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OPTIMAL EMBEDDINGS OF GENERALIZED

INHOMOGENEOUS SOBOLEV SPACES ON Rn

IRSHAAD AHMED AND GEORGI E. KARADZHOV

Abstract. We prove optimal embeddings in the subcritical case of the inhomogeneous Sobolev
spaces built-up over function spaces in Rn with K−monotone and rearrangement invariant norm
into another rearrangement invariant function spaces. The investigation is based on pointwise
and integral estimates of the rearrangement or the oscillation of the rearrangement of f in terms
of the rearrangement of the derivatives of f .

1. Introduction

Let Lloc be the space of all locally integrable functions f on Rn, n � 2 with
the Lebesgue measure, finite almost everywhere. Denote by Lp, 1 � p < ∞, the
usual Lebesgue space with a norm ‖ f‖p = (

∫
Rn | f (x)|pdx)1/p . The classical inhomo-

geneous Sobolev space Wk
p is defined as a Banach space consisting of all f ∈ Lp , such

that all generalized derivatives up to order k are in Lp , and having a norm ‖ f‖Wk
p

=∥∥∣∣Dk f
∣∣∥∥

p +‖ f‖p, where |Dk f | :=∑|α |=k |Dα f |. The following continuous embedding
is well known:

Wk
p ↪→ Lr,p, 1/r = 1/p− k/n, k/n < 1/p < 1, (1.1)

where Lr,p stands for the Lorentz space with a norm

‖ f‖Lr,p =
(∫ ∞

0
t p/r[ f ∗∗(t)]pdt/t

)1/p

.

Here f ∗∗(t) := 1
t

∫ t
0 f ∗(s)ds and f ∗ is the decreasing rearrangement of f , given by

f ∗(t) = inf{λ > 0 : μ f (λ ) � t}, t > 0, where μ f is the distribution function of f ,
defined by μ f (λ )= |{x ∈ Rn : | f (x)| > λ}|n , and |·|n denotes Lebesgue’s n−measure.
We use the notations a1 � a2 or a2 � a1 for nonnegative functions or functionals to
mean that the quotient a1/a2 is bounded; also, a1 ≈ a2 means that a1 � a2 and a1 � a2.
We say that a1 is equivalent to a2 if a1 ≈ a2.

Note that the embedding (1.1) is not optimal in the sense that the target space Lr,p

can be replaced by a smaller one, namely the intersection Lr,p ∩Lp. The norm in the
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intersection is the maximum of the two corresponding norms. What will be important
in the sequel is the following relation

‖ f‖Lr,p∩Lp ≈
(∫ 1

0
t p/r[ f ∗(t)]pdt/t

)1/p

+
(∫ ∞

1
[ f ∗(t)]pdt

)1/p

, r > p. (1.2)

The main goal of this paper is to generalize the embedding (1.1), considering the
generalized inhomogeneous Sobolev spaces WkE , built-up over rearrangement invari-
ant spaces E , with a norm ‖ f‖WkE := ‖|Dk f |‖E + ‖ f‖E . More precisely, we suppose
that ‖ f‖E := ρE( f ∗), where ρE is a norm defined on M + , the space of all non-
negative measurable functions on (0,∞) with respect to the Lebesgue measure, finite
almost everywhere and f ∗(∞) = 0. We suppose that ρE is rearrangement invariant and
K−monotone in the sense (cf. [1], Definition 1.16, p. 305):

∫ t

0
g∗1(s)ds �

∫ t

0
g∗2(s)ds implies ρE(g∗1) � ρE(g∗2), g1, g2 ∈ M +. (1.3)

Then ‖ f‖E satisfies the triangle inequality, since ( f +g)∗∗ � ( f ∗ +g∗)∗∗.
We also require that the norm ρE satisfies the Minkovski inequality:

ρE

(∫ ∞

0
ϕ(u)g(tu)du

)
�

∫ ∞

0
ϕ(u)ρE(g(tu))du, ϕ ,g ∈ M +. (1.4)

For example, if E is a rearrangement invariant Banach function space as in [1],
then by the Luxemburg representation theorem ‖ f‖E = ρE( f ∗) for some norm ρE sat-
isfying (1.3) and (1.4). More general example is given by the Riesz-Fischer monotone
spaces as in [1], p. 305.

Note that we have the equivalence that can be established as in [1] p. 337,

‖ f‖WkE ≈
k

∑
j=0

‖|Dj f |‖E . (1.5)

Recall the definition of the lower and upper Boyd indices αE and βE . Let

hE(s) = sup

{
ρE(g∗s )
ρE(g∗)

: g ∈ M +
}

, gs(t) := g(t/s)

be the dilation function generated by ρE . Then

αE := sup
0<t<1

loghE(t)
logt

and βE := inf
1<t<∞

loghE(t)
logt

.

If ρE is monotone, then the function hE is submultiplicative, increasing, hE(1) = 1,
1 � hE(s)hE(1/s), therefore 0 � αE � βE . If ρE is K−monotone, then by interpola-
tion, (analogously to [1], p. 148) we see that hE(s) � max(1,s). Hence 0 � αE � βE �
1.

We suppose that αE > k/n, i.e. in this paper we consider the subcritical case. If
E = Lp, then αE = 1/p and the condition k/n < 1/p appears in (1.1).
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If βE < 1, we have analogously to [1] p. 150,

ρE( f ∗) ≈ ρE( f ∗∗). (1.6)

The condition βE < 1 is equivalent to (see [1] p. 147),

∫ 1

0
hE(1/s)ds < ∞. (1.7)

For example, consider the classical Lorentz spaces Λq(w), 1 � q � ∞, w - posi-
tive weight, i.e. a positive function from M + ; f ∈ Λq(w) if ‖ f‖Λq

w
:= ρw,q( f ∗) < ∞,

ρw,q(g) := (
∫ ∞
0 [g(t)w(t)]qdt/t)1/q . In general, the functional f �→ ‖ f‖Λq

w
is not a norm.

But in many cases we can find an equivalent norm. Consider the so-called Γ spaces,
Γq(w) with a norm ‖ f‖Γq(w) := ρw,q,Γ( f ∗), where ρw,q,Γ(g) := (

∫ ∞
0 [g∗∗(t)w(t)]qdt/t)1/q .

The following condition should be satisfied (otherwise the space will be trivial)

(∫ ∞

0
min(1,t−q)wq(t)dt/t

)1/q

< ∞.

Then this space is continuously embedded in the sum L1 +L∞. Using this embedding
the completeness of the space can be established in a standard way. The space E =
Γq(w) with ρE = ρw,q,Γ satisfies the conditions (1.3), (1.4). When w(t) = t1/r , 1 � r <

∞, we use the standard notation Lr,q for Λq(t1/r).
In some cases the Lorentz space E = Λq(w), 1 � q < ∞ , also satisfies the condi-

tions (1.3), (1.4). For example, if wq(t)/t is not increasing, then (see [1], p. 72), the
functional ρw,q is a K−monotone norm.

Note also that if E = Γq(w), ρE = ρw,q,Γ , then (1.6) is equivalent to βE < 1 (see
[1], p. 150).

We are going to prove optimal embeddings of WkE into rearrangement invariant
function spaces G with a norm ‖ f‖G ≈ ρG( f ∗), where ρG is a monotone norm. In
order to define the classes of the domain norms ρE and target norms ρG , where opti-
mality of the embedding WkE ↪→ G is investigated, we observe, in addition to (1.2),
that we have two limiting embeddings: Wk

1 ↪→ Λ1(t1−k/n) and WkΛ1(tk/n) ↪→ L∞. For
these reasons, we define the class Nd of domain norms ρE with the following proper-
ties: ρE is rearrangement invariant, K−monotone, satisfying Minkovski’s inequality,
αE > k/n and E ↪→ L1 +Λ1(tk/n). The class Nt of target norms ρG has the properties:
ρG is monotone and G ↪→ Λ1(t1−k/n)+L∞. Finally, the class N of couples ρE ∈ Nd ,
ρG ∈ Nt is defined by the condition

ρG(χ(1,∞)g
∗) ≈ ρE(χ(1,∞)g

∗), g ∈ M +, (1.8)

where χ(a,b) is the characteristic function of the interval (a,b).

DEFINITION 1.1. (admissible couple) We say that the couple ρE , ρG in N is
admissible if the continuous embedding is valid:

WkE ↪→ G. (1.9)
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Moreover, ρE ( E ) is called domain norm (domain space), and ρG (G) is called target
norm (target space). In this way we shall reserve the letter E for the domain space and
ρE for the domain norm, while the letter G is reserved for the target space and ρG for
the target norm.

Now we recall the definition of optimal norms (see for example [6]).

DEFINITION 1.2. (optimal target norm) Given the domain norm ρE ∈ Nd , the
optimal target norm, denoted by ρG(E) , satisfies (1.8) and is the strongest target norm
in Nt , i.e.

ρG(g∗) � ρG(E)(g
∗), g ∈ M +, (1.10)

for any target norm ρG ∈ Nt such that the couple ρE ,ρG is admissible.

DEFINITION 1.3. (optimal domain norm) Given the target norm ρG ∈ Nt , the
optimal domain norm, denoted by ρE(G) , satisfies (1.8) and is the weakest domain
norm in Nd , i.e.

ρE(G)(g
∗) � ρE(g∗), g ∈ M +, (1.11)

for any domain norm ρE ∈ Nd such that the couple ρE ,ρG is admissible.

DEFINITION 1.4. (optimal couple) The admissible couple ρE , ρG in N is said
to be optimal if ρE = ρE(G) and ρG = ρG(E).

The optimal norms are uniquely determined up to equivalence, while the corre-
sponding optimal Banach spaces are unique. Our main result is Theorem 3.3, where
for a given domain norm ρE ∈ Nd we construct an optimal target norm and prove
that the couple is optimal. For example, the couple E = Γq(w), G = Γq(t−k/nw)∩E,
1 � q � ∞, αE > k/n, is optimal. In particular, if E = Lp, 1 � p < ∞, k/n < 1/p,
then the couple Lp, Lr,p∩Lp, 1/r = 1/p− k/n is optimal.

The problemof optimal embeddings for inhomogeneousSobolev spaces in bounded
domains is treated in several papers by somewhat different methods [7], [6], [8], [12],
[11], [4], [3]. The case of inhomogeneous Sobolev spaces W 1E in Rn is investigated
in [13] in the class of rearrangement invariant Banach function spaces as in [1]. Our
domain spaces are more general. In particular, we do not use the Fatou property and
duality arguments.

2. Pointwise estimates for the rearrangement

LEMMA 2.1. ([5]) For k = 1 and k = 2

f ∗∗(t)− f ∗∗(2t) � tk/n
∣∣∣Dk f

∣∣∣∗∗ (t), f ∈C∞
0 , (2.1)

where C∞
0 is the class of C∞ functions in Rn with compact support.

When n = 1, k = 1 the estimate (2.1) is equivalent to one given in [9], Lemma 5. For
k = 1 it was proved in [2] using another method.



OPTIMAL EMBEDDINGS OF GENERALIZED INHOMOGENEOUS SOBOLEV SPACES ON Rn 741

LEMMA 2.2. If f ∈WkE , then

f ∗∗(t) �
∫ 1

t
uk/n|Dk f |∗∗(u)

du
u

+
k−1

∑
j=0

|Dj f |∗∗(1), 0 < t < 1. (2.2)

Proof. We prove (2.2) by induction. First we note that (see [5])

f ∗∗(t) =
∫ 1

t
δ f ∗∗(u)

du
u

+ f ∗∗(1), (2.3)

where δ f ∗∗(t) := f ∗∗(t)− f ∗(t) � f ∗∗(t)− f ∗∗(2t). Using (2.1) and (2.3) we can write

f ∗∗(t) �
∫ 1

t
u1/n|D1 f |∗∗(u)

du
u

+ f ∗∗(1), 0 < t < 1,

i.e. (2.2) for k = 1. By induction and (2.3) for |Dm f | , we have for 0 < t < 1,

f ∗∗(t) �
∫ 1

t
um/n

(∫ 1

u
δ |Dm f |∗∗(s)ds

s
+ |Dm f |∗∗(1)

)
du
u

+
m−1

∑
j=0

|Dj f |∗∗(1).

Using again (2.1), we get

f ∗∗(t) �
∫ 1

t
um/n

(∫ 1

u
s1/n|Dm+1 f |∗∗(s)ds

s

)
du
u

+
m

∑
j=0

|Dj f |∗∗(1), 0 < t < 1.

It remains to apply Fubini’s theorem. �

3. Optimal Sobolev embeddings

3.1. Admissible couples

Here we give a characterization of all admissible couples ρE , ρG in N .

THEOREM 3.1. (Case βE < 1) Let αE > 0, βE < 1. The couple ρE , ρG in N is
admissible if and only if

ρG(χ(0,1)Tg) � ρE(χ(0,1)g), g ∈ M +, (3.1)

where

Tg(t) :=
∫ 1

t
sk/ng(s)ds/s, 0 < t < 1. (3.2)

Proof. From (2.2) it follows

f ∗(t) � T
(
|Dk f |∗∗

)
(t)+

k−1

∑
j=0

|Dj f |∗∗(1), 0 < t < 1.
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Using (3.1), βE < 1 and E ↪→ L1 +L∞, we obtain

ρG(χ(0,1) f
∗) � ρE

(
|Dk f |∗

)
+

k−1

∑
j=0

ρE
(|Dj f |∗) .

Taking into account also (1.8) and (1.5), we get the embedding (1.9).
Now we prove that (1.9) implies (3.1). The proof given below is valid without the

restriction βE < 1. To this end we choose the test function in the form

f (x) =
∫ 1

0
ukg(un)ψ(|x/u|)du

u
, g ∈ M +, (3.3)

where ψ ∈ C∞
0 (−d,d), 0 � ψ � 1, ψ(u) = 1 if |u| � c and the constant c < d is

such that the ball with radius c has volume one. We can suppose that ρE(g) < ∞. In
particular, g ∈ L1 +L∞. We have for 0 < t < 1,

f ∗(t) �
∫ 1

t1/n
ukg(un)

du
u

=
1
n

∫ 1

t
uk/ng(u)

du
u

=
1
n

Tg(t). (3.4)

On the other hand,

f ∗(t) �
∫ 1

C1t1/n
ukg(un)

du
u

�
∫ ∞

Ct
χ(0,1)(u)g(u)

du
u

.

Applying Minkovski’s inequality and using αE > 0, we obtain

ρE( f ∗) � ρE(χ(0,1)g). (3.5)

Analogously, we can prove that all derivatives Dα f up to order k exist as generalized
ones and they are locally integrable. In particular,

|Dk f |∗(t) �
∫ ∞

Ct
χ(0,1)(u)g(u)

du
u

,

and applying again Minkovski’s inequality, we get

ρE(|Dk f |∗) � ρE(χ(0,1)g).

Together with (3.5) this proves that ‖ f‖WkE � ρE(χ(0,1)g). Hence (3.1) follows from
(1.9) and (3.4). �

THEOREM 3.2. (case βE = 1) Let αE > 0, βE = 1. The couple ρE , ρG in N is
admissible if and only if the condition (3.1) is satisfied for all g ∈ M + .

Proof. We need to prove only sufficiency. We start with the following estimate,
proved in [10] for k = 1

∫ t

0
s−k/nδ f ∗∗(s)ds �

∫ t

0
|Dk f |∗(s)ds, f ∈C∞

0 . (3.6)
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If k = 2 and n > 2 this estimate is also valid. It follows from
∫ t

0
(s1−2/n(− f ∗(s))′)∗(u)du �

∫ t

0
|D2 f |∗(s)ds, n > 2, (3.7)

which is proved in [3]. Indeed, let g(t) := t−2/n ∫ t
0 u(− f ∗(u))′du. Since g(t)= t1−2/nδ f ∗∗(t)

we get using also (2.1), that g(0) = 0. Now we can integrate by parts:
∫ t

0
s−2/nδ f ∗∗(s)ds =

∫ t

0
g(s)ds/s = −ng(t)/2+n

∫ t

0
s1−2/n(− f ∗(s))′ds/2,

thus (3.6) for k = 2 follows.
Since αE > 0, inequalities (3.6) for k = 1 or k = 2 imply

ρE(t−k/nδ f ∗∗(t)) � ρE(|Dk f |∗). (3.8)

Indeed, the argument is similar to [10] in proving Lemma 2. Introduce the Hardy
operators

Pg(t) :=
1
t

∫ t

0
g(s)ds, Qg(t) :=

∫ ∞

t
g(s)ds/s,

which commute. Then (3.6) gives
∫ t

0
Q(s−k/nδ f ∗∗(s))ds �

∫ t

0
Q(|Dk f |∗(s))ds, (3.9)

whence by K−monotonicity of ρE ,

ρE(Q(t−k/nδ f ∗∗(t))) � ρE(Q(|Dk f |∗)). (3.10)

We need the estimate

ρE(t−aQg(t)) � ρE(t−ag(t)) if αE > a, 0 � a < 1, g ∈ M +. (3.11)

The proof is standard, we just have to use that ρE satisfies (1.4) and that αE > a is
equivalent to

∫ 1
0 s−ahE(s)ds/s < ∞. (cf. [1] p. 147 )

From (3.10) we get (3.8) since αE > 0 implies the boundedness of Q , while the
monotonicity of tδ f ∗∗(t) , Q and ρE give the needed estimate from below.

By induction, we can prove (3.8) for all k > 2, provided αE > (k− 2)/n. Let
hk(t) = t−k/nδ f ∗∗(t). If (3.8) is true for j > 2, αE > ( j−2)/n , then by (2.1) and using
f ∗∗(t) = Q(δ f ∗∗), which is valid for f ∈ E (note that f ∗(∞) = 0 due to the embedding
E ↪→ L1 +Λ1(tk/n)), we can write

ρE(h j+1) � ρE(t−( j−1)/n|D2 f |∗∗(t)) = ρE(t−( j−1)/nQ(δ |D2 f |∗∗(t))),
and if ( j−1)/n < αE then by (3.11),

ρE(t−( j−1)/nQ(δ |D2 f |∗∗(t))) � ρE(t−( j−1)/nδ |D2 f |∗∗(t)) � ρE(|Dj+1 f |∗).
Hence

ρE(h j+1) � ρE(|Dj+1 f |∗), αE > ( j−1)/n.
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Thus (3.8) is proved. Finally, since f ∗∗ = T (hk)+ f ∗∗(1), hk(t) = t−k/nδ f ∗∗(t), we
get from (3.1) and (3.8), the estimate

ρG(χ(0,1) f
∗) � ρE(|Dk f |∗)+ρE( f ∗).

Together with (1.8) this gives (1.9). �

3.2. Optimal norms in the subcritical case k/n < αE

THEOREM 3.3. Let ρE ∈ Nd . Then the target norm ρG(E), defined by

ρG(E)(g) := ρE(t−k/nχ(0,1)(t)g(t))+ρE(χ(1,∞)g), g ∈ M + (3.12)

is optimal. Moreover, the couple ρE ,ρG(E) is optimal.

Proof. Evidently, ρG(E) is a monotone norm, satisfying (1.8). To prove that the
couple ρE ,ρG(E) is admissible, it is enough to check

ρE

(
t−k/nχ(0,1)(t)

∫ 1

t
sk/nχ(0,1)(s)g(s)

ds
s

)
� ρE(χ(0,1)g), g ∈ M +.

But this follows from (3.11) since k/n < αE . Further, let ρE ,ρG be an admissible
couple in N . Then by (2.3) and (3.1),

ρG(χ(0,1)g
∗) � ρG(χ(0,1)T (t−k/nδg∗∗(t)))+g∗∗(1)� ρE(t−k/nχ(0,1)(t)g

∗∗(t))+g∗∗(1).

Using also (1.8), we obtain

ρG(g∗) � ρE(t−k/nχ(0,1)(t)g
∗∗(t))+g∗∗(1)+ρE(χ(1,∞)g

∗)

and since ρE(t−k/nχ(0,1)(t)g∗∗(t)) � g∗∗(1)ρE(χ(0,1)), it follows

ρG(g∗) � ρE(t−k/nχ(0,1)(t)g
∗∗(t))+ρE(χ(1,∞)g

∗).

Using Minkovski’s inequality, we obtain

ρE(t−k/nχ(0,1)(t)g
∗∗(t)) � ρE(t−k/nχ(0,1)(t)g

∗(t)).

Therefore ρG(g∗) � ρG(E)(g∗). This means that the target norm defined by (3.12) is
optimal.

It remains to prove that the domain norm ρE is also optimal. Suppose that the
couple ρ , ρG(E) in N is admissible. Then

ρG(E)(χ(0,1)Tg) � ρ(χ(0,1)g), ρG(E)(χ(1,∞)g) � ρ(χ(1,∞)g), g ∈ M +.

Therefore
ρE(χ(0,1)g

∗) � ρG(E)(χ(0,1)(t)t
k/ng∗(t)) � ρ(χ(0,1)g

∗)

and
ρE(χ(1,∞)g

∗) = ρG(E)(χ(1,∞)g
∗) � ρ(χ(1,∞)g

∗).

This implies ρE(g∗) � ρ(g∗), which means that the domain norm ρE is optimal. �
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