f and x such that
(T f )(x) � c1(K f )(x) � c2(T f )(x) .

2. Preliminaries

We say that a function f : R
n
+ → R+ is decreasing (resp. increasing) if f is

decreasing (resp. increasing) in each variable separately. Further, a set D ⊂ R
n
+ is

decreasing (resp. increasing) if the function χD is decreasing (resp. increasing). We
shall need the following notation:

Dx1,···,xn := D∩ ([0,x1]×·· ·× [0,xn]), D ⊂ R
n
+.

Let D (resp. I ) be the class of all non–negative decreasing (resp. increasing)
functions on R

n
+ . Suppose that u is measurable a.e. positive function (weight) on R

n
+ .

We denote by Lp(u,Rn
+) , 0 < p < ∞ , the class of all non–negative functions on R

n
+

for which

‖ f‖Lp(u,Rn
+) :=

(∫
R

n
+

f p(x1, · · · ,xn)u(x1, · · · ,xn)dx1 · · ·dxn

)1/p

< ∞.

Under the symbol Lp
dec(u,Rn

+) we mean the class Lp(u,Rn
+)∩D .

Now we list the well–known results regarding the one–weight problem for the
operator Hn . For the following statement we refer to [2] (see also [5]):

THEOREM A. Let 0 < p < ∞ . Then the inequality

∫ ∞

0

(
H f (x)

)p
u(x)dx � c

∫ ∞

0
( f (x))pu(x)dx, f ∈ Lp

dec(u,R+),
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holds if and only if there is a positive constant C such that for all r > 0 ,

∫ ∞

r

( r
x

)p
u(x)dx � C

∫ r

0
u(x)dx. (1)

Condition (1) is called Bp condition and was introduced in [2].

THEOREM B. [1] Let 0 < p < ∞ . Then Hn is bounded from Lp
dec(u,Rn

+) to
Lp(u,Rn

+) if and only if there is a positive constant c such that for all decreasing sets
D, D ⊂ R

n
+ ,

∫
Rn\D

|Dx1,···,xn |p
(x1 · · ·xn)p u(x1, · · · ,xn)dx1 · · ·dxn � c

∫
D

u(x1, · · · ,xn)dx1 · · ·dxn. (2)

The next statement regarding two–weight criteria for the operator H on the cone
of decreasing functions was proved in [18]:

THEOREM C. Let v and w be weight functions on R+ . Suppose that 1 < p �
q < ∞ . Then the inequality

[∫ ∞

0

(
H f (x)

)q
v(x)dx

]1/q

� C

[∫ ∞

0
( f (x))pw(x)dx

]1/p

, f ∈ Lp
dec(u,R+),

holds if and only if the following two conditions are satisfied:

sup
a>0

(∫ a

0
v(x)dx

)1/q(∫ a

0
w(x)dx

)−1/p

< ∞

and

sup
a>0

(∫ ∞

a

v(x)
xq dx

)1/q(∫ a

0
W−p′(x)xp′w(x)dx

)1/p′

< ∞,

where W (x) :=
∫ x
0 w(t)dt.

3. Two–Sided Pointwise Estimates

In this section we establish auxiliary two–sided pointwise estimates for the weighted
Riemann–Liouville transform with product kernels on the cones of decreasing functions
which might have an independent interest. The appropriate estimate for the weighted
multiple Weyl transform is also studied on the cone of increasing functions.

PROPOSITION 3.1. Let 0 < αi < 1 . Then the following relations hold:
(a)

Rα1,···,αn f ≈ Hn f , f ∈ D ;

(b)
Wα1,···,αn f ≈ H ′

n f , f ∈ I ,
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where (
H ′

n f
)
(x1, · · · ,xn) =

∞∫
x1

· · ·
∞∫

xn

f (t1, · · · ,tn)
Πn

i=1ti
dt1 · · ·dtn.

Proof. (a) Upper estimate. For simplicity assume that n = 2. Represent Rα1,···,αn

as follows:

(
Rα1,α2 f

)
(x1,x2) =

1

xα1
1 xα2

2

∫ x1/2

0

∫ x2/2

0

f (t1,t2)
(x1− t1)1−α1(x2− t2)1−α2

dt1dt2

+
1

xα1
1 xα2

2

∫ x1/2

0

∫ x2

x2/2

f (t1,t2)
(x1− t1)1−α1(x2− t2)1−α2

dt1dt2

+
1

xα1
1 xα2

2

∫ x1

x1/2

∫ x2/2

0

f (t1, t2)
(x1− t1)1−α1(x2− t2)1−α2

dt1dt2

+
1

xα1
1 xα2

2

∫ x1

x1/2

∫ x2

x2/2

f (t1,t2)
(x1 − t1)1−α1(x2 − t2)1−α2

dt1dt2

:=
(
R(1)
α1,α2 f

)
(x1,x2)+

(
R(2)
α1,α2 f

)
(x1,x2)

+
(
R(3)
α1,α2 f

)
(x1,x2)+

(
R(4)
α1,α2 f

)
(x1,x2).

Observe that if 0 < t1 < x1/2 and 0 < t2 < x2/2, then x1/2 � x1− t1 and x2/2 �
x2− t2 . Hence (

R(1)
α1,α2 f

)
(x1,x2) � c

(
H2 f

)
(x1,x2),

where the positive constant c does not depend on f , x1 and x2 . Further, using the same
argument for the first integral and the fact that f is decreasing in the second variable
we find that

(
R(2)
α1,α2 f

)
(x1,x2) � c

1

x1x
α2
2

(∫ x1

0
f (t1,x2/2)dt1

)(∫ x2

x2/2
(x2 − t2)α2−1dt2

)

=
c
x1

(∫ x1

0
f (t1,x2/2)dt1

)
=

c
x1x2

∫ x1

0

∫ x2/2

0
f (t1,x2/2)dt1dt2

� c
(
H2 f

)
(x1,x2).

The estimate for R(3)
α1,α2 f is similar to that of R(2)

α1,α2 f .

It remains to estimate of R(4)
α1,α2 f . Since f is decreasing we have that

(
R(4)
α1,α2 f

)
(x1,x2) � c

1

xα1
2

1

xα1
2

f
( x1

2
,
x2

2

)(∫ x1

x1/2

dt1
(x1− t1)1−α1

)(∫ x2

x2/2

dt2
(x2 − t2)1−α2

)

� c
(
H2 f

)
(x1,x2).

If n � 2, then we split the integral
∫ x1
0 · · ·∫ xn

0 as a sum of n− dimensional multiple
integrals consisting of one–dimensional integrals having one of the following forms∫ xi/2
0 ,

∫ x j

x j/2 and argue as in the case n = 2.
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Lower estimate follows immediately by using the fact that f is non–negative and
the obvious estimates xi − ti � xi , where i = 1, · · · ,n and 0 < ti < xi .

(b) Upper estimate. Let us assume for simplicity that n = 2. We have

(
Wα1,α2 f

)
(x1,x2) =

∞∫
2x1

∞∫
2x2

(· · ·)+
∞∫

2x1

2x2∫
x2

(· · ·)+
2x1∫
x1

∞∫
2x2

(· · ·)+
2x1∫
x1

2x2∫
x2

(· · ·)

=:
4

∑
k=1

(
W (k)
α1,α2 f

)
(x1,x2).

The inequality (
W (1)
α1,α2 f

)
(x1,x2) � c

(
H ′

2 f
)
(x1,x2)

holds because ti/2 � ti − xi for i = 1,2 when ti > 2xi . By using the fact that f is
increasing in each variable separately we find that

(
W (4)
α1,α2 f

)
(x1,x2) � cx−α1

1 x−α2
2 f (2x1,2x2)

2x1∫
x1

2x2∫
x1

(t1 − x1)α1−1(t2 − x2)α2−1dt1dt2

� c f (2x1,2x2) � c
x1x2

4x1∫
2x1

4x2∫
2x2

f (t1, t2)dt1dt2 � c
(
H ′

2 f
)
(x1,x2).

These arguments with respect to each variable separately yield that(
W (k)
α1,α2 f

)
(x1,x2) � c

(
H ′

2 f
)
(x1,x2), k = 2,3.

Finally we conclude that the desired upper estimate holds.
Lower estimate is a direct consequence of the inequalities ti−xi � ti , i∈{1, · · · ,4} ,

where ti > xi . �

4. One and two weight criteria for the multiple Riemann–Liouville transforms

This section is dedicated to one and two weighted criteria for the multiple Riemann-
Liouville transforms and appropriate one–sided strong fractional maximal functions.

We begin with the one–weight result.

THEOREM 4.1. Let 0 < p < ∞ . Then the following statements are equivalent:
(i) Rα1,···,αn is bounded from Lp

dec(u,Rn
+) to Lp(u,Rn

+) ;
(ii) condition (2) holds.

To formulate our next result we need some notation:

Wj(x j) :=
∫ x j

0
wj(t)dt, W (t1, · · · ,tn) := Πn

i=1Wi(ti);

Vj(x j) :=
∫ ∞

x j

v j(t)dt, V (t1, · · · ,tn) := Πn
i=1Vi(ti);

p′ :=
p

p−1
, 1 < p < ∞.
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Let

(
Rα1,α2 f

)
(x1,x2) =

∫ x1

0

∫ x2

0

f (t1,t2)dt1dt2
(x1− t1)1−α1(x2− t2)1−α2

,

(
M−

α1,α2
f
)
(x1,x2) = sup

0<h1�x1
0<h2�x2

hα1−1
1 hα2−1

2

∫ x1

x1−h1

∫ x2

x2−h2

f (t1,t2)dt1dt2,

where x1,x2 ∈ R+ , f � 0 and 0 < αi < 1, i = 1,2.
The next statement gives two–weight criteria for Rα1,α2 and M−

α1,α2
.

THEOREM 4.2. Let 1 < p � q < ∞ and let 0 < αi < 1 , i = 1,2 . Assume that v
and w are weights on R

2
+ . Suppose also that w(x1,x2) = w1(x1)w2(x2) for some one–

dimensional weights w1 and w2 , and that Wi(∞) = ∞ , i = 1,2 . Then the following
conditions are equivalent:

(a) Rα1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(b) M−
α1,α2

is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(c) the following four conditions hold simultaneously:
(i)

sup
a1,a2>0

(∫ a1

0

∫ a2

0
w(t1,t2)dt1dt2

)−1/p

×
(∫ a1

0

∫ a2

0

(
tα1
1 tα2

2

)q
v(t1,t2)dt1dt2

)1/q

< ∞; (3)

(ii)

sup
a1,a2>0

(∫ a1

0

∫ a2

0
(t1t2)p′W−p′(t1,t2)w(t1,t2)dt1dt2

)1/p′

×
(∫ ∞

a1

∫ ∞

a2

(
tα1−1
1 tα2−1

2

)q
v(t1,t2)dt1dt2

)1/q

< ∞; (4)

(iii)

sup
a1,a2>0

(∫ a1

0
w1(t1)dt1

)−1/p(∫ a2

0
t p′
2 W−p′

2 (t2)w2(t2)dt2

)1/p′

×
(∫ a1

0

∫ ∞

a2

tqα1
1 tq(α2−1)

2 v(t1,t2)dt1dt2

)1/q

< ∞; (5)

(iv)

sup
a1,a2>0

(∫ a1

0
t p′
1 W−p′

1 (t1)w1(t1)dt1

)1/p′(∫ a2

0
w2(t2)dt2

)−1/p

×
(∫ ∞

a1

∫ a2

0
tq(α1−1)
1 tqα2

2 v(t1,t2)dt1dt2

)1/q

< ∞. (6)
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COROLLARY 4.1. Let 1 < p � q < ∞ and let 0 < αi < 1 , i = 1,2 . Then the
following conditions are equivalent:

(a) the boundedness of Rα1,α2 from Lp
dec(w,R2

+) to Lq(v,R2
+) holds for w ≡ 1 ;

(b) the operator M−
α1,α2

is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+) for w ≡ 1 ;

(c)

B1 := sup
a1,a2>0

B1(a1,a2)

:= sup
a1,a2>0

(a1a2)−1/p
(∫ a1

0

∫ a2

0
xqα1
1 xqα2

2 v(x1,x2)dx1dx2

)1/q

< ∞;

(d)

B2 := sup
a1,a2>0

B2(a1,a2)

:= sup
a1,a2>0

(a1a2)1/p′
(∫ ∞

a1

∫ ∞

a2

xq(α1−1)
1 xq(α2−1)

2 v(x1,x2)dx1dx2

)1/q

< ∞;

(e)

B3 := sup
a1,a2>0

B3(a1,a2)

:= sup
a1,a2>0

a−1/p
1 a1/p′

2

(∫ a1

0

∫ ∞

a2

xqα1
1 xq(α2−1)

2 v(x1,x2)dx1dx2

)1/q

< ∞;

(f)

B4 := sup
a1,a2>0

B4(a1,a2)

:= sup
a1,a2>0

a1/p′
1 a−1/p

2

(∫ ∞

a1

∫ a2

0
xq(α1−1)
1 xqα2

2 v(x1,x2)dx1dx2

)1/q

< ∞.

The following statement deals with the case q < p .

THEOREM 4.3. Let 1 < q < p < ∞ and let 0 < αi < 1 , i = 1,2 . Assume that
v and w are weights on R

2
+ . Suppose also that w(x1,x2) = w1(x1)w2(x2) and that

Wi(∞) = ∞ , i = 1,2 . Then the following conditions are equivalent:
(a) Rα1,α2 is bounded from Lp

dec(w,R2
+) to Lq(v,R2

+);
(b) M−

α1,α2
is bounded from Lp

dec(w,R2
+) to Lq(v,R2

+);
(c) the following four conditions hold:
(i)

[∫
R2

+

(∫ t1

0

∫ t2

0
v(x1,x2)

(
xα1
1 xα2

2

)q
dx1dx2

)r/q

×W−r/q(t1,t2)w(t1,t2)dt1dt2

]1/r

< ∞;
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(ii)

[∫
R2

+

(∫ ∞

t1

∫ ∞

t2
v(x1,x2)

(
xα1−1
1 xα2−1

2

)q
dx1dx2

)r/q

×
(∫ t1

0

∫ t2

0
(x1x2)p′W−p′(x1,x2)w(x1,x2)dx1dx2

)r/q′

×(t1t2)p′W−p′(t1,t2)w(t1,t2)dt1dt2

]1/r

< ∞;

(iii)

[∫
R2

+

(∫ t1

0

∫ ∞

t2
v(x1,x2)

(
xα1
1 xα2−1

2

)q
dx1dx2

)r/q

W−r/q
1 (t1)

×
(∫ t2

0
xp′
2 W−p′

2 (x2)w2(x2)dx2

)r/q′

t p′
2 W2(t2)w2(t2)dt1dt2

]1/r

< ∞;

(iv)

[∫
R2

+

(∫ ∞

t1

∫ t2

0
v(x1,x2)

(
xα1−1
1 xα2

2

)q
dx1dx2

)r/q

W−r/q
2 (t2)

×
(∫ t1

0
xp′
1 W−p′

1 (x1)w1(x1)dx1

)r/q′

t p′
1 W1(t1)w1(t1)dt1dt2

]1/r

< ∞,

where 1/r = 1/q−1/p.

REMARK 4.1. Analyzing the proof of Theorems 4.2 and 4.3 necessary and suffi-
cient conditions governing the two–weight inequality

(∫
R

n
+

(∫ x1

0
· · ·

∫ xn

0

f (t1, · · · ,tn)
Πn

i=1(xi − ti)1−αi
dt1 · · ·dtn

)q

v(x1, · · · ,xn)dx1 · · ·dxn

)1/q

� c

(∫
Rn

+

f p(x1, · · · ,xn)w(x1, · · · ,xn)dx1 · · ·dxn

)1/p

can also be obtained on Lp
dec(w,Rn

+) , where w is a product weight.
Now we prove these statements.
Theorem 4.1 is a direct consequence of Theorem B and Proposition 3.1.
To prove Theorem 4.2 we need some auxiliary statements which are formulated

for n = 2 but due to the induction they are also true for any n > 2 (see also [12],
Chapter 1).

PROPOSITION 4.1. Let 1 < p � q < ∞ and let either v(x1,x2) = v1(x1)v2(x2)
or w(x1,x2) = w1(x1)w2(x2) , where v1 , v2 , w1 and w2 are one–dimensional weights.
Then:
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(i) the inequality

(∫
R2

+

(∫ x1

0

∫ x2

0
f

)q

v(x1,x2)dx1dx2

)1/q

� c

(∫
R2

+

f p(x1,x2)w(x1,x2)dx1dx2

)1/p

(7)

holds for all functions f ∈ Lp(w,R2
+) if and only if

sup
a1,a2>0

(∫ ∞

a1

∫ ∞

a2

v(t1,t2)dt1dt2

)1/q(∫ a1

0

∫ a2

0
w1−p′(t1,t2)dt1dt2

)1/p′

< ∞;

(ii) the inequality

(∫
R2

+

(∫ ∞

x1

∫ ∞

x2

f

)q

v(x1,x2)dx1dx2

) 1
q

� c

(∫
R2

+

f p(x1,x2)w(x1,x2)dx1dx2

) 1
p

(8)

holds for all f ∈ Lp(w,R2
+) if and only if

D := sup
a1,a2>0

(∫ a1

0

∫ a2

0
v(t1,t2)dt1dt2

)1/q(∫ ∞

a1

∫ ∞

a2

w1−p′(t1,t2)dt1dt2

)1/p′

<∞;

(iii) the inequality

(∫
R2

+

(∫ ∞

x1

∫ x2

0
f

)q

v(x1,x2)dx1dx2

)1/q

� c

(∫
R2

+

f p(x1,x2)w(x1,x2)dx1dx2

)1/p

(9)

holds for all f ∈ Lp(w,R2
+) if and only if

sup
a1,a2>0

(∫ a1

0

∫ ∞

a2

v(t1,t2)dt1dt2

)1/q(∫ ∞

a1

∫ a2

0
w1−p′(t1,t2)dt1dt2

)1/p′

< ∞.

PROPOSITION 4.2. Let 1 < p � q <∞ . Assume that v and w are weights on R
2
+ .

Suppose that w(x1,x2) = w1(x1)w2(x2) and that Wi(∞) = ∞ , i = 1,2 . Then inequality
(7) holds for all functions f ∈ Lp

dec(w,R2
+) if and only if the following four conditions

are satisfied:
(i)

sup
a1,a2>0

(∫ a1

0

∫ a2

0
w(t1,t2)dt1dt2

)−1/p(∫ a1

0

∫ a2

0
(t1t2)qv(t1,t2)dt1dt2

)1/q

< ∞;

(ii)

sup
a1,a2>0

(∫ a1

0

∫ a2

0
(t1t2)p′W−p′(t1,t2)w(t1, t2)dt1dt2

)1/p′

×
(∫ ∞

a1

∫ ∞

a2

v(t1,t2)dt1dt2

)1/q

< ∞;
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(iii)

sup
a1,a2>0

(∫ a1

0
w1(t1)dt1

)−1/p(∫ a2

0
t p′
2 W−p′

2 (t2)w2(t2)dt2

)1/p′

×
(∫ a1

0

∫ ∞

a2

tq1v(t1,t2)dt1dt2

)1/q

< ∞;

(iv)

sup
a1,a2>0

(∫ a1

0
t p′
1 W−p′

1 (t1)w1(t1)dt1

)1/p′(∫ a2

0
w2(t2)dt2

)−1/p

×
(∫ ∞

a1

∫ a2

0
tq2v(t1,t2)dt1dt2

)1/q

< ∞.

Proposition 4.2 was proved in [3] in the case when both v and w are product
weights.

For the following statement we refer to [19] (see also [12], Section 1.4).

PROPOSITION 4.3. Let 1 < q < p <∞ . Suppose that the weight v defined on R
2
+

is of product type, i.e. v(x1,x2) = v1(x1)v2(x2) for some one-dimensional weights v1

and v2 . Suppose also that V1(0) = V2(0) = ∞ . Then
(i) inequality (7) holds for all f ∈ Lp(w,R2

+) if and only if

[∫
R2

+

(∫ t1

0

∫ t2

0
w1−p′(x1,x2)dx1dx2

)r/p′

Vr/p(t1, t2)v(t1,t2)dt1dt2

]1/r

< ∞;

(ii) inequality (8) holds for all f ∈ Lp(w,R2
+) if and only if

[∫
R

2
+

(∫ ∞

t1

∫ ∞

t2
w1−p′(x1,x2)dx1dx2

)r/p′

×
(∫ t1

0

∫ t2

0
v(x1,x2)dx1dx2

)r/p

v(t1,t2)dt1dt2

]1/r

< ∞;

(iii) inequality (9) holds for all f ∈ Lp(w,R2
+) if and only if

[∫
R

2
+

(∫ ∞

t1

∫ t2

0
w1−p′(x1,x2)dx1dx2

)r/p′

×
(∫ t1

0

∫ ∞

t2
v(x1,x2)dx1dx2

)r/p

v(t1,t2)dt1dt2

]1/r

<∞.

PROPOSITION 4.4. Let 1 < p � q <∞ . Assume that v and w are weights on R
n
+ .

Suppose that w(x1,x2) = w1(x1)w2(x2) and that Wi(∞) = ∞ , i = 1,2 . Then inequality
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(7) holds for all functions f ∈ Lp
dec(w,R2

+) if and only if the following conditions are
satisfied:

(i)

[∫
R2

+

(∫ t1

0

∫ t2

0
v(x1,x2)

(
x1x2

)q
dx1dx2

)r/q

×W−r/q(t1,t2)w(t1,t2)dt1dt2

]1/r

< ∞;

(ii)

[∫
R

2
+

Vr/q(t1,t2)
(∫ t1

0

∫ t2

0

(
x1x2

)p′
W−p′(x1,x2)w(x1,x2)dx1dx2

)r/q′

×(
t1t2

)p′
W−p′(t1,t2)w(t1,t2)dt1dt2

]1/r

< ∞;

(iii)

[∫
R2

+

(∫ t1

0

∫ ∞

t2
xq
1v(x1,x2)dx1dx2

)r/q

W−r/q
1 (t1)

×
(∫ t2

0
xp′
2 W−p′

2 (x2)w2(x2)dx2

)r/q′

t p′
2 W−p′

2 (t2)w(t1,t2)dt1dt2

]1/r

< ∞;

(iv)

[∫
R2

+

(∫ ∞

t1

∫ t2

0
xq
2v(x1,x2)dx1dx2

)r/q

W−r/q
2 (t2)

×
(∫ t1

0
xp′
1 W−p′

1 (x1)w1(x1)dx1

)r/q′

t p′
1 W−p′

1 (t2)w(t1,t2)dt1dt2

]1/r

< ∞.

Proof of Proposition 4.1. First assume that w(x1,x2) = w1(x1)w2(x2) .

Part (i) was proved in [16] (see also [19], [12], Chapter 1); therefore we omit it.

Part (ii). Let us denote:

f (x1,x2) := f
(
1/x1,1/x2

)
x−2
1 x−2

2 ,

v(x1,x2) := v
(
1/x1,1/x2

)
x−2
1 x−2

2 ,

w(x1,x2) := w
(
1/x1,1/x2

)
x2p−2
1 x2p−2

2 .

Then it is easy to check that inequality (8) is equivalent to

[ ∫

R2
+

v(x1,x2)
( x1∫

0

x2∫
0

f

)q

dx1dx2

]1/q

�c

(∫
R2

+

f
p
w

)1/p

.
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Observe now that

D = sup
a1,a2>0

(∫ ∞

a1

∫ ∞

a2

v

)1/q(∫ a1

0

∫ a2

0
w1−p′

)1/p

.

By using Part (i) of Proposition 4.1 and obvious change of variables we have the
desired result.

Part (iii) can be proved in a similar manner; therefore we omit the details.
Let now v(x1,x2) = v1(x1)v2(x2) . Then the result follows using the duality argu-

ments. For example, inequality (8) holds if and only if

(∫
R2

+

(∫ x1

0

∫ x2

0
f

)p′

w1−p′(x1,x2)dx1dx2

)1/p′

� c

(∫
R2

+

f q′(x1,x2)v1−q′(x1,x2)dx1dx2

)1/q′

,

where the weight function v1−q′(x1,x2) is of product type. Consequently, using the
result of the previous case we are done. �

Proof of Proposition 4.2. We follow the proof of Theorem 5.3 in [3]. In that paper
it was shown that if w is a product weight, i.e., w(x1,x2) = w1(x1)w2(x2) , such that
Wi(∞) = ∞ , i = 1,2, and v is any weight on R

2
+ , then inequality (7) holds for all

f ∈ Lp
dec(w,R2

+) if and only if

(∫
R2

+

(∫ x1

0

∫ x2

0

[∫ ∞

τ1

∫ ∞

τ2
g(t1,t2)dt1dt2

]
dτ1dτ2

)p′

W−p′(x1,x2)w(x1,x2)dx1dx2

)1/p′

� c

(∫
R2

+

gq′(x1,x2)v1−q′(x1,x2)dx1dx2

)1/q′

, g � 0. (10)

Further, we have that

∫ x1

0

∫ x2

0

(∫ ∞

τ1

∫ ∞

τ2
g

)
dτ1dτ2

=
∫ x1

0

∫ x2

0
t1t2g(t1,t2)dt1dt2 + x1

∫ ∞

x1

∫ x2

0
t2g(t1,t2)dt1dt2

+x2

∫ x1

0

∫ ∞

x2

t1g(t1,t2)dt1dt2 + x1x2

∫ ∞

x1

∫ ∞

x2

g(t1,t2)dt1dt2

:= I1(x1,x2)+ I2(x1,x2)+ I3(x1,x2)+ I4(x1,x2).

It is obvious that (10) is satisfied if and only if

(∫
R2

+

I p′
j (x1,x2)W−p′(x1,x2)w(x1,x2)dx1dx2

)1/p′

� c

(∫
R2

+

gq′v1−q′
)1/q′

(11)
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for j = 1,2,3,4. By applying Proposition 4.1 (Part (i)) we find that
(∫

R2
+

I p′
1 (x1,x2)W−p′(x1,x2)w(x1,x2)dx1dx2

)1/p′

� c

(∫
R2

+

gq′(x1,x2)v1−q′(x1,x2)dx1dx2

)1/q′

if and only if
(∫ ∞

a1

∫ ∞

a2

W−p′(t1, t2)w(t1,t2)dt1dt2

)1/p′(∫ a1

0

∫ a2

0

(
v1−q′(x1,x2)

(x1x2)q′

)1−q

dt1dt2

)1/q

= cp

(∫ a1

0

∫ a2

0
w(t1,t2)dt1dt2

)−1/p(∫ a1

0

∫ a2

0
v(x1,x2)(x1x2)qdx1dx2

)1/q

� C.

Taking now Propositions 4.1 ( Part (ii) ) into account we find that (11) holds for
j = 4 if and only if condition (ii) is satisfied, while Proposition 4.1 (Part (iii)) and the
following observation:

sup
a1,a2>0

(∫ ∞

a1

w1(t1)W
−p′
1 (t1)dt1

)1/p′(∫ a2

0
t p′
2 W−p′

2 (t2)w2(t2)dt2

)1/p′

×
(∫ a1

0

∫ ∞

a2

tq1v(t1,t2)dt1dt2

)1/q

= cp sup
a1,a2>0

(∫ a1

0
w1(t1)dt1

)−1/p(∫ a2

0
t p′
2 W−p′

2 (t2)w2(t2)dt2

)1/p′

×
(∫ a1

0

∫ ∞

a2

tq1v(t1,t2)dt1dt2

)1/q

< ∞;

sup
a1,a2>0

(∫ a1

0
t p′
1 W−p′

1 (t1)w1(t1)dt1

)1/p′(∫ ∞

a2

w2(t2)W
−p′
2 (t2)dt2

)1/p′

×
(∫ ∞

a1

∫ a2

0
tq2v(t1,t2)dt1dt2

)1/q

= cp sup
a1,a2>0

(∫ a1

0
t p′
1 W−p′

1 (t1)w1(t1)dt1

)1/p′(∫ a2

0
w2(t2)dt2

)−1/p

×
(∫ ∞

a1

∫ a2

0
tq2v(t1,t2)dt1dt2

)1/q

< ∞

yield (11) for j = 2,3. �

Proof of Proposition 4.3. Part (i) was proved in [19] (see also [12], Section 1.4).
Part (ii) follows from Part (i) by using the arguments of the proof of Part (ii) of

Proposition 4.1 and observing that ∫ ∞

0
vi(t)dt = ∞
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if and only if Vi(∞) = ∞ ( i = 1,2), where vi(x) = vi(1/x)x−2 .
Part (iii) follows by the similar arguments. �

Proof of Proposition 4.4. We keep the notation of the proof of Proposition 4.2.

First observe that the condition Wi(∞) = ∞ implies that
∫ ∞
0 W−p′

i (t)w(t)dt = ∞, i =
1,2.

Inequality (11) for i = 1 holds if and only if

[(∫
R+

∫ t1

0

∫ t2

0
v(x1,x2)(x1x2)qdx1dx2

)r/q

×
(∫ ∞

t1

∫ ∞

t2
W−p′(x1,x2)w(x1,x2)dx1dx2

)r/q′

W−p′(t1,t2)w(t1,t2)dt1dt2

]1/r

=
[∫

R2
+

(∫ t1

0

∫ t2

0
v(x1,x2)

(
x1x2

)q
dx1dx2

)r/q

W−r/q(t1,t2)w(t1,t2)dt1dt2

]1/r

< ∞.

Analogously it follows that inequality (11) holds for i = 2,3,4 if and only if con-
ditions (iv), (iii) and (ii) are satisfied respectively. �

Proof of Theorem 4.2. Let us denote

(
Hα1,α2 f

)
(x1,x2) := xα1−1

1 xα2−1
2

∫ x1

0

∫ x2

0
f (t1, t2)dt1dt2.

It is easy to see that Proposition 3.1 yields the following relation:

Rα1,α2 f ≈ Hα1,α2 f

for all decreasing functions f : R
2
+ → R+ . Now Proposition 4.2 completes the proof of

the equivalence (a) ⇔ (c) .
The fact that (b) ⇔ (c) can be obtained from the inequalities:

(
Hα1,α2 f

)
(x1,x2) �

(
M−

α1,α2
f
)
(x1,x2) �

(
Rα1,α2 f

)
(x1,x2) � c

(
Hα1,α2 f

)
(x1,x2)

and Proposition 4.2. �

Proof of Corollary 4.1. Due to Theorem 4.2 it is enough to show that conditions
(c) , (d) , (e) and (f) are equivalent. We prove, for example, that (c) ⇔ (d) . The facts
that (c) ⇔ (e) , (c) ⇔ (f) follow analogously.

Let a1,a2 > 0. Then there are integers m and n such that a1 ∈ [2m,2m+1) , a2 ∈
[2n,2n+1) . We have
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Bq
1(a1,a2) � 2−mq/p2−nq/p

∫ 2m+1

0

∫ 2n+1

0
tα1q
1 tα2q

2 v(x1,x2)dx1dx2

= 2−mq/p2−nq/p
m

∑
k=−∞

n

∑
j=−∞

∫ 2k+1

2k

∫ 2 j+1

2 j
tα1q
1 tα2q

2 v(x1,x2)dx1dx2

� Cα1,α2,q2
−mq

p 2−
nq
p

m

∑
k=−∞

n

∑
j=−∞

2kq2 jq
∫ 2k+1

2k

∫ 2 j+1

2 j

v(x1,x2)

x(1−α1)q
1 x(1−α2)q

2

dx1dx2

� Cα1,α2,qB
q
22

−mq/p2−nq/p
m

∑
k=−∞

n

∑
j=−∞

2kq/p2 jq/p � CBq
2.

Consequently, B1 � cB2 . Conversely:

B2(a1,a2)q � Cp,q2mq/p′2nq/p′
∞

∑
k=m

∞

∑
j=n

∫ 2k+1

2k

∫ 2 j+1

2 j

v(x1,x2)

x(1−α1)q
1 x(1−α2)q

2

dx1dx2

� Cp,q2mq/p′2nq/p′
∞

∑
k=m

∞

∑
j=n

2−kq2− jq
∫ 2k+1

2k

∫ 2 j+1

2 j
v(x1,x2)x

α1q
1 xα2q

2 dx1dx2

� Cp,qB
q
12

mq/p′2nq/p′
∞

∑
k=m

∞

∑
j=n

2−kq/p′2− jq/p′ � CBq
1. �

Proof of Theorem 4.3. is similar to that of Theorem 4.2. The difference is that in
this case we apply Proposition 4.4 instead of Proposition 4.2. �
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