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COMPACTNESS OF EMBEDDING BETWEEN SPACES WITH

MULTIWEIGHTED DERIVATIVES – THE CASE p � q

ZAMIRA ABDIKALIKOVA, ASKAR BAIARYSTANOV AND RYSKUL OINAROV

(Communicated by V. Burenkov)

Abstract. This paper deal with a new Sobolev type function space called the space with multi-
weighted derivatives. This space is a generalization of the usual one dimensional Sobolev space.
As basis for this space serves some differential operators containing weight functions.

We establish necessary and sufficient conditions for the boundedness and compactness of
the embedding between the spaces with multiweighted derivatives with different weights and
different metrics.

1. Introduction

Let R be the set of real numbers, m and n be natural numbers, 1 � p,q < ∞ ,

α = (α0,α1, . . . ,αn) , αi ∈ R , i = 0,1, . . . ,n , |α| =
n
∑
i=0

αi , I = (0,1) or I = (1,+∞)

and
1
p

+
1
p′

= 1 (if p = 1, then p′ = ∞).

For functions f : I → R we define the differential operations Di
α f as follows:

D0
α f (t) = tα0 f (t),

Di
α f (t) = tαi

d
dt

tαi−1
d
dt

. . . tα1
d
dt

tα0 f (t), i = 1,2, . . . ,n,

where each derivative is understood as a weak derivative (see e.g. [6]).

DEFINITION 1.1. The operation Di
α f is called α - multiweighted derivative of

the function f of order i , i = 0,1, . . . ,n .

With help of the operator Di
α , i = 0,1, . . . ,n , we define a space Wn

p,α = Wn
p,α(I) ,

1 � p < ∞ , I = (0,1) or I = (1,+∞) , of functions f : I → R which have α - multi-
weighted n :th order derivatives and for which the following norm is finite:

‖ f‖Wn
p,α

= ‖Dn
α f‖p +

n−1

∑
i=0

|Di
α f (1)|,
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where ‖ · ‖p denotes the usual norm of the space Lp(I) , 1 � p < ∞ .
When αi = 0, i = 0,1, . . . ,n− 1, and αn = γ the space Wn

p,α coincides with the

usual Kudryavtsev space Ln
p,γ = Ln

p,γ(I) (see [10]) with the finite norm

‖ f‖Ln
p,γ = ‖tγ f (n)‖p +

n−1

∑
i=0

| f (i)(1)|.

Spaces of Wn
p,α type appeared first in [5] with the purpose to characterize the be-

havior of a solution of singular differential equations in a neighbourhood of the singular
point t = 0. Detailed investigation of the properties of the spaces Wn

p,α and their appli-
cations in the theory of differential equations can be found in the papers by Baidel’dinov
(e.g. [4]), by Kalybay (e.g. [8]) and others.

Moreover, for β = (β0,β1, . . . ,βm) , βi ∈ R , i = 0,1, . . . ,m , we define the space
Wm

q,β
= Wm

q,β
(I) .

The main aim of this paper is to investigate boundedness and compactness of the
embedding

Wn
p,α(I) ↪→Wm

q,β
(I) (1.1)

when 1 < p � q < ∞ , 0 � m < n .
Boundedness of the embedding (1.1) has been considered in [1] when 1 � p �

q < ∞ and in [7] when 1 < q < p < ∞ in different assumptions concerning αi , i =
0,1, . . . ,n . In [3] necessary and sufficient conditions for boundedness and compactness
of the embedding (1.1) have been established when 1 � q < p < ∞ .

In this paper we derive necessary and sufficient conditions for the boundedness
and compactness of the embedding (1.1) when 1 < p � q < ∞ , without dependence
on powers of degeneration of the space Wn

p,α(I) , i.e. for which relations between the

parameters α , β , p and q the bounded and compact embedding (1.1) holds.
The main results are given in Sections 3 and 4. In Section 2 we present some

notations, facts and statements, which are necessary for the proofs of the main results.
In Section 3 the embedding (1.1) is considered for I = (0,1) and in Section 4 for
I = (1,+∞) .

In this paper we use the following conventions: If i > j , then the sum
j

∑
k=i

is

considered to be equal to zero; and the notation A � B means that A � cB , where the
constant c > 0 may depend on unessential parameters.

2. Preliminaries

For i, j = 0,1, . . . ,n−1 we define the following set of functions:

Ki+1, j(t,x) ≡ Ki+1, j(t,x,α) =
x∫
t
t−αi+1
i+1

x∫
ti+1

t−αi+2
i+2 . . .

x∫
t j−1

t
−α j
j dt jdt j−1 . . .dti+1 when i < j,

Ki+1, j(t,x) ≡ Ki+1, j(t,x,α) ≡ 1 when i = j,
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Ki+1, j(t,x) ≡ Ki+1, j(t,x,α) ≡ 0 when i > j for 0 < t � x.

By changing variables, when i < j the following property of uniformity of the functions
Ki+1, j can be established (see [3]):

Ki+1, j(zt,zx) = z

j
∑

k=i+1
(1−αk)

Ki+1, j(t,x).

In particular, when x = 1 and t = 1, we have that

Ki+1, j(zt,z) = z

j
∑

k=i+1
(1−αk)

Ki+1, j(t,1),

Ki+1, j(z,zx) = z

j
∑

k=i+1
(1−αk)

Ki+1, j(1,x),

(2.1)

respectively.
For 0 � i � j � n−1 we define:

Mi, j = max
i�s� j

( j− s+1−
j+1

∑
k=s+1

αk)

and

ki, j = min{k : i � k � j,
k

∑
s=i+1

αs − k = max
i�ξ� j

(
ξ

∑
s=i+1

αs − ξ )}.

For convenience we denote Mi = Mi,n−1 and ki ≡ ki,n−1 . Note that Mi � Mi+1 and
M0 = max

0�i�n−1
Mi .

Furthermore, we need upper and lower estimates for the functions Ki+1, j(t,1)
when 0 < t � 1 and Ki+1,n−1(1,t) when 1 � t < ∞ , 0 � i � j � n− 1. In [2] it
was obtained upper and lower estimates for the functions ui(t) = tα0K1,i(t,1,−α) ,
i = 0,1, . . . ,n− 1. Below we give three statements about estimates for the functions
Ki+1, j(t,1) and Ki+1, j(1,t) , which follow from these results. Moreover, for conve-
nience we use the following equalities:

min
i�s� j

(
α0 +

s

∑
k=i+1

(1−αk)

)
= min

i�s� j

[
α0 + j− i+1−

j+1

∑
k=i+1

αk − ( j− s+1−
j+1

∑
k=s+1

αk)

]

= α0 + j− i+1−
j+1

∑
k=i+1

αk −Mi, j.

LEMMA 2.1. Let 0 � i � j � n−1 . Then

Ki+1, j(t,1) � t
j−i+1−

j+1
∑

k=i+1
αk−Mi, j | ln t|li, j , t ∈ (0,1],

where li, j is the number of k , ki, j +1 � k � j , such that
k
∑

s=ki, j+1
(αs−1) = 0 if ki, j < j ,

and li, j = 0 if ki, j = j .
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LEMMA 2.2. Let 0 � i � n−1 . Then there exists δ , 0 < δ < 1 , such that for any
t ∈ (0,δ ] the following estimate

Ki+1,n−1(t,1) � t
n−i−

n
∑

k=i+1
αk−Mi

holds.

LEMMA 2.3. Let 0 � i � n−1 . Then

x−αnKi+1,n−1(1,x) � xMi−1| lnx|li , x � 1,

where li is the number of k , i + 1 � k � ki − 1 , such that
ki−1
∑

s=k
(αs − 1) = 0 when

ki > i+1 , and li = 0 when ki = i+1 .

For the proof of our main results we also need the following statements from [3],
[7] and [9], respectively:

LEMMA 2.4. The functions fs(t) = t−α0K1,s(t,1,α) , 0 � m � s � n, are not so-
lutions of the equation

Dm
β

f (t) = 0, ∀t ∈ (0,1].

LEMMA 2.5. For all f ∈Wn
p,α , 0 � m < n, we have that

Dk
β

f (t) =
k

∑
i=0

ck,it
μk,iDi

α f (t), k = 0,1, . . . ,m, (2.2)

where μk,i =
k
∑
j=0

β j −
i
∑
j=0

α j + i− k , i = 0,1, . . . ,k , k = 0,1, . . . ,m; and the coefficients

ck,i , i = 0,1, . . . ,k−1 , k = 0,1, . . . ,m, are defined by the recurrent formula:

ck,k = 1, ck,0 = ck−1,0

(
k−1

∑
j=0

β j −α0− k+1

)
,

ck,i = ck−1,i−1 + ck−1,i

(
k−1

∑
j=0

β j −
i

∑
j=0

α j + i− k+1

)
, i = 1,2, . . . ,k−1,

and

Di
α f (t) =

n−1

∑
j=i

(−1) j−iKi+1, j(t,1)Dj
α f (1)+

1∫
t

x−αnKi+1,n−1(t,x)Dn
α f (x)dx, (2.3)

i = 0,1, . . . ,n−1.
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3. Embedding theorems for the space Wn
p,α(0,1)

Denote i0 = min{i : 0 � i � m, cm,i 
= 0} , where cm,i , i = 0,1, . . . ,m , are defined
as in Lemma 2.5.

Our main result in this Section reads:

THEOREM 3.1. Let I = (0,1) , 1 < p � q < ∞ , 0 � m < n and Mi0 � 1
p

. Then

the following conditions are equivalent:
i) The embedding (1.1) is bounded;
ii) The embedding (1.1) is compact;
iii)

|β |− |α|+n−m+
1
q

> Mi0 . (3.1)

Proof. Let us first prove that i) ⇒ iii) . Assume that the embedding (1.1) is
bounded. Then

‖Dm
β

f‖q � c‖ f‖Wn
p,α

, ∀ f ∈Wn
p,α . (3.2)

Let us take the function f0(t) = t−α0K1,n−1(t,1) . Since Dn
α f0(t) = 0, ∀t ∈ (0,1) , and

Di
α f0(1) = 0, i = 0,1, . . . ,n− 2, |Dn−1

α f0(1)| = 1, then f0 ∈Wn
p,α and ‖ f0‖Wn

p,α
= 1.

Hence, from (3.2) we have that

‖Dm
β

f0‖q � c. (3.3)

Moreover, due to Lemma 2.4 we get that ‖Dm
β

f0‖q > 0. From (2.2) and (3.3) it follows

that

1∫
0

|
m

∑
i=i0

(−1)icm,it
μm,iKi+1,n−1(t,1)|qdt < ∞. (3.4)

According to Lemma 2.2 for small enough t > 0 we obtain that

Ki+1,n−1(t,1) � t
n−i−

n
∑

k=i+1
αk−Mi

, i = 0,1, . . . ,n−1.

Therefore,

tμm,iKi+1,n−1(t,1) � t |β |−|α |+n−m−Mi , i = i0, i0 +1, . . . ,m,

in a neighbourhood of t = 0. Since cm,i0 
= 0 and Mi0 � Mi , i0 � i � m , then for

Mi0 >
1
p

the order of the underintegral function in (3.4) in a neighbourhood of t = 0
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is not less than t |β |−|α |+n−m−Mi0 . Consequently, the function t(|β |−|α |+n−m−Mi0 )q is
integrable in a neighbourhood of t = 0 and this is equivalent to the condition

|β |− |α|+n−m+
1
q

> Mi0 .

Hence, the implication i) ⇒ iii) is proved.
Obviously, it is sufficient to show that iii) ⇒ ii) . Assume that iii) holds and let

f ∈Wn
p,α . According to (2.2) and (2.3) we have that

Dm
β

f (t) =
m

∑
i=i0

cm,it
μm,i

n−1

∑
j=i

(−1) j−iKi+1, j(t,1)Dj
α f (1)

+
m

∑
i=i0

cm,it
μm,i

1∫
t

x−αnKi+1,n−1(t,x)Dn
α f (x)dx. (3.5)

Moreover, from (2.2) it follows that

m−1

∑
k=0

|Dk
β

f (1)| �
n−1

∑
k=i0

|Dk
α f (1)|,

and, therefore, for boundedness of the embedding (1.1) it is sufficient that the conditions

1∫
0

|tμm,iKi+1, j(t,1)|qdt < ∞, i = i0, i0 +1, . . . ,m, j = i, i+1, . . . ,n−1, (3.6)

hold and that the following integral operators

KiF(t) = tμm,i

1∫
t

x−αnKi+1,n−1(t,x)F(x)dx, i = i0, i0 +1, . . . ,m, (3.7)

are bounded from Lp(0,1) to Lq(0,1) . Moreover, for the compactness of the embed-
ding (1.1), due to finiteness of the first sum on the right hand side in (3.5), it is sufficient
to prove that the operators (3.7) from Lp(0,1) to Lq(0,1) are compact.

First we prove that (3.6) holds. For i0 � i � m , according to Lemma 2.1, we have
that

1∫
0

|tμm,iKi+1, j(t,1)|qdt �
1∫

0

t
q(μm,i+ j−i+1−

j+1
∑

k=i+1
αk−Mi, j)| ln t|qli, j dt.

The last integral converges if and only if

μm,i + j− i+1−
j+1

∑
k=i+1

αk −Mi, j +
1
q

> 0, (3.8)
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i = i0, i0 +1, . . . ,m , j = i, i+1, . . . ,n−1, i.e.,

|β |− |α|+n−m+
1
q

> max
i�s� j

(
j− s+1−

j+1

∑
k=s+1

αk

)
− j−

n

∑
k= j+2

αk +n

= max
i�s� j

(
n− s+1−

n

∑
k=s+1

αk

)
.

But by the definition Mi0 � max
i�s� j

(
n− s+1−

n
∑

k=s+1
αk

)
when i0 � i � m and i � j �

n−1, then from (3.1) it follows that (3.8) holds and, hence, that (3.6) holds.
According to the results in [11] the integral operators (3.7) are compact from

Lp(0,1) to Lq(0,1) when 1 < p � q <∞ if and only if

max
i� j�n−1

sup
0<z<1

Ai, j(z) <∞, i = i0, i0 +1, . . . ,m, (3.9)

and

lim
z→0

Ai, j(z) = lim
z→1

Ai, j(z) = 0, (3.10)

i = i0, i0 +1, . . . ,m , j = i, i+1, . . . ,n−1; where

Ai, j(z) =

⎛
⎝ z∫

0

|tμi,mKi+1, j(t,z)|qdt

⎞
⎠

1
q
⎛
⎝ 1∫

z

|x−αnKj+1,n−1(z,x)|p′dx

⎞
⎠

1
p′

. (3.11)

Due to (3.6) the first integral in (3.11) converges for all 0 � z � 1, and the underintegral
function of the second integral is continuous on (0,1] , we find that the function Ai, j(z)
is continuous on (0,1] and lim

z→1
Ai, j(z) = 0 for all i = i0, i0+1, . . . ,m , j = i, i+1, . . . ,n−

1. Therefore, the fulfilment of (3.9) and (3.10) depends on the behavior of the function
Ai, j(z) when z → 0.

In the integrals (3.11), by changing variables t → tz , x → xz , respectively, and,
using the property of uniformity (2.1), we find that

⎛
⎝ z∫

0

|tμm,iKi+1, j(t,z)|qdt

⎞
⎠

1
q

= z
μm,i+

j
∑

k=i+1
(1−αk)+

1
q

⎛
⎝ 1∫

0

|tμm,iKi+1, j(t,1)|qdt

⎞
⎠

1
q

= ci, jz
|β |−

j
∑

k=0
αk+ j−m+ 1

q
, (3.12)

where, due to (3.6), ci, j =
(

1∫
0
|tμm,iKi+1, j(t,1)|qdt

) 1
q

< ∞ when j = i, i+1, . . . ,n−1,

i = i0, i0 +1, . . . ,m , and
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⎛
⎝ 1∫

z

|x−αnKj+1,n−1(z,x)|p′dx

⎞
⎠

1
p′

=z
−αn+

1
p′ +

n−1
∑

k= j+1
(1−αk)

⎛
⎜⎜⎝

1
z∫

1

|x−αnKj+1,n−1(1,x)|p′dx

⎞
⎟⎟⎠

1
p′

[according to Lemma 2.3]

� z
− 1

p−
n
∑

k= j+1
αk+n− j

⎛
⎜⎜⎝

1
z∫

1

|xp′(Mj−1)| lnx|p′l j dx

⎞
⎟⎟⎠

1
p′

. (3.13)

Since
∞∫

1

xp′(Mj−1)| lnx|p′l j dx < ∞ when Mj <
1
p
, j = 0,1, . . . ,n−1,

then for small enough z > 0 we have that

1
z∫

1

xp′(Mj−1)| lnx|p′l j dx �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z−p′(Mj−1)−1| lnz|p′l j when Mj >
1
p
,

1 when Mj <
1
p
,

| lnz|p′l j+1 when Mj =
1
p
.

(3.14)

From (3.11)–(3.14) for small z > 0 we get that

Ai, j(z) � z
|β |−|α|+n−m+ 1

q−Mj | lnz|l j when Mj >
1
p
, (3.15)

Ai, j(z) � z
|β |−|α|+n−m+ 1

q−
1
p when Mj <

1
p
, (3.16)

Ai, j(z) � z
|β |−|α|+n−m+ 1

q−
1
p | lnz|l j+

1
p′ when Mj =

1
p
. (3.17)

Moreover, by the assumptions of Theorem 3.1, it yields that Mi0 � 1
p , and by the def-

inition we have that Mi0 � Mj when i0 � j � n− 1. Therefore, from iii) it follows
that

|β |− |α|+n−m+
1
q
−max

{
Mj,

1
p

}
> 0
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for all j = i0, i0 + 1, . . . ,n− 1. Hence, (3.15)–(3.17) imply that lim
z→0

Ai, j(z) = 0 for all

i = i0, i0 +1, . . . ,m , j = i, i+1, . . . ,n−1, i.e. (3.9) and (3.10) hold.
Thus iii) implies (3.6) and the compactness of the integral operators (3.7). Con-

sequently, also the implication iii) ⇒ ii) is proved. The proof is complete. �

THEOREM 3.2. Let I = (0,1) , 1 < p � q < ∞ , 0 � m < n and Mi0 <
1
p

.

a) The embedding (1.1) is bounded if and only if

|β |− |α|+n−m+
1
q

� 1
p
. (3.18)

b) The embedding (1.1) is compact if and only if

|β |− |α|+n−m+
1
q

>
1
p
. (3.19)

Proof. Let us first prove a). Let the embedding (1.1) be bounded. Consider the

function f0(t) = t
n−|α|− 1

p+ε
, where ε > 0. Then

Dn
α f0(t) =

n−1

∏
j=0

(
n− j−

n

∑
k= j+1

αk − 1
p

+ ε

)
t
− 1

p+ε
,

and, consequently, f0 ∈Wn
p,α . A direct calculation implies that

Dm
β

f0(t) =
m−1

∏
i=0

(
i

∑
k=0

βk −|α|+n− i− 1
p + ε

)
t |β |−|α |+n−m− 1

p +ε .

Since we have only finite many factors in the product, then there exists ε0 > 0 such
that, for each ε ∈ (0,ε0) :

m−1

∏
i=0

(
i

∑
k=0

βk −|α|+n− i− 1
p

+ ε

)

= 0.

Due to the boundedness of the embedding (1.1) it must hold that Dm
β

f0 ∈ Lq(0,1) , but

this is possible if and only if

|β |− |α|+n−m− 1
p

+ ε+
1
q

> 0 when ε ∈ (0,ε0).

Hence, by letting ε → 0, we have (3.18).
On the contrary, assume that (3.18) holds. In Theorem 3.1 it was shown that the

embedding (1.1) is bounded if (3.6) holds and the integral operators (3.7) are bounded
from Lp(0,1) to Lq(0,1) and this is equivalent to the condition (3.9). By the assump-

tions of Theorem 3.2 it yields that Mi0 <
1
p

and, therefore, from (3.18) it follows
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that (3.1) holds, which, in its turn, implies (3.6), as it was in Theorem 3.1. Since
1
p

> Mi0 � Mj , i0 � j � n−1, then from (3.16) and (3.18) it follows that (3.9) holds.

Thus a) is proved.
Let us now prove b). Assume that the embedding (1.1) is compact. Then (3.18)

holds. We suppose that in (3.18) it will be equality, i.e. that

|β |− |α|+n−m+
1
q

=
1
p
. (3.20)

We consider the following set of functions:

fε (t) = cε t
−α0

1∫
t

K1,n−1(t,x)x−αnχ(0,ε)(x)x
− ε

p dx, 0 < ε < 1,

where cε is a constant and χ(0,ε)(·) denotes the characteristic function of the interval
(0,ε) .

Since Dn
α fε (t) = cε(−1)nχ(0,ε)(t)t

− ε
p , then fε ∈Wn

p,α for all ε ∈ (0,1) .
We now choose the constant cε such that ‖ fε‖Wn

p,α
= ‖Dn

α fε‖p = 1, i.e.

cε = (1− ε)
1
p ε

ε−1
p .

Let us show that the set of functions fε , 0 < ε < 1, converges weakly to zero when
ε → 0. By definition of the space Wn

p,α it follows that it is isometric to the space

Lp(I)×Rn . Therefore, (Wn
p,α)∗ = (Lp(I)×Rn)∗ = Lp′(I)×Rn . Since Di

α fε (1)= 0, i =
0,1, . . . ,n−1, then, according to Hölder’s inequality, for each G ≡ (g,a) ∈ Lp′(I)×Rn

we have that

|〈 fε ,G〉| =
∣∣∣∣∣∣

1∫
0

Dn
α fε (t)g(t)dt

∣∣∣∣∣∣= cε

∣∣∣∣∣∣
ε∫

0

t−
ε
p g(t)dt

∣∣∣∣∣∣
� cε

⎛
⎝ ε∫

0

t−εdt

⎞
⎠

1
p
⎛
⎝ ε∫

0

|g(t)|p′dt

⎞
⎠

1
p′

=

⎛
⎝ ε∫

0

|g(t)|p′dt

⎞
⎠

1
p′

.

It yields that 〈 fε ,G〉 → 0 when ε → 0 for all G ∈
(
Wn

p,α

)∗
. Then, according to the

compactness of embedding (1.1), the set of functions fε , 0 < ε < 1, when ε → 0
converges strongly to zero in Wm

q,β
. By using (2.2), (2.3) and (3.5) we find that

Dm
β

fε (t) =
m

∑
i=i0

cm,it
μm,iDi

α fε (t)

= cε
m

∑
i=i0

(−1)icm,it
μm,i

1∫
t

Ki+1,n−1(t,x)x−αnχ(0,ε)(x)x
− ε

p dx. (3.21)
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Now we show that for i = i0, i0 +1, . . . ,m it holds that

1∫
0

|tμm,i

1∫
t

Ki+1,n−1(t,x)x−αnχ(0,ε)(x)x
− ε

p dx|qdt < ∞, (3.22)

for all ε ∈ (0,1) .
By changing variables, due to Lemma 2.3, we get that

1∫
0

∣∣tμm,i

1∫
t

Ki+1,n−1(t,x)x
−αn− ε

p dx
∣∣qdt

�
1∫

0

∣∣tμm,i−αn− ε
p+1+

n−1
∑

k=i+1
(1−αk)

1
t∫

1

z
Mi−1− ε

p | lnz|li dz
∣∣qdt. (3.23)

Since Mi0 <
1
p

and Mi � Mi0 for i = i0, i0 +1, . . . ,n , then, for all ε ∈ (0,1) , it yields

that Mi −1− ε
p

< 0, i = i0, i0 +1, . . . ,n . Consequently,

1
t∫

1

zMi−1− ε
p | ln z|lidz �

1
t∫

1

| lnz|li dz � 1
t
| ln t|li .

Therefore (3.23) implies that

1∫
0

|tμm,i

1∫
t

Ki+1,n−1(t,x)x
−αn− ε

p dx|qdt

�
1∫

0

t
(μm,i−αn− ε

p +
n−1
∑

k=i+1
(1−αk))q| ln t|qlidt. (3.24)

From (3.20) we obtain that

μm,i −αn− ε
p

+
n−1

∑
k=i+1

(1−αk) > −1
q

for all ε ∈ (0,1) and, consequently, the last integral in (3.24) converges, which means
that (3.22) holds.
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We take the q - norm in both sides of (3.21) and find that

‖Dm
β

fε‖q = cε

⎛
⎝ 1∫

0

|
m

∑
i=i0

(−1)icm,it
μm,i

1∫
t

Ki+1,n−1(t,x)x
−αn− ε

p χ(0,ε)(x)dx|qdt

⎞
⎠

1
q

= cε

⎛
⎝ ε∫

0

|
m

∑
i=i0

(−1)icm,it
μm,i

ε∫
t

Ki+1,n−1(t,x)x
−αn− ε

p dx|qdt

⎞
⎠

1
q

. (3.25)

In (3.25) we first change variables t → εt in the outer integral and next we change
variables x → εx in the inner integral. Then, by taking into account the relation (3.20),
we get that

‖Dm
β

fε‖q = ε |β |−|α|+n−m+ 1
q−

1
p Tε = Tε ,

where

Tε = (1− ε)
1
p

⎛
⎝ 1∫

0

|
m

∑
i=i0

(−1)icm,it
μm,i

1∫
t

Ki+1,n−1(t,x)x
−αn− ε

p dx|qdt

⎞
⎠

1
q

.

Due to (3.22) we have that Tε < ∞ for all ε ∈ (0,1) . Moreover,

T0 = lim
ε→0

Tε

= lim
ε→0

(1− ε)
1
p

⎛
⎝ 1∫

0

|
m

∑
i=i0

(−1)icm,it
μm,i

1∫
t

Ki+1,n−1(t,x)x
−αn− ε

p dx|qdt

⎞
⎠

1
q

=

⎛
⎝ 1∫

0

|
m

∑
i=i0

(−1)icm,it
μm,i

1∫
t

Ki+1,n−1(t,x)x−αndx|qdt

⎞
⎠

1
q

=

⎛
⎝ 1∫

0

|Dm
β
(t−α0K1,n(t,1))|qdt

⎞
⎠

1
q


= 0,

since, according to Lemma 2.4, Dm
β
(t−α0K1,n(t,1)) 
= 0 for all t ∈ (0,1] . Consequently,

‖Dm
β

fε‖q 
→ 0 when ε → 0, that is fε does not converge to zero in Wm
q,β

when ε → 0.

This contradiction shows that in (3.18) it will be strict inequality, i.e. that (3.19) holds.
Conversely, assume that (3.19) holds. Then (3.16) and (3.18) yield that lim

z→0
Ai, j(z)=

0 for all i = i0, i0 +1, . . . ,m , j = i, i+1, . . . ,n−1, i.e. the integral operators (3.7) are
compact from Lp(0,1) to Lq(0,1) and, thus, the embedding (1.1) is compact.

The proof is complete. �
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Now we consider the following embedding

Wn
p,α(I) ↪→Wm

q,α(I), 0 � m < n. (3.26)

In this case i0 = m . In particular, Theorem 3.1 and Theorem 3.2 imply the following:

COROLLARY 3.3. Let I = (0,1) , 0 � m < n and 1 < p � q < ∞ .

a) If Mm � 1
p

, then the following conditions are equivalent:

i) The embedding (3.26) is bounded;
ii) The embedding (3.26) is compact;

iii)
1
q

> Mm −
(

n−m−
n
∑

k=m+1
αk

)
.

b) If Mm < 1
p , then the embedding (3.26) is bounded if and only if

1
q

� 1
p
−(

n−m−
n
∑

k=m+1
αk

)
and the embedding (3.26) is compact if and only if

1
q

>
1
p
−(

n−m− n
∑

k=m+1
αk

)
.

In particular, from Corollary 3.3 it follows that the estimate of the intermediate
derivatives

‖Dm
α f‖p � c

(
‖Dn

α f‖p +
n−1

∑
i=0

|Di
α f (1)|

)
, 0 � m < n,

holds for functions f ∈Wn
p,α if and only if

n−m−
n

∑
k=m+1

αk > 0 when Mm � 1
p
,

and

n−m−
n

∑
k=m+1

αk � 0 when Mm <
1
p
.

On the interval I = (0,1) when αk = 0, k = 0,1, . . . ,n− 1, αn = γ , βi = 0,
i = 0,1, . . . ,m−1, and βm = υ we consider Kudryavtsev spaces Ln

p,γ and Lm
q,υ , respec-

tively. Then Mi0 = max
i0�s�n−1

(n− s− γ) = n− γ − i0 . Theorem 3.1 and Theorem 3.2

yields the following:

COROLLARY 3.4. Let I = (0,1) , 0 � m < n and 1 < p � q < ∞ .

a) If n− i0− γ � 1
p

, then the following conditions are equivalent:

i) The embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is bounded;

ii) The embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is compact;
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iii) |β |−m+ i0 +
1
q

> 0 .

b) If n− i0−γ <
1
p

, then the embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is bounded if and only

if |β | − γ + n−m +
1
q

� 1
p

and the embedding Ln
p,γ(I) ↪→ Wm

q,β
(I) is compact if and

only if |β |− γ+n−m+
1
q

>
1
p

.

COROLLARY 3.5. Let I = (0,1) , 0 � m < n and 1 < p � q < ∞ .

a) If Mi0 � 1
p

, then the following conditions are equivalent:

i) The embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is bounded;

ii) The embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is compact;

iii) υ−|α|+n−m+
1
q

> Mi0 .

b) If Mi0 <
1
p

, then the embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is bounded if and only if

υ−|α|+n−m+
1
q

� 1
p

and the embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is compact if and only

if υ−|α|+n−m+
1
q

>
1
p

.

4. Embedding theorems for the space Wn
p,α(1,+∞)

The connection between the spaces Wn
p,α(0,1) and Wn

p,α(1,∞) can be seen by

making the variable transformation x =
1
t

. In this way every function f ∈Wn
p,α(1,∞)

can be transformed to a function f̃ (x) = f (
1
x
) from the space Wn

p,α̃
(0,1) , where α̃ =

(α̃0, α̃1, . . . , α̃n) , α̃n = −αn + 2− 2
p

, α̃i = −αi + 2, i = 1,2, . . . ,n− 1, α̃0 = −α0 .

Moreover,

‖Dn
α f‖p,(1,+∞) =

⎛
⎝ +∞∫

1

|Dn
α f (t)|pdt

⎞
⎠

1
p

=

⎛
⎝ +∞∫

1

|tαn
d
dt

tαn−1
d
dt

. . . tα1
d
dt

tα0 f (t)|pdt

⎞
⎠

1
p

=

⎛
⎝ 1∫

0

|x−αn
d

x−2dx
x−αn−1

d
x−2dx

. . .x−α1
d

x−2dx
x−α0 f

(
1
x

)
|p dx

x2

⎞
⎠

1
p
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=

⎛
⎝ 1∫

0

|x−αn+2− 2
p

d
dx

x−αn−1+2 d
dx

. . .x−α1+2 d
dx

x−α0 f

(
1
x

)
|pdx

⎞
⎠

1
p

=

⎛
⎝ 1∫

0

|xα̃n
d
dx

xα̃n−1
d
dx

. . .xα̃1
d
dx

xα̃0 f̃ (x)|pdx

⎞
⎠

1
p

= ‖Dn
α̃ f̃ ‖p,(0,1),

and Di
α̃

f (1) = Di
α f (1) , i = 0,1, . . . ,n−1.

Analogously, from the space Wm
q,β

(1,+∞) we can pass to the space Wm

q,β̃
(0,1) .

Then the embedding (1.1) is equivalent to the embedding:

Wn
p,α̃(0,1) ↪→Wm

q,β̃
(0,1),

and all notions and statements for the space Wn
p,α̃

(0,1) can be rewritten for the space

Wn
p,α(1,+∞) .

Therefore,

M̃i = max
i�s�n−1

(n− s−
n

∑
k=s+1

α̃k)

= max
i�s�n−1

(
n− s−

n−1

∑
k=s+1

(−αk +2)+αn−2+
2
p

)

= max
i�s�n−1

(
−(n− s−

n

∑
k=s+1

αk)+
2
p

)
= −Mi +

2
p
,

where Mi = min
i�s�n−1

(n− s−
n
∑

k=s+1
αk) , i = 0,1, . . . ,n−1.

Since |β̃ | =
m−1
∑
i=1

(−βi +2)−β0−βm +2− 2
q

= −|β |+2m− 2
q

and |α̃| = −|α|+

2n− 2
p

, then from (3.1) and (3.18), respectively, we have that

|β̃ |− |α̃|+n−m+
1
q

= |α|− |β |+2m−2n+n−m+
1
q
− 2

q
+

2
p

= |α|− |β |+m−n− 1
q

+
2
p

> M̃i0 (4.1)

and

|β̃ |− |α̃|+n−m+
1
q

= |α|− |β |+m−n− 1
q

+
2
p

� 1
p
. (4.2)

When M̃i0 =−Mi0 +
2
p

� 1
p

, it is equivalent to Mi0 � 1
p

and from (4.1) it follows that

|α|− |β |+m−n− 1
q

+
2
p

> −Mi0 +
2
p
,
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that is

|β |− |α|+n−m+
1
q

< Mi0 when Mi0 � 1
p
.

When M̃i0 <
1
p

, that is Mi0 >
1
p

, from (4.2) we get that

|α|− |β |+m−n− 1
q

+
2
p

� 1
p
,

i.e.

|β |− |α|+n−m+
1
q

� 1
p

when Mi0 >
1
p
.

Then Theorem 3.1 and Theorem 3.2, and Corollaries 3.3–3.5, respectively, imply
the following results:

THEOREM 4.1. Let I = (1,+∞) , 1 < p � q <∞ , 0 � m < n and Mi0 � 1
p

. Then

the following conditions are equivalent:
i) The embedding (1.1) is bounded;
ii) The embedding (1.1) is compact;
iii)

|β |− |α|+n−m+
1
q

< Mi0 .

THEOREM 4.2. Let I = (1,+∞) , 1 < p � q < ∞ , 0 � m < n and Mi0 >
1
p

.

a) The embedding (1.1) is bounded if and only if

|β |− |α|+n−m+
1
q

� 1
p
.

b) The embedding (1.1) is compact if and only if

|β |− |α|+n−m+
1
q

<
1
p
.

COROLLARY 4.3. Let I = (1,+∞) , 0 � m < n and 1 < p � q < ∞ .

a) If Mm � 1
p

, then the following conditions are equivalent:

i) The embedding (3.26) is bounded;
ii) The embedding (3.26) is compact;

iii) Mm −
(

n−m−
n
∑

k=m+1
αk

)
+

1
q

> 0 .

b) If Mm >
1
p

, then the embedding (3.26) is bounded if and only if
1
p

+
1
q
−(

n−m−
n
∑

k=m+1
αk

)
� 0 and the embedding (3.26) is compact if and only if

1
p

+
1
q
−(

n−m−
n
∑

k=m+1
αk

)
> 0 .
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Corollary 4.3 yields that for the functions f ∈Wn
p,α(I) the following estimate of

intermediate derivatives holds

‖Dm
α f‖p � c

(
‖Dn

α f‖p +
n−1

∑
i=0

|Di
α f (1)|

)
, 0 � m < n,

if and only if

n−m−
n

∑
k=m+1

αk < 0 when Mm � 1
p
,

and

n−m−
n

∑
k=m+1

αk � 0 when Mm >
1
p
.

In the space Ln
p,γ(1,+∞) we have that Mi0 = 1− γ . Hence, we have the following

COROLLARY 4.4. Let I = (1,+∞) , 0 � m < n and 1 < p � q < ∞ .

a) If 1− γ � 1
p

, then the following conditions are equivalent:

i) The embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is bounded;

ii) The embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is compact;

iii) |β |+n−m+
1
q
−1 < 0 .

b) If 1− γ >
1
p

, then the embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is bounded if and only if

|β |− γ+n−m+
1
q

� 1
p

and the embedding Ln
p,γ(I) ↪→Wm

q,β
(I) is compact if and only

if |β |− γ+n−m+
1
q

<
1
p

.

COROLLARY 4.5. Let I = (1,+∞) , 0 � m < n and 1 < p � q < ∞ .

a) If Mi0 � 1
p

, then the following conditions are equivalent:

i) The embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is bounded;

ii) The embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is compact;

iii) υ−|α|+n−m+
1
q

< Mi0 .

b) If Mi0 >
1
p

, then the embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is bounded if and only if

υ−|α|+n−m+
1
q

� 1
p

and the embedding Wn
p,α(I) ↪→ Lm

q,υ(I) is compact if and only

if υ−|α|+n−m+
1
q

<
1
p

.
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