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AN OPERATOR EXTENSION OF THE PARALLELOGRAM

LAW AND RELATED NORM INEQUALITIES

MOHAMMAD SAL MOSLEHIAN

Abstract. We establish a general operator parallelogram law concerning a characterization of
inner product spaces, get an operator extension of Bohr’s inequality and present several norm
inequalities. More precisely, let A be a C∗ -algebra, T be a locally compact Hausdorff space
equipped with a Radon measure μ and let (At)t∈T be a continuous field of operators in A such
that the function t �→ At is norm continuous on T and the function t �→ ‖At‖ is integrable. If
α : T × T → C is a measurable function such that α(t,s)α(s,t) = 1 for all t,s ∈ T , then we
show that∫

T

∫
T
|α(t,s)At −α(s,t)As|2 dμ(t)dμ(s)+

∫
T

∫
T
|α(t,s)Bt −α(s,t)Bs|2 dμ(t)dμ(s)

= 2
∫

T

∫
T
|α(t,s)At −α(s,t)Bs|2 dμ(t)dμ(s)−2
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(At −Bt)dμ(t)
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