athematical
nequalities
& Papplications
Volume 14, Number 3 (2011), 717-725

AN OPERATOR EXTENSION OF THE PARALLELOGRAM
LAW AND RELATED NORM INEQUALITIES

MOHAMMAD SAL MOSLEHIAN

Dedicated to my dear teacher
Aziz Atai Langroudi
with respect and affection

Abstract. We establish a general operator parallelogram law concerning a characterization of
inner product spaces, get an operator extension of Bohr’s inequality and present several norm
inequalities. More precisely, let 2 be a C*-algebra, T be a locally compact Hausdorff space
equipped with a Radon measure u and let (A;);cr be a continuous field of operators in 2 such
that the function 7 +— A, is norm continuous on 7 and the function 7 +— ||A;|| is integrable. If
o : T xT — C is a measurable function such that o(z,s)a(s,r) =1 for all 7,s € T, then we
show that

// (8, 5)Ar — au(s,1)As |2 dpt (1) du (s +/ / \(t,5)B: — cu(s.1)By > dua (1) dua(s)

2

—2//\atsA, als,0)By P du(r)du s)fZ'A(A,fB,)du(t)

1. Introduction

Let 2 be a C*-algebra and let T be a locally compact Hausdorff space. A field
(A;)rer of operators in 2 is called a continuous field of operators if the function 7 +— A,
is norm continuouson 7. If u(r) is aRadon measure on T and the function 7 — ||4; || is
integrable, one can form the Bochner integral [;A,du(¢), which is the unique element

in 2 such that
0 ( / Azdu(t)) = [ oaut)

for every linear functional ¢ in the norm dual * of 2 ; see [8, Section 4.1] and [7].

Let B(.2°) be the algebra of all bounded linear operators on a separable complex
Hilbert space % endowed with inner product (-,-). We denote the absolute value of
AcB() by |A| = (A*A)'/2. For x,y € 4 , the rank one operator x®y is defined on
H by (x®@y)(z) = (z,9)x
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Let A € B(5¢) be a compact operator and let 0 < p < oo. The Schatten p-norm (p-
quasi-norm) for 1 < p < (0 < p < 1) is defined by ||A||, = (tr|A|?)!/?, where tr is
the usual trace functional. Clearly

APl = 1Al (1.1)

for p > 0. For p > 0, the Schatten p-class, denoted by %, is defined to be the two-
sided ideal in B(7#) of those compact operators A for which ||Al|, is finite. In par-
ticular, 47 and %, are the trace class and the Hilbert-Schmidt class, respectively. For
1 < p < e, 6, is a Banach space; in particular the triangle inequality holds. However,
for 0 < p < 1, the quasi-norm ||. ||, does not satisfy the triangle inequality. In addition
to Schatten p-norms and operator norm, there are other interesting norms defined on
some ideals contained in the ideal of compact operators. A unitarily invariant norm
[[|- ]| is defined only on a norm ideal %j.;| associated with it and has the property
[[|lUAV||| = [||A||, where U and V are unitaries and A € %], - For more information
on the theory of the unitarily invariant norms the reader is referred to [15].

One can show that

2

En:(xi — Vi)

i=1

n n n
Y b=l X =il =2 Y lxi—yil* -2

i,j=1 i,j=1 i,j=1

(1.2)

holds in an inner product space, which is indeed a generalization of the classical paral-
lelogram law:

2+ w2+ |z—w]*> =2[z)* +2|w|? (z,w e C).

There are several extensions of parallelogram law among them we could refer the in-

terested reader to [4, 5, 12, 17, 6]. Generalizations of the parallelogram law for the

Schatten p-norms have been given in the form of the celebrated Clarkson inequali-

ties (see [10] and references therein). Since %> is a Hilbert space under the inner

product (A, B) = tr(B*A), it follows from (1.2) that if Ay,---,A,,By,---,B, € € with
?:1 (Ai — Bi) =0, then

S lAi-Ajlz+ Y 1Bi-Bjll3=2 [|Ai—Bjl. (1.3)
=1 i1 i1

The classical Bohr’s inequality states that for any z,w € C and any positive real
numbers 7, s with % + % =1,

|2+ w|* < 7z + s|w].

Many interesting operator generalizations of this inequality have been obtained; cf.
[1,3,9, 14, 16].

In this paper, we establish an extended operator parallelogram law and get a gener-
alization of Bohr’s inequality. We also present several unitarily invariant and Schatten
p-norm inequalities. Our results can be regarded as extensions of main results of [11].
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2. Joint extensions of the parallelogram law and Bohr’s inequality

We start our work with following clear lemma. The first equality is called the
operator parallelogram law.

LEMMA 2.1. Let A,B € B(%). Then
|JA+B*>+]|A—B>=2|A”+2|B* (a);
and
A+ B>~ |A—B|* =4Re(A*B)  (b)

We now state our main result, which is an operator version of equality (1.2). As
we will see later, it is indeed a joint operator extension of Bohr and parallelogram
inequalities.

THEOREM 2.2. Let A be a C*-algebra, T be a locally compact Hausdorff space
equipped with a Radon measure W and let (A;)icr be a continuous field of operators
in 2 such that the function t — A, is norm continuous on T and the function t — ||A||
is integrable. Let o, : T x T — C be a measurable function such that a,(t,s)o(s,t) = 1
forall t,s € T. Then

//\ats au(s, 1A P du(t)dp(s +//|ats — (s,1)By [ d(t)dp(s)

2
_2//|ats au(s,0)B P du(t) ‘/ _B)du()

Proof
o9 = atsonPanan(s)+ | [ a8 - alsp dutdus)
:/T/T(|O‘(”S>A"O‘(S”>AS} ot 5)B, — (s, 0)By | dpa (1) dpa(s)
B /T/T (%}Q(I’S)At — a(s,1)As+ a(t,s)B, — as,1)Bs

+ % |o(t,5)A; — a(s,1) Ay — cu(t,5)By + oc(s,t)Bs|2>du (1)du(s)
(by Lemma 2.1(a))

| 2

- /T/T (%’(a(I’S)AI — a(s5,1)By) — (au(s,1)A — ault,5)B,) |
b2 (@le,9)A— a,9)B,) — (s )A, — u(s,0)B,) ) dpa(1)dn(s)

= [ [ (1t~ 5.8+ |, ~ e )8,
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a _} a(s,t)By) + (au(s,1)As — a(t,s)B,)}z)

e u(t,)By) — (x(s,1)As — ee(s,0)B,) | d(r)da(s)
(by Lemma 2.1(a))

:/T/T|O‘(I»S)At—OC(SJ)Bs}de(l)dH(S)Jr/T/T}oc(ns)At—oc(s,t)Bs|2d“(;)d“(s)
—1// |(cu(t,5)Ar — ax(t,5)B;) + (ax(s,1)As — (s, 1)By) |
~ (e u(t,5)By) — (x(s,1)As — ee(s,0)B,) | ) da (1) ()
=2 / ’OC(I,S)A,—a(s,z)stzd“(,)d“(s)

—2Re// (1,5)Ar — au(t,$)B:) (0c(s,1)As — au(s,1)Bs)dpa () (s)
(by Lemma 2.1(b))

) /T /T |t )A; — ox(s,1)By 2 du(t)du(s)

~2re[([a-maun) ([ <As—Bs>du<s>)}

zz/T/Tya(z,s) stB’du Ydu(s z|/A, B,)du()’ . O

If we let T ={1,---,n}, u be the counting measure on 7 and o(i,j) =

Tz

where r; > 0 (1 <i< n), in Theorem 2.2, then we get

COROLLARY 2.3. (Generalized Parallelogram Law) Let Ay,---,A,,By,---,B, €

B(5) andlet ry,---,ry be positive numbers. Then
G

B

ri

1<1<J<n

/ Ly /rf @2.1)
If we set By = --- = B, = 0 in Corollary 2.3, then the following extension of
parallelogram law is obtained

711

COROLLARY 2.4. [6, Theorem 4.2] Suppose that Ay,---,A, € B(I) and ry,- -,

ra are positive numbers with 3., = = 1. Then

\/Tl \/ﬁ rl |A; \ — (2.2)

\
1<l</<n

i=1
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REMARK 2.5. If n=2 and ¢ := % > 0, then operator equality (2.2) can be re-
stated as the following form which is, as noted in [6], a generalization of [9, Theorem
1] and [3, Theorem 3].

1 1
A+ Az + ;|tA1 — AP =(1+0)A)P+ (1 + ;) |A5]%.

We also infer the following extension of Bohr’s inequality [16, Theorem 7] from
(2.2).
2

< Z}"i |Ai‘2 .

i=1

n

i=1
The preceding inequality is, in turn, a special case of the following general form

of the Bohr inequality being easily deduced from the fact that the left hand side of the
operator equality in Theorem 2.2 is a positive element of the C*-algebra .

COROLLARY 2.6. (Generalized Operator Bohr’s Inequality) Let 2 be a C*-al-
gebra, T be alocally compact Hausdorff space equipped with a Radon measure | and
let (As)ier be a continuous field of operators in A such that the function t — A; is
norm continuous on T and the function t — ||A;|| is integrable. Let ot : T x T — C be
a measurable function such that o(t,s)a(s,t) =1 forall t,s € T. Then

}/ —B))du(r) //|octs — a(s.0)Bs|Pdu(t)du(s).

A weighted extension of norm equality (1.2) can be deduced from (2.1) as follows:

COROLLARY 2.7. Let x1,-++,Xn, V1, ,yn € I andlet ry,---,r, be positive num-

bers. Then
ri Ti
[ y J

—X; —

7
T
7

4 1<z<j<n

n

Proof. Let e be a non-zero vector of 7 and set A; =x;®e,B; =y; Qe for i =
1,---,n. It follows from the elementary properties of rank one operators and equality

(2.1) that
[ Ly — /_/yj
ij=1 Tj Ti
2 2
| Fi H"j [ ri H"j
rj ri }"j ri

ri

)e@e

-
Ty,
ri

n
+
ij=1 ij=1
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[LA; — /_JA,. [LB;— /_JB,.
r rio r rioc
/rl /rj 2":
Iz -
(, /—Uc,-—,/—"y,-) Qe
ri ri
ri
xl yj

from which we conclude the result. [

:g

ij=1

—2

1/1

3

-2

—2

) eRe,

711

3. A general parallelogram law

An extension of a result of [2] for n-tuples may be stated as follows.
o If f:[0,0) — [0,00) is a convex function, then for any positive operators
Ay,---,A,, any nonnegative numbers oy, --, 0, with 2'}2 1 ¢ =1 and any unitarily

invariant norm ||| - ||| on B(5¢)
J=1
The following result is also known [13]:

o If f:[0,00) — [0,20) is a convex function with f(0) = 0, then for any positive
operators Ay, ---,A, and any unitarily invariant norm ||| - ||| on B(.¢)

g

The reverse inequalities hold for concave functions; see [10] for more details. We
now prove another significant theorem.

3 aif(A)
=1

3 7(4))
=1

H | 62

THEOREM 3.1. Let Ay,---,A, € ‘Km > T1s "I be positive real numbers with

i1 7 =1, let g be a nonnegative convex functlon on [0,00) such that g(0) =0 and

let f(1) = g(t*). Then
' mqq O¢W Vﬁ )+f<ém>H'@$

for all unitarily invariant norm. If g is concave, then the reverse of (3.3) holds.

3 Lr(nai)

i=1"1
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Proof.
noq noq 5
Y —f(ra||| = ]| X —& (IrAil)
=17 i=17i
= |l|g | X Il (by 3.1))
i=11i
Ti r 2 i g
=|||g —Ai— LA+ A (by (2.2))
1<i<j<n J Fi i—1
Ti P i g
> g —Ai— LA | +g | | DA (by 3.2))
1<i<j<n Tj Ti i=1
ri rJ 1l
= f —Ai— [ ZA; )+ 1| DA . D
1<i<j<n Ty i =

The function g(z) =" for 1 < p <o (g(t) =17 for 0 < p < 1, resp.) is convex
(concave, resp.) on [0,). Hence we get the following corollary.

COROLLARY 3.2. Let Ay,---,An €6, and r1,---,r, be positive real numbers

with ¥, +- = 1. Then
n e P
DL LY = Y YA
= 1<i<j<n »
forany 2 < p < oo. The reverse inequality holds for any 0 < p < 2.
Proof. Let 2 < p < oo,
o o1 o o1
2y = XAl (by (1.1))
i=1 i=1

— tr(i P AlP)
i=1

n

1
2 \riA-|p

i=17i

rl rj

r
7 1
)4

(by Theorem31forg() 12;2< p<eo)
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7 I L A
=tr 2 —lAi— —jAj +2Ai
1<i<j<n! V Ti Ti i=1
7 fri |? no |
= Z tr (‘ —lAi— —jAj ) +tr ZAi
I<i<j<n Tj Ti i=1
<)%
7i ri P no P
- 3 [ Ea- ]|+ Ea
1<i<j<n Tj Ti 1 i=1 |
ri r,' p n P
=y [ =Ai— [ 2LA| + | DA - (by (1.1))
1<i<j<n IV T ity =,

The proof for the reverse inequality is similar. [

eree
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