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Abstract. A simple inequality of Mercer leads to some intriguing problems concerning moment
sequences.

1. Introduction

Mercer [15] has shown that the following elegant inequality,

1
2n

n

∑
k=0

(
n
k

)
xk � 1

n+1

n

∑
k=0

xk (n = 0,1,2, . . .), (1)

is valid for all convex sequences x = (x0,x1,x2, . . . ) .
A remarkable feature of his result is that it leads quite naturally to delicate prob-

lems in the Theory of Moments. This becomes apparent when we attempt to extend (1)
to arbitrary matrices:

∑
k

an,kxk �∑
k

bn,kxk. (2)

In order for the sums in (2) to be defined it is necessary to assume that the rows of A
and B have only finitely many non-zero terms. Moreover, the row sums of A must
match those of B ,

∑
k

an,k =∑
k

bn,k (n = 0,1,2, . . .), (3)

as is seen by taking x = ±(1,1,1, . . .) in (2).
It is here that Summability Theory enters the picture, because that subject, more

than any other, provides us with a rich supply of suitable matrices (lower triangular,
non-negative entries, row sums = 1). Working within this class, we say that

A � B (4)
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748 G. BENNETT

if inequality (2) holds for all n and all convex sequences x . Mercer’s theorem gives the
first example:

E
(

1
2

)
� C(1). (5)

(The matrix on the right in (1) is the famous arithmetic mean of Cesàro, while that on
the left is familiar to summabilists as an Euler mean.)

The ordering (4) offers several surprises, not all pleasant ones. First, it is devoid
of interest when applied to the simplest summability matrices, the weighted means (=
forwards averages). And the same goes for the Nørlund means (= backwards averages).
Interesting results, in fact, are available only when we come to consider Hausdorff
means (section 2). But even then the possible comparisons are severely restricted (sec-
tion 3). For example, the following two-sided estimate of the iterated averages of a
convex sequence x :

1(n+3
n

) n

∑
k=0

(
n− k+2

n− k

)
xk � 1

n+1

n

∑
j=0

1
j +1

j

∑
k=0

xk (6)

� 1(n+ 1
3

n

)
n

∑
k=0

(
k− 2

3
k

)
xk,

is pre-ordained. (The matrix on the left is a Cesàro mean (of order 3) and it cannot be
replaced by any other Cesàro mean. Similarly, the matrix on the right, a Gamma mean,
is the only one allowed there.)

Our main result, Theorem 1, determines all possible comparisons between two
Hausdorff means. It turns out, rather surprisingly, that such a comparison is valid pre-
cisely when a certain sequence ρρρρ is totally monotonic, i.e., when the differences of
ρρρρ ,

Δnρk =
n

∑
j=0

(−1) j
(

n
j

)
ρ j+k (n,k = 0,1,2, . . .) (7)

are all non-negative.
The connection between Mercer’s inequality and moment sequences now becomes

clear, courtesy of a fundamental result of Hausdorff.

THEOREM 0. ([9], Theorem 207) A sequence ρρρρ is totally monotonic if and only
if it admits a representation of the form

ρn =
∫ 1

0
θ ndρ(θ ) (n = 0,1,2, . . .), (8)

where dρ(θ ) is a non-negative Borel measure on [0,1] .

Hausdorff’s theorem allows us to switch at will between total monotonicity and
moment theory, and we shall see that it is advantageous to keep both viewpoints in
mind.

Theorem 1 shows that Mercer-type inequalities are nothing more (and nothing
less) than assertions of total monotonicity. Mercer’s inequality (1), and those displayed
in (6), are easy consequences of this observation.
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But Theorem 1 marks the beginning of our analysis, rather than its end, because,
despite Hausdorff’s theorem, totally monotonic sequences are still not totally under-
stood. When, for example, we seek the analogues of (6), for the r -fold iterated av-
erages of a convex sequence, the algebra involved quickly becomes prohibitive as r
(= 1,2,3, . . .) increases. Similar obstacles arise when we compare other Hausdorff
means and novel devices are called for at almost every turn (Lemmas 2–17). This, then,
is the gist of our paper: to seek new methods of identifying totally monotonic sequences.

Mercer’s inequality, of course, provides the motivation for our search, but consid-
erable focus is added by the restrictions set out in section 3. There are, in fact, only
nine possible comparisons between the most common Hausdorff means. These have all
withstood extensive testing by computer and are listed as conjectures in section 3.

Theorem 1 is proved in section 4, the balance of our paper, sections 5–9, being
devoted to a discussion of the nine conjectures.

2. Summability

The simplest summability methods are the weighted means, sequence transforma-
tions of the type

x −→ a0x0 + · · ·+anxn

a0 + · · ·+an
. (9)

Here a is a sequence of positive “weights” and it is conventional to take a0 = 1 and to
denote the partial sums in upper case

An = a0 +a1 + · · ·+an. (10)

PROPOSITION 1. If two weighted means are comparable under the ordering (4)
they must coincide.

Proof. Let A and B be the two means, with respective weights a and b , and
suppose that A � B . By setting

x = ±(n+1,n,n−1, . . .) (11)

in the inequality
(Ax)n � (Bx)n, (12)

we deduce that
A0 + · · ·+An

An
=

B0 + · · ·+Bn

Bn
. (13)

This system of equations has a unique solution (since A0 = B0 = 1) and the solution,
of course, is

An = Bn. (14)

Thus the two weighted means coincide. �
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The backwards averages,

x −→ anx0 +an−1x1 + · · ·+a0xn

An
, (15)

are known as Nørlund means. They arise frequently in classical Analysis because of
their simple action on power series.

PROPOSITION 2. If two Nørlund means are comparable under the ordering (4)
they must coincide.

Proof. This is similar to the proof of Proposition 1. �

Propositions 1 and 2 are disappointing, to be sure, but there is a third class of
summability methods, the Hausdorff means, wherein some action is guaranteed.

A Hausdorff mean, we recall, is a matrix of the type

(Hμ)n,k =
∫ 1

0

(
n
k

)
θ k(1−θ )n−kdμ(θ ), (16)

where dμ(θ ) is a probability measure on [0,1] . Taking

dμ(θ ) = dθ , (17)

we obtain the Cesàro matrix, while setting

dμ(θ ) = point evaluation at θ =
1
2

(18)

leads to the Euler matrix E( 1
2 ) . Thus Mercer’s theorem shows that there is some interest

in comparing Hausdorff means. (This is fortunate because classical Summability The-
ory contains few concrete matrix results that lie beyond the pale of weighted, Nørlund
or Hausdorff means.)

Our next two results are similar in spirit to Propositions 1 and 2. They again
emphasize that interesting comparisons are to be found only when we restrict attention
to Hausdorff means.

PROPOSITION 3. If a weighted mean is comparable with a Hausdorff mean under
the ordering (4), then the weighted mean must, in fact, be Hausdorff.

Proof. It follows from the identity

(n− k+1)
(

n
k

)
= (n+1)

(
n
k

)
−n

(
n−1
k−1

)
(19)
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that
n

∑
k=0

(n− k+1)
(

n
k

)
θ k(1−θ )n−k (20)

= (n+1)
n

∑
k=0

(
n
k

)
θ k(1−θ )n−k−nθ

n

∑
k=1

(
n−1
k−1

)
θ k−1(1−θ )n−k

= (n+1)(θ +(1−θ ))n−nθ (θ +(1−θ ))n−1

= n+1−nθ .

If Hμ is a Hausdorff mean, we deduce from (16) and (20) that

n

∑
k=0

(n− k+1)(Hμ)n,k = n+1−nμ1. (21)

Suppose now that A is a weighted mean that is comparable with Hμ . Applying
both matrices to the sequences (11) shows that

A0 +A1 + · · ·+An

An
= n+1−nμ1 (n = 0,1,2, . . .). (22)

Solving these equations for An in terms of μ1 is a tedious exercise. But the solution is
obviously unique, so it suffices to observe that (22) is satisfied by taking

An =
(

n+α
n

)
, where α =

μ1

1− μ1
> 0. (23)

The weights a are then

an = An−An−1 =
(

n+α−1
n

)
, (24)

and the weighted mean takes the form

an,k =
ak

An
=

(k+α−1
k

)
(n+α

n

) . (25)

This turns out to be a Hausdorff mean because

an,k =
∫ 1

0

(
n
k

)
θ k(1−θ )n−kαθα−1dθ . (26)

(The probability measure here is

dμ(θ ) = αθα−1dθ (27)

and the matrix (25) is known as a Gamma mean.) �

PROPOSITION 4. If a Nørlund mean is comparable with a Hausdorff mean under
the ordering (4), then the Nørlund mean must be Hausdorff.
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Proof. This is similar to the proof of Proposition 3 and we omit the details. It turns
out that the Nørlund mean must be a Cesàro matrix of order α with

α =
1
μ1

−1 > 0. (28)

The corresponding probability measure is

dμ(θ ) = α(1−θ )α−1dθ . � (29)

3. Hausdorff means

Mercer’s theorem shows that non-trivial comparisons are possible between Haus-
dorff means. Our aim here is to point out that such comparisons are severely restricted.

The most commonly used Hausdorff means are those associated with the names of
Cesàro, Euler and Hölder. We list them here, along with their measures and their first
and second moments.

Cesàro means, C(α) , α > 0 .

dμ(θ ) = α(1−θ )α−1dθ , (30)

μ1 =
1

α+1
, μ2 =

2
(α +1)(α+2)

.

These are also Nørlund means, and, in fact, the only Hausdorffmeans with this property.

Euler means, E(α) , 0 � α � 1 .

dμ(θ ) = point evaluation at θ = α , (31)

μ1 = α, μ2 = α2.

Hölder means, H(α) , α > 0 .

dμ(θ ) =
1

Γ(α)
| logθ |α−1dθ , (32)

μ1 =
1
2α

, μ2 =
1
3α

.

When α is a positive integer, these represent the α -fold iterated averages,

H(α) = (C(1))α . (33)

The “mass backwards” versions of the Cesàro means are also useful. These are
called the Gamma means; their rows are the same as those of the corresponding Cesàro
means, but are displayed in reverse order.
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Gamma means, G(α) , α > 0 .

dμ(θ ) = αθα−1dθ , (34)

μ1 =
α

α +1
, μ2 =

α
α +2

.

These are weighted means; the only Hausdorff means with this property.

Our next result gives a very simple necessary condition for two Hausdorff means
to be comparable.

PROPOSITION 5. Suppose that Hμ and Hν are Hausdorff means and that

Hμ � Hν . (35)

Then
μ1 = ν1 and μ2 � ν2. (36)

Proof. The inequality
(Hμx)1 � (Hνx)1 (37)

applied to the (convex) sequences x = ±(0,1,2, . . .) guarantees that μ1 = ν1 . Simi-
larly, μ2 � ν2 follows from

(Hμx)2 � (Hνx)2 (38)

by setting
x = (0,0,1,2,3, . . .). � (39)

Proposition 5 is much more powerful than it appears at first sight; indeed, it allows
only nine possible comparisons between the common Hausdorff means. These compar-
isons have all withstood extensive numerical testing and are listed below as conjectures.
We explain the formulation of just the first two conjectures, leaving that of the others to
the reader.

Conjectures (I) and (II) are concerned with comparisons between Cesàro means,
C(β ) , and Hölder means, H(α) . No such comparison can be valid unless their first
moments agree, and this forces us to accept

1
β +1

=
1
2α

. (40)

Moreover, the direction of any such comparison, C(β ) � H(α) (or H(α) �C(β )) , is
dictated by the second moments:

2
(β +1)(β +2)

� 1
3α

(41)

(or the reversal of (41)). Inequality (41), when combined with (40), may be rephrased
as

2(3α) � 2α +4α . (42)
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This estimate is valid, via convexity, whenever α � 1 (and it switches direction when-
ever 0 < α � 1). It follows, then, that Conjecture (I) can only be true if α � 1 (and
Conjecture (II) only if 0 < α � 1).

The conjectures are:

(I) C(2α −1) � H(α) if α � 1;

(II) H(α) � C(2α −1) if 0 < α � 1;

(III) H(α) � G
(

1
2α−1

)
if α � 1;

(IV) G
(

1
2α−1

)
� H(α) if 0 < α � 1;

(V) C(α) � G
(

1
α
)

if α � 1;

(VI) G
( 1
α
)

� C(α) if 0 < α � 1;

(VII) E
(

1
α+1

)
� C(α) if α > 0;

(VIII) E
(

1
2α

)
� H(α) if α > 0;

(IX) E
( α
α+1

)
� G(α) if α > 0.

There are a couple of redundancies in the above list: (V) follows from (I) and
(III), while (VI) follows from (II) and (IV). But, since I am unable to prove any of the
conjectures (I)–(IV), these redundancies remain redundant. (Conjectures (V) and (VI),
meanwhile, are confirmed in section 7.)

It is essential to point out here that Proposition 5 does not solve the comparison
problem completely, else all would be trivial.

PROPOSITION 6. Condition (36) is not sufficient for comparison (35) to hold.

Proof. We exhibit a Hausdorff mean, Hν , with

1
2

= ν1 and
1
3

< ν2, (43)

for which the comparison
C(1) � Hν (44)

fails to be valid.
To do this, we specify only the first four moments of νννν :

νννν =
(

1,
1
2

,
11
32

,
23
96

, . . .

)
, (45)
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happy in the knowledge that there are infinitely many ways to fill in the remaining
coordinates. (See the remark following Theorem 19 of [2].) It is clear that (43) is
satisfied, whereas (44) is not, because

1
4

> ν3. (46)

The reverse inequality is needed for comparison (44) to hold, as is seen by replacing
the sequence in (39) by

x = (0,0,0,1,2,3, . . .). � (47)

4. Main result

In this section we obtain necessary and sufficient conditions for two Hausdorff
means to be comparable. Our analysis is based upon a simple lemma of Levin and
Stec̆kin ([14], D4). It is rather surprising that their result, which has been rediscovered
by several authors, does not appear in the classical monograph [10]. A proof is given
here because we have chosen to rephrase the statement of the lemma in a form that is
more convenient for our applications.

LEMMA 1. ([14], page 2) Suppose that a0,a1, . . . ,aN are real numbers and that

An :=
n

∑
k=0

ak, An :=
n

∑
k=0

Ak (n = 0,1, . . . ,N). (48)

Then the inequality
N

∑
k=0

akxk � 0 (49)

is valid for all convex sequences x if and only if

AN = AN = 0 (50)

and
An � 0 (n = 0,1, . . . ,N). (51)

Proof. (Necessity.) Taking x = ±(1,1,1, . . .) or x = ±(N + 1,N,N − 1, . . .) in
(49) guarantees that (50) holds. (51) follows similarly by taking
x = (n+1,n, . . . ,1,0, . . . ,0) .

(Sufficiency.) Summing by parts twice, we see that

N

∑
k=0

akxk =
N−1

∑
k=0

Ak(xk − xk+1)+ANxN

=
N−2

∑
k=0

Ak(xk −2xk+1 + xk+2)+AAA N−1(xN−1−xN)+ANxN.

The boldface terms vanish because AN−1 = AN −AN = 0, and the remaining terms are
non-negative since x is convex. �
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THEOREM 1. Suppose that Hμ and Hν are Hausdorff means. Then

Hμ � Hν (52)

if and only if
μ1 = ν1 (53)

and the sequence ρρρρ is totally monotonic, where

ρn =
νn+2− μn+2

(n+1)(n+2)
(n = 0,1,2, . . .). (54)

Proof. Let
H = Hν −Hμ . (55)

The lemma shows that comparison (52) holds precisely when

n

∑
k=0

hn,k = 0,
n

∑
j=0

j

∑
k=0

hn,k = 0 (n = 0,1,2, . . .) (56)

and
m

∑
j=0

j

∑
k=0

hn,k � 0 (m = 0,1, . . . ,n). (57)

The first condition in (56) is satisfied automatically since Hμ and Hν both have row
sums 1. The second condition is equivalent to (53) because

n

∑
j=0

j

∑
k=0

hn,k = n(μ1−ν1) (58)

by identity (21). The balance of the proof consists of showing the equivalence of (57)
with (54). This entails a brute force evaluation of the sums in (57), a task made much
shorter by the following result.

LEMMA 2. If Hμ is a Hausdorff mean, its entries are expressible in terms of the
associated moment sequence by the formula

(Hμ)n,k =∑
i

(−1)i+k
(

n
i

)
μi

(
i
k

)
. (59)

Proof. This is the familiar “δμδ –representation” for Hausdorff matrices ([9], sec-
tion 11.3). It is a simple exercise in binomialcoefficientology;we do not give the details
here. �

Instead, we wish to emphasize that the summation in (59) runs over all integers
i , rather than over the conventional interval, k � i � n . This feat is accomplished in
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the easiest possible way, by fiat: we simply extend Pascal’s triangle to cover the whole
plane of integer pairs by declaring that

(
n
i

)
=

⎧⎨
⎩

n(n−1)···(n−i+1)
i! if i � 0

0 if i < 0.
(60)

The advantages of this convention are made clear in the wonderful text [8]: interchang-
ing the order of summation in certain double sums becomes a matter of routine. Our
subsequent proof of Theorem 1 provides an excellent illustration of this tactic.

It follows from Lemma 2 that

hn,k =∑
i

(−1)i+k
(

n
i

)(
i
k

)
πi, (61)

where
πk = νk − μk. (62)

We have therefore

m

∑
j=0

j

∑
k=0

hn,k =
m

∑
k=0

(m− k+1)hn,k

=
m

∑
k=0

(m− k+1)∑
i
(−1)i+k

(
n
i

)(
i
k

)
πi

= ∑
i
(−1)i

(
n
i

)
πi

m

∑
k=0

(−1)k(m− k+1)
(

i
k

)
.

Using the identity

(−1)k(m− k+1) = (−1)m
( −2

m− k

)
, (63)

which is easily checked by expanding the binomial coefficient, the inner sum may be
simplified as follows.

m

∑
k=0

(−1)k(m− k+1)
(

i
k

)
= (−1)m

m

∑
k=0

( −2
m− k

)(
i
k

)

= (−1)m
(

i−2
m

)
,

the last step courtesy of Vandermonde’s formula ([8], page 174).
We have shown that

m

∑
j=0

j

∑
k=0

hn,k =∑
i
(−1)i+m

(
n
i

)(
i−2
m

)
πi.

The summation on i is relevant only over the range, 0 � i � n , because of the presence
of the binomial coefficient

(n
i

)
. It can, in fact, be further restricted, to 2 � i � n , since
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π0 and π1 are both zero by (62). But then
(i−2

m

)
vanishes as well, unless i � m+2, so

that the summation on i actually registers only when m+2 � i � n .
Setting h = i−m−2, we have

m

∑
j=0

j

∑
k=0

hn,k =
n−m−2

∑
h=0

(−1)h
(

n
h+m+2

)(
h+m

m

)
πh+m+2.

The awful expression on the right becomes recognizable only after its binomial coeffi-
cients have been repackaged:(

n
h+m+2

)(
h+m

m

)
=

n(n−1)
(h+m+1)(h+m+2)

(
n−2

m

)(
n−m−2

h

)
. (64)

We then have

m

∑
j=0

j

∑
k=0

hn,k = n(n−1)
(

n−2
m

)n−m−2

∑
h=0

(−1)h
(

n−m−2
h

)
πh+m+2

(h+m+1)(h+m+2)

= n(n−1)
(

n−2
m

)n−m−2

∑
h=0

(−1)h
(

n−m−2
h

)
ρh+m

= n(n−1)
(

n−2
m

)
Δn−m−2ρm.

The terms here are non-negative for all n and m , as demanded by (57), precisely when
the sequence ρρρρ is totally monotonic. �

The following simple corollaries of Theorem 1 are all dependent upon the well-
known fact that

the product of two totally monotonic
sequences is again totally monotonic.

(65)

The proof of this assertion uses the discrete analogue of Leibnitz’s formula for the
derivatives of a product:

Δnxkyk =
n

∑
j=0

(
n
j

)(
Δ jxk

)(
Δn− jy j+k

)
. (66)

See Theorem 210 of [9].

Our first corollary is equivalent to the inequalities (6) mentioned in section 1.

COROLLARY 1. C(3) � H(2) � G( 1
3 ) .

Proof. We apply Theorem 1, noting first that the Hausdorff means C(3) , H(2)
and G( 1

3 ) all have the same first moments (= 1
4 ) .

The left-hand comparison, C(3) � H(2) , amounts to showing that the sequence

1
(n+3)2 − 1

(n+5
3 )

(n+1)(n+2)
(n = 0,1,2, . . .) (67)
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is totally monotonic. But this is obvious since (67) may be rephrased as

1
(n+3)2(n+4)(n+5)

, (68)

a product of totally monotonic sequences.
The right-hand comparison, H(2) � G( 1

3 ) , succumbs to a similar representation:

1
3n+7 − 1

(n+3)2

(n+1)(n+2)
=

1
(n+3)2(3n+7)

. � (69)

COROLLARY 2. (Mercer’s inequality)

E
(

1
2

)
� C(1). (70)

Proof. It suffices, in view of Theorem 1, to show that the sequence

1
n+3 − 1

2n+2

(n+1)(n+2)
(n = 0,1,2, . . .) (71)

is totally monotonic. But this is obvious because (71) may be expressed as

1
n+3

· μn, (72)

where μμμμ is the moment sequence of the measure

dμ(θ ) =

⎧⎨
⎩

0 if 0 � θ < 1
2

(1−θ )dθ if 1
2 � θ � 1.

� (73)

The analogue of Corollary 1 for 3-fold iterated averages may be proved in the
same way.

COROLLARY 3. If x is a convex sequence, then

1(n+7
n

) n

∑
k=0

(
n− k+6

n− k

)
xk � 1

n+1

n

∑
i=0

1
i+1

i

∑
j=0

1
j +1

j

∑
k=0

xk

� 1(n+ 1
7

n

)
n

∑
k=0

(
k− 6

7
k

)
xk.

We do not give the proof here because the details are very tedious. An alternative
approach to a more general result is adopted in sections 5 and 6.



760 G. BENNETT

5. Iterated averages of convex sequences

According to Conjectures (I) and (III), the analogue of (6) for r -fold iterated av-
erages (r = 1,2,3, . . . , ) is

C(2r −1) � H(r) � G
(

1
2r−1

)
. (74)

These comparisons, unfortunately, are difficult to derive directly from Theorem 1 be-
cause of the algebra involved. Our aim here is to circumvent these difficulties by adopt-
ing an entirely different approach, one that hinges upon the wonderful structural proper-
ties of Hausdorff means. We deal first with the comparison H(r)�G( 1

2r−1) , postponing
treatment of C(2r −1)�H(r) till section 6.

LEMMA 3. The product of two Hausdorff means is again a Hausdorff mean. More-
over, the moment sequence of the product is the product of the moment sequences.

Proof. See Chapter XI of [9]. �

LEMMA 4. Hausdorff means preserve convexity.

Proof. This is a special case of Theorem 1 of [3]. The proof is based upon the
identity

yn−2yn+1 + yn+2 =
n

∑
k=0

(
n
k

)(
Δn−kμk+2

)
(xk −2xk+1 + xk+2) (75)

which is valid whenever
y = Hμx. � (76)

LEMMA 5. Suppose that Hμ , Hν and Hπ are Hausdorff means. Then

Hμ �Hν =⇒ HμHπ � HνHπ . (77)

Proof. This useful observation follows at once from Lemma 4 when definition (4)
is recalled. �

LEMMA 6. If α > 0 , then

G(α)G(1) � G

(
α

α+2

)
. (78)

Proof. This is a comparison of two Hausdorff means, thanks to Lemma 3, their
respective moment sequences being

μn :=
α

n+α
· 1
n+1

and νn :=
α

α+2

n+ α
α+2

. (79)
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It is obvious that their first moments agree (μ1 = ν1) and that the sequence

νn+2− μn+2

(n+1)(n+2)
=

α
(n+α+2)(n+3)((n+2)(α+2)+α)

(80)

is totally monotonic. Theorem 1, then, guarantees that comparison (78) is valid. �

THEOREM 2. If r = 1,2,3, . . . , then

H(r) � G

(
1

2r −1

)
. (81)

Proof. The comparison is trivial when r = 1, both matrices then coinciding with
the arithmetic mean, C(1) . We proceed by induction on r (= 2,3,4, . . .) , deducing
comparison (81) directly from

H(r−1) � G

(
1

2r−1−1

)
. (82)

We have

H(r) = H(r−1)G(1) by Lemma 3

� G

(
1

2r−1−1

)
G(1) by (82) and Lemma 5

� G

(
1

2r −1

)
by Lemma 6. �

6. Iterated averages (continued)

We now discuss the complement to Theorem 2, which is given by

THEOREM 3. If r = 1,2,3, . . . , then

C(2r −1) � H(r). (83)

Proof. The basic idea is the same as that used in Theorem 2: we begin by observ-
ing that comparison (83) is trivial when r = 1, and then proceed by induction. The
details, however, are now more troublesome because Lemma 6 must be replaced by
Lemma 7 (listed below) and the latter result is by no means an easy consequence of
Theorem 1.

Taking Lemma 7 for granted, let us suppose that comparison (83) is valid for
some r . We then have

C(2r+1−1) � C(2r −1)C(1) by Lemma 7

� H(r)C(1) by (83) and Lemma 5

= H(r+1) by Lemma 3. �
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LEMMA 7. If α > 0 , then

C(2α +1) � C(α)C(1). (84)

Proof. We begin by recalling that Hausdorff means commute ([9], Theorem 197).
It suffices, therefore, by Lemma 5, to find a matrix, say Q , such that

C(2α+1) = Q.C(α) (85)

and
Q � C(1). (86)

This seemingly difficult task turns out to have a straightforward solution, courtesy
of Lemma 3. Q , in fact, must be a Hausdorff mean, the one associated with the moment
sequence (n+α

n

)
(n+2α+1

n

) (n = 0,1,2, . . .). (87)

To see that (87) is indeed a moment sequence, we consider the probability measure
on [0,1] :

dμ(θ ) =
Γ(β + γ)
Γ(β )Γ(γ)

θβ−1(1−θ )γ−1dθ , (88)

where β ,γ > 0 are fixed. This measure generates a Hausdorff mean, say C(β ,γ) , with
entries

C(β ,γ)n,k =

(k+β−1
k

)(n−k+γ−1
n−k

)
(n+β+γ−1

n

) (89)

and moment sequence

(n+β−1
n

)
(n+β+γ−1

n

) (n = 0,1,2, . . .). (90)

Q , evidently, is the Hausdorff mean C(α +1,α+1) , so that Lemma 7 follows at once
from our next result. �

LEMMA 8. If α � 1 , then

C(α,α) � C(1). (91)

Lemma 8 turns out to be an elusive result, the key to its proof being a brilliant
observation of Laguerre [13].

LEMMA 9. Suppose that (a0,a1, . . . ,aN) is a sequence of real numbers, not iden-
tically zero, and that a0 + a1 + · · ·+ aN = 0 . Then the sequence of partial sums,
(A0,A1, . . . ,AN) , has strictly fewer sign changes than does (a0,a1, . . . ,aN) .
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Lemma 9 enables us to work directly from Lemma 1, thereby ignoring Theorem 1.
The idea (in the context of Lemma 1) is to suppose that (a0,a1, . . . ,aN) suffers at most
two changes of sign; then (A0,A1, . . . ,AN) suffers at most one; and (A0,A1, . . . ,AN)
suffers none at all. This special case of Laguerre’s result is, of course, a triviality, and
it is presented as such, without proof, as Lemma 7.2 of [12]. A thorough exposition of
Laguerre’s work may be found in Part Five of [17]. See also Section 6.8 of [11].

We do not give a proof of Lemma 9 because only its trivial version is required
here. Indeed, we shall be working with unimodal sequences (those that increase, then
decrease) and it is clear that such sequences suffer no more than two changes of sign
(from − to + to − ).

LEMMA 10. Suppose that Hμ and Hν are Hausdorff means and that μ1 = ν1 . If
the rows of Hμ −Hν are unimodal, then

Hμ � Hν . (92)

Proof. The matrix H , defined in (55), obviously satisfies condition (56); at issue,
then, is whether it also satisfies (57).

Unimodality, however, guarantees that the rows of H each have at most two sign
changes (from + to − to + ); that their partial sums have at most one (from + to − );
and that their partial sums have none at all (+) . �

Unimodal sequences play a significant role in Combinatorics and in Probability
Theory, and they have been studied extensively (and independently) in both these con-
texts. See, for example, [5] and [6]. The product of two unimodal sequences, unfor-
tunately, need not be unimodal, and this defect forces us to consider a slightly more
restrictive class: a0

a1
� a1

a2
� · · · � aN−1

aN
, (93)

namely, the positive log-concave sequences. This class is obviously closed under prod-
ucts, and each of its members is unimodal. [Think of placing 1, in its correct position,
in the ordered list (93).]

LEMMA 11. If α � 1 , the rows of the matrix

C(α,α)−C(1) (94)

are unimodal.

Proof. The nth row (n = 0,1,2, . . .) of the matrix (94) is given by(k+α−1
k

)(n−k+α−1
n−k

)
(n+2α−1

n

) − 1
n+1

(k = 0,1, . . . ,n). (95)

Removal of the constant terms (n being fixed) neither helps nor hinders our assertion,
so it suffices to show that the sequence(

k+α−1
k

)(
n− k+α−1

n− k

)
(k = 0,1, . . . ,n) (96)
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is unimodal.
It is here that log-concavity becomes relevant. The sequence(

k+α−1
k

)
(k = 0,1, . . . ,n) (97)

is certainly (positive and) log-concave because(
k+α
k+1

)2

−
(

k+α−1
k

)(
k+α+1

k+2

)
(0 < k < n)

=
α−1

(k+α)(k+2)

(
k+α
k+1

)2

� 0.

And the same goes for the sequence(
n− k+α−1

n− k

)
(k = 0,1, . . . ,n) (98)

since the system of inequalities (93) is mass-backwards invariant:
aN

aN−1
� aN−1

aN−2
� . . . � a1

a0
. (99)

It follows that the sequence (96) is log-concave, being the product of two log-
concave sequences, (97) and (98). Being also positive, (96) must be unimodal. �

Lemmas 10 and 11 show that Lemma 8 is valid, and this observation completes
our proof of Theorem 3.

7. Cesàro versus Gamma means

We have by now developed enough machinery to prove conjectures (V) and (VI).
The key observation here is that the rows of the Cesàro means (and of the Gamma
means) are especially well-behaved: they are either all convex or all concave (and
which is which is determined solely by α , the order of the mean).

LEMMA 12. The sequence(
k+α−1

k

)
(k = 0,1, . . . ,n) (100)

is convex if 0 � α � 1 or α � 2 , and concave if 1 � α � 2 .

Proof. (
k+α−1

k

)
+

(
k+α+1

k+2

)
−2

(
k+α
k+1

)

=
(α−1)(α−2)
(k+2)(k+α)

(
k+α
k+1

)
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is non-negative if 0 � α � 1 or α � 2, and non-positive if 1 � α � 2. �

It follows from Lemma 12 that the rows of G(α) , α > 0, are concave if 1�α � 2,
and convex otherwise. And the same goes for the rows of C(α) (which, after all, are
merely those of G(α) displayed in reverse order). The relevance of these remarks is
seen in the following result.

LEMMA 13. A concave sequence of real numbers (a0,a1, . . . ,aN) is unimodal.

Proof. The differences of a form an increasing sequence

a0−a1 � a1−a2 � · · · � aN−1 −aN. (101)

By adding 0 to this ordered list, in its correct position, unimodality becomes obvi-
ous. �

LEMMA 14. If α > 1 , then

G

(
1

α−1

)
G(α) � G

(
1
α

)
. (102)

Proof. This is similar to Lemma 6. We are comparing here two Hausdorff means
with moment sequences

μn :=
1

(α−1)n+1
· α
n+α

and νn :=
1

αn+1
. (103)

Theorem 1 completes the proof because the first moments agree and the sequence

νn+2− μn+2

(n+1)(n+2)
=

α−1
(α(n+2)+1)((α−1)(n+2)+1)(n+2+α)

(104)

is obviously totally monotonic. �

Our next result confirms Conjectures (V) and (VI).

THEOREM 4. If α � 1 , then

C(α) � G

(
1
α

)
, (105)

and

G

(
1
α

)
� C(α) (106)

if 0 < α � 1 .
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Proof. Comparison (105) is certainly valid whenever 1 � α � 2, by Lemma 10,
because the rows of C(α)−G( 1

α ) are unimodal. [To see this we note that the rows of
C(α) are concave by Lemma 12, and that the rows of G( 1

α ) are convex. It follows,
then, that the rows of C(α)−G( 1

α ) are concave, and hence, by Lemma 13, unimodal.]
The proof of comparison (105) is completed by means of an induction argument.

If 2 < α � 3 (then, similarly, if 3 < α � 4, etc.), we observe that

C(α) = C(α−1)G(α) by Lemma 3 (107)

� G

(
1

α−1

)
G(α) by Lemma 5

� G

(
1
α

)
by Lemma 14.

The reverse comparison, (106), follows from (105) by means of a simple mass-
backwards argument. Indeed, (105) asserts that, for each fixed n (n = 0,1,2, . . .) and
for each α � 1, the inequality

1(n+α
n

) n

∑
k=0

(
n− k+α−1

n− k

)
xk � 1(n+ 1

α
n

)
n

∑
k=0

(
k+ 1

α −1
k

)
xk (108)

is valid for all convex sequences x = (x0,x1, . . . ,xn) . Reversing the order of both sum-
mations in (108), and replacing x by y where

(y0,y1, . . . ,yn) = (xn,xn−1, . . . ,x0), (109)

we deduce that

1(n+α
n

) n

∑
k=0

(
k+α−1

k

)
yk � 1(n+ 1

α
n

)
n

∑
k=0

(
n− k+ 1

α −a
n− k

)
yk. (110)

The transformation (109) has no affect at all on convexity, so that inequality (110) is
valid for all convex sequences y . This shows that

G(α) � C

(
1
α

)
(α � 1), (111)

which comparison is equivalent to (106). �

It is perhaps worth pointing out that comparison (111) would have been difficult
to establish without recourse to the mass-backwards argument used above. To be sure,
there is no difficulty when 1 � α � 2 because the proof of (105), concave-convex =⇒
unimodal, applies here as well. But things go awry when α � 2 because the analogue
of (107), namely

G(α) = G(α−1)Q, (112)

involves a matrix, Q , that is not a Hausdorff mean.
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The plot thickens when Theorem 1 is added to the mix, because the equivalence
of (105) with (111) then asserts that both the sequences

1
α(n+2)+1 − 1

(n+2+α
n+2 )

(n+1)(n+2)
and

1

(n+2+ 1
α

n+2 )
− α

n+2+α

(n+1)(n+2)
(113)

are totally monotonic if either one of them is. The reader is invited to prove this equiv-
alence directly.

Fortunately, there is a simple explanation:

PROPOSITION 7. Suppose that (μ0,μ1,μ2, . . . ) and (ν0,ν1,ν2, . . .) are sequences
of real numbers satisfying

μ0 = ν0 and μ1 = ν1. (114)

Then the sequence

an :=
νn+2− μn+2

(n+1)(n+2)
(115)

is totally monotonic if and only if

bn :=
Δn+2ν0 −Δn+2μ0

(n+1)(n+2)
(116)

is too.

Proof. Use the fact that bn = Δna0 and an = Δnb0 . �

8. Probability measures

Conjectures (VII), (VIII) and (IX) are perhaps the simplest ones in our list because
they are direct generalizations of Mercer’s inequality (to which they all collapse when
α = 1). They may each be proved separately, but their common format (an Euler mean
versus a Hausdorff mean) suggests that a common proof might be available.

CONJECTURE X. If Hμ is an arbitrary Hausdorff mean, then

E(μ1) � Hμ . (117)

Here μ1 is the first moment of the measure associated with Hμ , and it is plain that
Conjectures (VII), (VIII) and (IX) are special cases of (117).

Theorem 1 is not of much help here because it demands that the sequence (119)
be totally monotonic whenever μμμμ is the moment sequence of a Hausdorff mean. It
does, however, radically change the nature of the conjecture from one concerned with
Mercer’s inequality/Summability Theory/Convexity to one that deals exclusively with
probability measures.
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CONJECTURE XI. If dμ(θ ) is an arbitrary probability measure on [0,1] , with
moments

μn =
∫ 1

0
θ ndμ(θ ), (118)

then the sequence
μn+2− μn+2

1

(n+1)(n+2)
(n = 0,1,2, . . .) (119)

is totally monotonic.

There is nothing like this assertion in the standard texts on Moment Theory ([2],
[9], [19] and [20]); the remainder of this section is devoted to its proof.

LEMMA 15. If a , b and c are totally monotonic sequences, then so is d , where

dn =
n

∑
k=0

(
n
k

)
ak

(
Δn−kbk

)
cn−k (n = 0,1,2, . . .). (120)

Proof. The identity

Δmdn =
m

∑
j=0

n

∑
k=0

(
m
j

)(
n
k

)(
Δ jak

)(
Δm+n− j−kb j+k

)(
Δm− jcn−k

)
(121)

shows that the differences of d are all non-negative.
The key to proving (121) is to recognize its purely algebraic nature; it has nothing

at all to do with total monotonicity, being valid, in fact, for arbitrary sequences a , b
and c .

When confronted with a novel identity such as (121), it makes sense to check
things out by working first with geometric sequences, because differences are then easy
to evaluate:

xn = xn =⇒ Δmxn = (1− x)mxn. (122)

Replacing ak by ak , bk by bk , and ck by ck , d , itself, is a geometric sequence:

dn =
n

∑
k=0

(
n
k

)
ak(1−b)n−kbkcn−k

= (ba+(1−b)c)n.

Its differences, according to (122), are given by

Δmdn = (b(1−a)+ (1−b)(1− c))m(ba+(1−b)c)n

=
m

∑
j=0

n

∑
k=0

(
m
j

)(
n
k

)
(1−a) jak(1−b)m+n− j−kb j+k(1− c)m− jcn−k

=
m

∑
j=0

n

∑
k=0

(
m
j

)(
n
k

)(
Δ jak

)(
Δm+n− j−kb j+k

)(
Δm− jcn−k

)
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in perfect agreement with (121).
The general version of (121) follows at once by applying L to both sides of the

geometric version, where
L(aib jck) = aib jck, (123)

and L is extended by linearity to all polynomials in a , b and c . �

Our next result is similar in spirit to Lemma 15, and it looks a good deal simpler,
but I have been unable to find a purely algebraic proof. (The key step in proving Lemma
15—to look first at geometric sequences—fails miserably here!)

LEMMA 16. If b is a totally monotonic sequence, then so is c , where

cn =
b0bn+2−b1bn+1

n+1
(n = 0,1,2, . . .) (124)

I know, in fact, of no direct proof of Lemma 16. The approach adopted below
offers instead one more illustration of that old maxim:

if an assertion is too hard to prove, try making it harder.

“Harder” is interpreted here as adding one more sequence to the mix, Lemma 16 being
obtained as a special case of Lemma 17 by setting a = b .

LEMMA 17. If a and b are totally monotonic sequences, then so is c , where

cn =
a0bn+2−a1bn+1−an+1b1 +an+2b0

n+1
. (125)

Proof. Hausdorff’s Theorem allows us to view a and b as moment sequences, say

an =
∫ 1

0
θ ndα(θ ) and bn =

∫ 1

0
θ ndβ (θ ). (126)

We then consider the functional,

L( f ) =
∫ 1

0

∫ 1

0
(y− x)

∫ y

x
f (t)dtdα(x)dβ (y), (127)

defined on C [0,1] , the Banach space of continuous functions on [0,1] .
It is clear that L is linear and continuous, so that its action is determined by a finite

Borel measure, say dμ(θ ) , on [0,1] :

L( f ) =
∫ 1

0
f (θ )dμ(θ ). (128)

But L is also non-negative ( f � 0 =⇒ L( f ) � 0) and the same, therefore, goes for
dμ(θ ) . Invoking Hausdorff’s Theorem again (this time in the trivial direction) we see
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that the moment sequence μμμμ of dμ(θ ) must be totally monotonic. But

μn =
∫ 1

0
θ ndμ(θ )

=
∫ 1

0

∫ 1

0
(y− x)

yn+1− xn+1

n+1
dα(x)dβ (y)

=
a0bn+2−a1bn+1−an+1b1 +an+2b0

n+1
. �

Proof of Conjecture (XI). We apply Lemma 15 with

ak =
μk+2− μ1μk+1

k+1
, bk =

1
k+2

and ck = μk
1 . (129)

(The total monotonicity of a is guaranteed by Lemma 16; that of b by the (easily
checked) formula

Δnbk =
n!(k+1)!

(n+ k+2)!
; (130)

and that of c is obvious, since 0 � μ1 � 1.)
Lemma 15 shows that d is totally monotonic, where

dn =
n

∑
k=0

(
n
k

)
μk+2− μ1μk+1

k+1
(n− k)!(k+1)!

(n+2)!
μn−k

1

=
n

∑
k=0

μn−k
1 (μk+2− μ1μk+1)

(n+1)(n+2)

=
μn+2− μn+1

1

(n+1)(n+2)

(since the series telescopes). �

9. Some problems

PROBLEM 1. Show that a totally monotonic sequence, (a0,a1,a2, . . . ) , must be
log-convex, i.e.,

a2
n+1 � anan+2 (n = 0,1,2, . . .). (131)

When viewed as an assertion about moment sequences (courtesy of Hausdorff’s Theo-
rem) this is a trivial consequence of the Cauchy Schwarz inequality. The reader, how-
ever, is invited to solve this problem as stated, without recourse to Hausdorff’s The-
orem. This turns out to be a rewarding exercise on Inequalities, one that will surely
appeal to any reader with interests in that field.
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PROBLEM 2. Find other comparisons

Hμ � Hν (132)

between Hausdorff means.

We have discussed only the most common examples (Cesàro, Euler, Gamma and
Hölder) but our analysis forced us to consider also the Hausdorff means C(α,β ) . A
partial solution to Problem 2, for this class, is given by

THEOREM 5. Suppose that α , β , γ , δ are positive numbers. Then

C(α,β ) � C(γ,δ ) (133)

if and only if
αδ = βγ and γ � α. (134)

Proof. (Necessity.) According to Proposition 5, the first moments must coincide,

α
α +β

=
γ

γ+ δ
, (135)

and the second moments must satisfy

α(α +1)
(α +β )(α+β +1)

� γ(γ +1)
(γ + δ )(γ+ δ +1)

. (136)

These restrictions are summarized succinctly in (134).
(Sufficiency.) Fixing n , we study the number of sign changes in the nth row of the

matrix
C(γ,δ )−C(α,β ). (137)

Our proof hinges upon the fact that there are only two possibilities: no sign changes at
all, or exactly two.

We are dealing here with two Hausdorff means, whose first moments agree, so
that the row sum and the iterated row sum (see (56)) both vanish. There may be no
sign changes (as when n = 0, or n = 1, or α = γ ), but then the nth row must be
identically zero, in which case inequality (57) is automatically satisfied. Laguerre’s
argument (again the trivial version) shows that there cannot be exactly one sign change.
Our goal is to show that there are at most two, and, if two sign changes are present,
the signature has got to be (from + to − to + ). A further application of Laguerre’s
argument then guarantees inequality (57), and thereby completes our proof.

At issue here is the inequality

(k+γ−1
k

)(n−k+δ−1
n−k

)
(n+γ+δ−1

n

) �
(k+α−1

k

)(n−k+β−1
n−k

)
(n+α+β−1

n

) , (138)
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which we rephrase as

Γ(k+ γ)Γ(n− k+ δ )
Γ(k+α)Γ(n− k+β )

� Γ(γ)Γ(δ )Γ(α +β )Γ(n+ γ+ δ )
Γ(α)Γ(β )Γ(γ + δ )Γ(n+α+β )

. (139)

The right-hand side of (139) is constant, n being fixed, and we shall prove that the
left-hand side, LHS, is a convex function of k (k = 0,1, . . . ,n) .

To do this, we recall a basic property of the trigamma function ([1], §6.4),

ψ1(x) :=
d2

dx2 ln Γ(x) (x > 0), (140)

namely,

ψ1(x) =
∞

∑
n=0

1
(x+n)2 . (141)

This shows that ψ1(x) is a decreasing function of x and it follows that

d2

dk2 ln (LHS) = ψ1(k+ γ)−ψ1(k+α)+ψ1(n− k+ δ )−ψ1(n− k+β )

� 0

because α � γ and β � δ .
The above argument confirms that LHS is a log-convex function of k ; a standard

application of the quotient rule

(ln f )′′ =
f f ′′ − ( f ′)2

f 2 (142)

then shows that LHS is convex in k . It follows that inequality (139) can suffer at
most two “reversals of fortune”, and if two are present, they must be (true to false to
true). The same goes for the equivalent inequality (138) and these reversals correspond
exactly to the signature (+ to − to + ) in (137). �

Theorem 4 is a special case of Theorem 5. This is seen by setting α = 1 and δ = 1
and by observing that

C(1,β ) = C(β ) and C(γ,1) = G(γ). (143)

Theorem 5 guarantees that

C(1,β ) � C(γ,1) (144)

precisely when γ = 1
β and γ � 1, in perfect agreement with (105). Comparison (106)

follows similarly by taking β = 1 and γ = 1 in (133).
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It is instructive also to look at certain limiting cases of Theorem 5. Taking γ = 1
and making α → ∞ , we have

(k+α−1
k

)(n−k+β−1
n−k

)
(n+α+β−1

n

) ∼
αk

k!
(αδ )n−k

(n−k)!
(α(1+δ ))n

n!

=
(

n
k

)
1

(1+ δ )k

(
δ

1+ δ

)n−k

= (n,k)th entry of E

(
1

1+ δ

)
.

This gives an alternative confirmation of Conjecture (VII). Conjecture (IX) follows
similarly by taking δ = 1 and making β → ∞ in Theorem 5.

COROLLARY 1. If x is an arbitrary convex sequence, the expression

1(n+2α−1
n

) n

∑
k=0

(
k+α−1

k

)(
n− k+α−1

n− k

)
xk (145)

decreases with α (α > 0) .

Proof. Theorem 5 guarantees that

C(α,α) � C(γ,γ) (146)

whenever α � γ . �

The corollary confirms a conjecture made in [4], wherein x takes the special form

xk = xkyn−k (k = 0,1, . . . ,n). (147)

COROLLARY 2. If x is an arbitrary convex sequence and α,β > 0 then

1(n+α+β−1
n

) n

∑
k=0

(
k+α−1

k

)(
n− k+β−1

n− k

)
xk � βx0 +αxn

α+β
. (148)

Proof. Make γ → 0 in Theorem 5. �

We have had very little success in dealing with the Hólder means, H(α) , except
when α = 1,2,3, . . . . (See sections 5 and 6.) Rephrasing Conjectures (I)—(IV) as
explicit statements about total monotonicity may serve to make them more appealing.
The reformulation, of course, comes courtesy of Theorem 1.

PROBLEM 3. Show that the following sequences are totally monotonic.
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(I)

1
(n+3)α − 1

(n+2α+1
n+2 )

(n+1)(n+2)
if α � 1;

(II)

1

(n+2α+1
n+2 )

− 1
(n+3)α

(n+1)(n+2)
if 0 < α � 1;

(III)
1

(2α−1)(n+2)+1 − 1
(n+3)α

(n+1)(n+2)
if α � 1;

(IV)
1

(n+3)α − 1
(2α−1)(n+2)+1

(n+1)(n+2)
if 0 < α � 1.

Proposition 5 gives a very simple necessary condition, (36), for two Hausdorff
means to be comparable, while Proposition 6 shows that said condition fails to be suf-
ficient. It is an easy matter, however, to strengthen Proposition 5 in such a way as
to vanquish Proposition 6 (or, at least, the idea behind its proof). Could the modified
Proposition 5 then be sufficient to actually characterize the ordering (35)?

The modification consists of replacing the sequence (39) by

x = (0, . . . ,0,1,2,3, . . .), (149)

which shows that
μn � νn (n = 0,1,2, . . .) (150)

is a necessary condition for comparison (35) to hold. For good measure, the sequence

x = (1,0,0, . . .) (151)

picks up another necessary condition

Δnμ0 � Δnν0 (n = 0,1,2, . . .). (152)

These ideas suggest the following

PROBLEM 4. Suppose that a and b are totally monotonic sequences satisfying

a0 = b0 and a1 = b1. (153)

If
an � bn and Δna0 � Δnb0 (n = 0,1,2, . . .), (154)

does it follow that the sequence

bn+2−an+2

(n+1)(n+2)
(155)

is totally monotonic?

An affirmative solution to Problem 5 would cast everything we have said into the
trivial bucket.
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