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POLARIZATION OF AN INEQUALITY

IVO KLEMEŠ

Abstract. We generalize a previous inequality related to a sharp version of the Littlewood conjec-
ture on the minimal L1 -norm of N -term exponential sums f on the unit circle. The new result
concerns replacing the expression log(1+ t| f |2) with log

(
∑K

k=1 tk | fk|2
)
. The proof occurs on

the level of finite Toeplitz matrices, where it reduces to an inequality between their polarized
determinants (or “mixed discriminants”).
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