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A REFINEMENT OF THE DISCRETE JENSEN’S INEQUALITY

LASZLO HORVATH AND JOSIP PECARIC

(Communicated by I. Peri¢)

Abstract. We give a refinement of the discrete Jensen’s inequality in the convex and mid-convex
cases. For mid-convex functions our result is a common generalization of known inequalities.
We illustrate the scope of the results by applying them to some special situations.

1. Introduction and the main results

The following inequalities are known by the collective title “discrete Jensen’s in-
equalities™:
THEOREM A. (see [3]) Let C be a convex subset of a real vector space X, let
n
xi€C,andlet p; >0 (i=1,...,n) with Zpiz 1.

i=1
(a)If f:C — R is a convex function, then

n n
F Y pixi | < Xpif (xi). (1)
i=1 i=1
(b) If f: C — R is a mid-convex function, and p; is rational (i =1,...,n), then

(1) also holds.

In the previous setting, the function f : C — R is convex if

FBx+(1=B)y) <Bfx)+(1=B)f(), xyeC 0<B<I,

and mid-convex if

x+y 1 1
)<= — .
£(57) < 300+ 5700, wyec

Various attempts were made in the last years to refine these inequalities (see [1],
[2], [4]-[10]). The following two improvements of (1) for mid-convex functions involve
similar ideas. The first result was published in [9].
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THEOREM B. Let C be a convex subset of a real vector space X, and let f :C —
R be a mid-convex function. If x; € C (i=1,...,n), and

Bk,n::% 2 f(M)’ 1<k<n,
(k) l§i1<...<ik<n k
then
1 1
f(;zxt> <Bn7n<<Bkn<<Bln:;2f(xl) (2)
i=1 i=1

The second result was obtained in [7].

THEOREM C. Let C be a convex subset of a real vector space X, and let f:C —
R be a mid-convex function. If x; € C (i=1,...,n), and

B — xil+"'+xik
Bk7n T ntk—1 2 f (? , 1<k,
( k )1<i1<~~<ik<n
then
13 B ) o
f(;z;’ﬁ) SgBkﬂngBangBln:ZZf(xl) (3)
=1 =

Of course, inequalities (2) and (3) remain true if f is a convex function, since every
convex function is mid-convex. On the one hand our goal is to clarify the connection
between Theorem B and Theorem C by giving such a refinement of (1) for mid-convex
functions which contains (2) and (3) as a special case. On the other hand we would like
to refine (1) for convex functions on the basis of (2) and (3). The main results will be
applied to some special situations in the second part of the paper.

We begin with some notations.

Let X be a set. The power set of X is denoted by P(X). |X| means the number
of elements in X .

The usual symbol N is used for the set of natural numbers (including 0).

Let u > 1 and v > 2 be fixed integers. Define the functions

S {Lu} = {1, u}™ 1<w<y,

SV;{1,...,u}v—>P({1,...,u}“1>,

and

T,:P({1,...,u}") —>P({1,...,u}v*1>
by

N
=
N
=

Sv,w(ila"'7iv) = (i17i27'"aiw—17iw+la"'aiv)7 1

v

Sy(its--iy) == | J {Suw (i1,--1iv) }

w=1
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and
%] if I=9

=4 | SV(;I,...,iV)7if 140 .

(i17-~-7iv)€1

Next, let the function

oy {l,...,u}' =N, 1<i<u,

be given by: o, (ij,...,i,) means the number of occurrences of i in the sequence
(i1y.eeyiy).
Foreach I € P({1,...,u}") let
o= Z O (it,...,0y), 1<i<u
(ll....,iL,)EI

It is easy to see that the dependence of the functions S,,,,, S,, T, and o,; on u
does not play an important role, so we can use simplified notations.

The following hypotheses will give the basic context of our results.

(H;) Let n > 1 and k > 2 be fixed integers, and let [ be a subset of {1,...,n}
such that

k

og =1, 1<i<n (4)

(Hz) Let V be a real vector space, let C be a convex subset of V, and let
X1y...,X, €C.
n
(H3) Let py,...,p, be positive numbers such that Z pj=1.
j=1
(Hy) Let the function f: C — R be convex.
(Hs) Let the function f : C — R be mid-convex, and let py,..., p, be rational.

We need some further preparations.
Starting from Iy , we introduce the sets [; € {1,...,n}' (k—1>1>1) inductively
by
Il—l = Ti(l[% k}l > 2.
Obviously, I} ={1,...,n}, by (4), and this insures that ¢y, ; =1 (1 <i< n). From (4)
again, we have that oy, ; > 1 (k—12>1>1,1<i<n).Itisevident that

L1 i =i .
al,l(])_{o’ if ]#17 lglgn' (5)

For any k > > 2 and for any (j1,...,j;—1) € [, let

HI] (jlr"ajlfl)
= {((il,...,il),m) el x {1,,1} | S17m(l'1,...,il) = (jl,...,jl,l)}.
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Using these sets we define the functions #;, ; : [; — N (k> [ > 1) inductively by

ok (its i) =1, (it,... i) € It (6)
llk,zfl(j1,~~~,J171) = D ty (i, sdp) (7

((1semsis) m)EHY (1 5-001-1)

The main results of this paper involve some special expressions, which we now
describe. Forany k > 1 > 1 let

A=A (X1, X0, P1y -+, Pn)

ls .
2 (i pi ) S—laltixxls
._ A=
= : ; ,
(015 )ED s=1 % 2 Dis

oy, s
I

and associate to each k— 1 > 1 > 1 the number

Ay =Axg I, X1, X, P1y -, Pn)
I

2 I’i_g_ Xi
[ ap g™ S
= 7(]{_ i) ] 2 Z‘Ik7 ll; -5l (z Py ) =t

=1 aIA7 2 p,A
O‘Ik is

With these preparations out of the way we come to

THEOREM 1. Assume that either (H;)—(H4) or (H;)—(H3) and (Hs) are satis-
fied. Then
(a)
r=1

n n
f (2 pm) SApp SAppo1 < .. KA <Ap1 = Y prf(x). (8)
r=1

(b) Suppose |Hy, (ji,. .., ji-1)| = Bi—1 for any (ji,....ji-1) € -1 (k>1>2).
Then

!
! Zpisxix
A=A = | > (2171'3)]0 S:i ki),
(i1,ip)€l) \5=1 2 '
Pis
s=1
and thus

<2prxr> SApk A1 -1 < ... <A <A11—2Perr

r=1 r=1
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2. Discussion, and applications

Throughout Examples (2-7) the conditions (H;), (H3) and either (Hs) or (Hs)
will be assumed.
Theorem 1 contains Theorem B, as the first example shows.

EXAMPLE 2. Let
Ik::{(il,...,ik)6{1,...,n}k|i1 <...<ik}, 1<k<n.

,n) ensuring (Hl) with k=n. It is easy to check that Ty(I;) =

Thenoqnl—l(z
n), |Ik\—() (k=1,...,n), and for every k=2,.

Ly (k=

\Hi (s ovdi—1)| =n— (k= 1), (i,eeosfiet) € It

and therefore, thanks to Theorem 1 (b),

k
) 2 DigXi

1 k —
Ak = (nfl) 2 <2pix . , k=1,...,n.
k—1) 1<ii<...<ix<n \s=1 2
and
<2prxr> SApk A1 -1 < ... <A SAH—Zprfxr 9)
r=1 r=1
Ifpi=...=pp= %, then by Lemma 10 (f)

1 Xip +.o0x,
Apg= - f(Q) k=1,....n,
SR> :

1<ii<...<ig<n
and thus (9) gives Theorem B.

The next example illustrates that Theorem C is a special case of Theorem 1.

EXAMPLE 3. Let

Ikiz{(i17...,ik)6{l7 n} |11 lk} k> 1.
Obviously, oy, ; > 1 (i=1,...,n), and therefore (Hy) is satisfied. It is not hard to see
that Te(I) =Ly (k=2,. ) = (""" (k=1,...), andfor each 1 =2,... ,k

’Hll(jlﬂ"'hjl*l)’:n) (jla"')jlfl)ellfb
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Consequently, by applying Theorem 1 (b), we deduce that

k
| . > pigxi,
Agk = (HT Y (ZP&) f S:; , k=1,

k—1 )1<i1<...<ik<n s=1 Zpis
s=1

and
f(Zwa) KA <L KA = Zprf(xr)~ (10)
= r=1
By taking pi = ... = py = ;; we obtain from Lemma 10 (f) that
1 X +..xi
Ag=—— Y 4#) 1
(") 1< < iz k

and thus (10) gives Theorem C.

The following two examples are particular cases of Theorem 1 (b).

EXAMPLE 4. Let
L={1,....n}*, k>1

Trivially, oy ; > 1 (i=1,...,n), hence (Hy) holds. It is evident that Ty(Iy) = Ix—,
(k=2,...), || =n* (k=1,...), andforevery 1 =2,... k

\Hy, (1, ji-1)| = n, Gtyeeondic1) €021,

and so Theorem 1 (b) leads to

k
| k Zpisxi.r
' >.i,

s=1

and

r=1

n
f(me) <o KA <L <A = Y pef (), k=L

Especially, for p1 = ...p, = % we find from Lemma 10 (f) that

1 Xip + ... X
Ak’k:ﬁ 2 f(%)7 kzl,...,}’l.

(i1 5eemsip ) E D
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EXAMPLE 5. For 1 <k <nlet I consist of all sequences (iy,...,ix) of k distinct
numbers from {1,...,n}. Then o4, ; > 1 (i=1,...,n), hence (Hy) is valid. It is
immediate that T,(I) =y (k=2,...,n), ||=n(n—1)...(n—k+1) (k=1,...,n),
and foreach k=12,...,n

\Hi (s di-1)| = (n= (k= 1))k, (jiyeeesdam1) € bt

and from them, on account of Theorem 1 (b), follows

k
Zpi-xi,
A n D zk:p A= _ k=1 n
kk = i ’ = L.
T okn(n—1)...(n—k+1),. < “ k
(117"'7”()61]( s=1 2 .
Pi
s=1

and
f(me) SApn <. <A <. <AL = Y pef ().
r=1 r=1
Ifwesetplz...zpn:%,then
1 Xip +..Xg,
App = -k k=1,...,n.
K w—1). . (n—k+1) ) f( k )’ el

(i1 yeemsik) €Ly

In the sequel two interesting consequences of Theorem 1 (a) are given.

n
EXAMPLE 6. Let ¢; > 1 be an integer (i=1,...,n), let k := ZC,-, and let I, =
i=1
Pevn consist of all sequences (iy,...,ix) in which the number of occurrences of
ie{l,...,n} is ¢; (i=1,...,n). Evidently, (H,) is satisfied. A simple calculation
shows that

n
!
L seesCi15Ci— L, Cit 1 5eiC _ k! _
Ik*l = LJPLl AL Cna aIk,i — | 'Cla 1= la )1,

. Cl:...Cpt

i=1
and

tr k=1 (i1, ik—1) =k,

. . . ClyeresCi1,Ci— L,Cia 1y sC .

if  (i1y...,ig—q) € PCU LG He Ll 0 j =1 p,
and

f <2prxr> :Algk
r=1

k
P,
C1 ! Cn' 2 i Pi s=1 s
_ L. . Pis f §=
! . k
ke (i seig) €l \5=1 s Dis
CI'_(

s=1
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According to Theorem 1 (a)

f <2pr~xr> <Ak,k71 < Zprf(xr)y
r=1

=1
where .

Lo r_zlprxr — By

Agg—1 = 12 (ci—pi)f _1_7%,

EXAMPLE 7. Let
b= {(i17i2) e{l,....n}*| il\i2}~

The notation i iy means that iy divides iy. Since i|i (i=1,...,n), (Hy) holds. In this
case "
oc127,-:[—,}+d(i), i=1,....n
i

where [ﬂ is the largest natural number that does not exceed ', and d(i) denotes the

number of positive divisors of i. By Theorem 1 (a), we have
n Di i {.lled(il)xil—i_ {.lﬂ?d(iz)
i ) i 7
f <2pr-xr> < ( 2 ! + i, n i

b= ien \ [2]+at) - [2]+a() T TE o

< Zprf(xr)~
r=1

Xiy

The final example is connected to the arithmetic-geometric mean inequality.

EXAMPLE 8. Assume (H;) and (H3). Let V :=1R, let C :=]0,00[, and let f :=
—In. Then (Hy)—(Hy) hold, therefore recalling Theorem 1 (a),

k

3
k oy is

pis .. \s=1 K°
n ‘ Ol i i n
Pi = s
Hxil < H A < 2p1x1~
i=1 (11 5ig ) €I 2 Dig i=1
1 O is

S=

This inequality is a refinement of the arithmetic-geometric mean inequality.
Suppose py = ... =p, = %, and o1 = ... = Oy pn = % Then the previous

inequality has the form

1
Xip+.oxi \ Tl x1+...x
e (Rt
)El

. A n
(i iy
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3. Preliminary results and the proofs of the main results
We begin with a deeper property of the function 7, ;.
LEMMA 9. If (Hy) is satisfied, then
(i) =oy i (k—1)!, 1<i<n.
Proof. For a fixed 1 < i< n we first prove by induction on [ that

Z Oclj(ilw~-7il)tlk,l(i17~~vil)

_ oy, if 1=k
T\ ogik—1)(k=2)...l, if  k—1=1>1"

785

(1)

12)

If I =k, then (4) and (6) give (12). Suppose then that I (k > > 2) is an integer for

which (12) holds. By (7)

D O—1,i(Jts- s i)t =11y - Ji—1)
(J1yefi—1) €L -1

= D o1,i(j1s--sdi-1) tr ity -yi
(J1esdi=1)El—1 ((i150ensi) m EHI, Jlsesdi=1)
From this and the definition of §; ,, <m <) it follows

D O‘lfl,i(jly---ajlfl)tlk,lfl(jla~~~7J.lfl)
(J1sendi—1) €N -1

= 2 2 06171'(1'1,...,lhl)llk’l(l'h... ]

(di=0€h=1 \{((1y0ensit) ) EHY (it soensi—1)lim# }

+ D (oi(in, .- yir) = 1)ty g in, - ip)
{Grseensit)m) €Hy (o1 lim=i}

m
= 2 ((1=oui(iv,--vir)) ouiin, - i)ty (ins- i)

—|-0617,'(11,... ,il) (0617,'(1'1,...,1'1) — l)t]kJ(il,... ,il))

:(l_l) z alJ(ila'"7il)t1k,l(i17"'7il)7

and therefore the induction hypothesis shows that

D o 1,i(Jty- s di- )t -1t 5 Ji-1)
(J1seesdi—1) €L 1

= O(]kﬂ'(k— 1)...l(l— 1).
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(12) for I = 1, taking into consideration (5), implies (11). The proof is com-
plete. O

In Theorem 1 (b) our arguments depend on the following lemma.

LEMMA 10. Assume (Hy). If
\Hy (s vdi-)| = By, forall (- ji) €y, k=122, 13)
then ;
(@) By =lgy (k>1>2).

(b) tIk,l(jla---ajl):ﬁkfl---Bl:k“(l‘i'l)% ((Jtoe-st) €L, k=12121).
(C) oy = OC]NZ:...ZOC],J (k}l}l)
@ oy="11 xk>1>1).

1
1 Zpi_gxs
n —
(e)Ak.l:Al,l:m D (2[71'3)]( 2 11 , k>1>1.
W iy,eip)en \s=1 3o
s=1
NIf p1="..=pu= . then

<x,-1 + .. X

z ) k=121

Proof. (a) By the definition of Hy, (ji,...,ji—1)

Z |H11(j17'”7jl—1)’:l|ll‘7 k>l>2
(J1ssdi—1)€G 1

Consequently, (13) yields (a).
(b) We prove this by induction on [/, the case [ = k being

tpk—1(J1s- o di1) = D ty kit ik)
((15esite) m) EHp (j1eesfk—1)

=Br—1, (J1s-esJk—1) € i1

Let I (k—1>1>2) be an integer such that the result holds. Then

tr -1ty ji-1) = 2 tr (i1, ,0p)

= ’Hlt(jl7~~~vjl—1)|ﬁk_1...ﬁl
=Bi1---BiBi-1-
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The second equality in (b) comes from (a).
(c) Part (b) and (11) show that

() =B—1-..Bi=og i (k—=1)!, 1<i<n,
and thus oy, , = ... = 0y, 1. It follows from (b) and (12) that
2 al,i(ilr"ail)tlk,l(ila"'7il)
=Bi1---B Y, it i)
(ll,...,i])EIl
:Bk_l...ﬁla]hi:OCIk7i(k—l)(k—2)...l, k—l}l}h 1<i<n,
giving

gk —1)(k—2)...1
Bi-1---B ’

oy i =

and this implies the result for k—1>1> 1.
(d) It is an easy consequence of (c).
(e) Using the definition of Ay; (k—12>12> 1), then (b), (c) and (d), we get

l

_Pis
Appi= tr ity ...,
(k_ l) o .l (ilv-"vil)ell k s=1 aIA B 2 pt_s
Oclk is
1 A ’ Zpisxx
= k... ([ 1) pi | F| =
o (k—1)...1 || (l.h_%)g] s=21 :

[
Zl?i,Y
s=1

[

Zpi_;xs
_ k ‘Ik| L ) s=1
—@m 2 (217“)]( /

(i1ysip) €l \5=1 .
zph‘

n 1 zplax‘
= i D (2%) = . (k—1=1>1).

(i1emi)El \5=1
> pi,
s=1
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Similarly, the definition of 4;; (k>1> 1), (c) and (d) insure that

Dig
1 i 2061le s
A= s
L= Z z‘oq,- 1=
(i1 sip) €L \$=1 700k _Pis_
o, is
s=1
1
1 i Zpisxs
s=1
~ 2 Zpix f i
iy,.ipen \s=1 Zpix
s=1

n 1 zpixxS
_ " . s=1

i1yenip) €L \s=1
( ) Zpis
s=1

(f) This is a special case of (e).
The proof is now complete. [

REMARK 11. Assume (Hy). Lemma 10 shows that (13) implies oy = oy =
..=oy,1 (k=12>1). The converse of this is not true in general, as it is seen by easy
examples.

The following lemma will be fundamental.

LEMMA 12. Assume that either (H1)—(Hy) or (Hy)—(H3) and (Hs) are satis-
fied. Then
Apt SAgi-1, k=122,

Proof. Assume (H;)—(Hs). We prove first that Az ; < Agx—1. Since

k
Dis

koo e oy i
Apr = 2 (2 P )f S_i

(i1 i) €l \s=1 Hss 2 -~
O is

s=1
2 _Pis _ _Pim 2 _Pis .. _ _Pim X;
[ Oflk‘im OClk is Xis Oty iy~ M

k k i &
= - 2 (Z o ) 2 s=1 ’
(itymnig) €l \s=1 700 m=1 (k— I)ZL 2 _Pis _ _Pim_

~ o i O‘Ik is  Ofim
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and
2 Dis _ Dim_
alk is alk im
—k >0, 1<m<k,
(k—1)Y D
oy, s
s=1 Tt
and

Pi Pi
k 2 az,:u - azktv,-lm
Y| =1 (i1, i) €L,

m= (k—l) _Dig

O, is
s=1 *

the Jensen’s inequality (1) for convex functions implies

k k

Pis _ _Pim Pis xXi — Pim X
koo k Oy Cpim Ois ™5 Olfp iy
Akk< 2 2 Pi s=1 - s=1
9 ~ .
(i1, ) €l s=1 His | m=1 2 _Pis 2 Pis
Oclk is Oclk is Oclk im
(14)
k
Pig Pi
k[ k 2 ar = Nis ™ o i
1 Z Z Pi Pin f =1 ks lieim
i1 PV &
k l(il,...,l'k)GIk m=1 S=1aIkvlS aIk7lm Pis _ _Dim
S=10¢1k‘is Oty i
In light of the meaning of #; 1, this yields
k—1
Djs
1 =l ps Zl%,_m Js
. . Js s=
Ak < 7y Y a1t i) Z—a — || 7
(J15erdk—1)ED—1 s=1 s ZL
= O js

=Afp—1-
Suppose now that k—1 > > 2. By an argument analogous to that employed in

the first part we have that
1
Ay —mm—— tr (i, .0
Kl =1 Y (it --ip)

(k=1)... (i1,-it) €D
pl( R plm .
2:loclk is lS OC’ 'n1XIm
5=

Z i
aIk is aIk im




790 L. HORVATH AND J. PECARIC

and therefore the definitions of the set Hj,(ji,...,j;—1) and the function #; ;_; give

1
Apg < (k—=1)...1(I—1)

2 2 tlk,l(i17"'7il)

(J1yesdi—1)€l -1 (i1 eesiy);m) €H (1 seensf1-1)
-1
Js
-1 . Zazk, Js
pjs s=1 A
el R4 v =Agi-1,
s=1 Iy, Js Djs
al/c]v

and this completes the proof in the considered case.

We turn now to the other case: assume (H;)-(H3) and (Hs). Since the num-
bers oy, ; (1 <i< n) are integers the proof is entirely similar as above (the Jensen’s
inequality (1) for mid-convex functions can be applied in (14)).

The proof is now complete. [

After these preliminaries we arrive to the proof of Theorem 1.

Proof. First, assume (H;)—(Hy).
(a) Since

k

n x ;i Z:l
Zprxr = Z Z o o) *k

r=1 (ilv-"vik)elk s=1 I\l 2 iy

aIA is

2 (22
s =1,
(ih...,ik)EIk s=1 aI]ﬁiS

it follows from the Jensen’s inequality (1) for convex functions that

k
n k i ;azfij Xig
f(me) < Y (2 )f = = Acs, (15)
=1 (i1 i i

Ik is lx

and

lk)EIk

which proves the first inequality in (8).
The inequalities
Ak SApp—1 < ... <Ap2 <Agg

can be obtained from Lemma 12.
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It remains only to show that

At = X prf(xr) (16)
r=1

By the definition of Ay |

1 n B
Ap1 = m;tlk,l(s)ap—f(xs),

Ik7S

and therefore Lemma 9 insures (16).

(b) It follows from (a) by applying Lemma 10 (e).
If (H;)—(Hs) and (Hs) are satisfied, then we can prove as before, since the num-

bers oy, ; (1 <i< n) areintegers, and since the Jensen’s inequality (1) for mid-convex
functions can be used in (15).

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]
[9]

[10]

The proof of the theorem is complete. [
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