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POLARIZATION OF AN INEQUALITY

IVO KLEMEŠ

(Communicated by R. A. Brualdi)

Abstract. We generalize a previous inequality related to a sharp version of the Littlewood conjec-
ture on the minimal L1 -norm of N -term exponential sums f on the unit circle. The new result
concerns replacing the expression log(1+ t| f |2) with log

(
∑K

k=1 tk | fk|2
)
. The proof occurs on

the level of finite Toeplitz matrices, where it reduces to an inequality between their polarized
determinants (or “mixed discriminants”).

1. Introduction

We will prove a simple generalization of the main results of [10]. For each inte-
ger N � 1, let L (N) denote the collection of all complex polynomials f of the form
f (z) = c0 + c1z+ c2z2 + . . .+ cN−1zN−1 where each c j ∈ {1,−1} (“Littlewood poly-

nomials” ; see [3]). Let L̃ (N) denote the collection of all complex polynomials f of
the form f (z) = c0 + c1zm1 + c2zm2 + . . . + cN−1zmN−1 where each coefficient c j is a
complex number with |c j| � 1, and 0 < m1 < m2 < .. . < mN−1 are integers. Clearly

L (N) ⊂ L̃ (N) . Define DN ∈ L (N) by DN(z) = 1+ z+ z2 + . . .+ zN−1 . Define the
1-norm || f ||1 on the unit circle by || f ||1 :=

∫ 2π
0 | f (eiθ )|dθ/2π . The Littlewood con-

jecture concerning L̃ (N) was that there is an absolute constant C > 0 such that for
all N and all f ∈ L̃ (N) , || f ||1 � C||DN ||1 , and was proved in [14] and [16], indepen-
dently. The “sharp” Littlewood conjecture is that one can take C = 1, and this remains
open. The main result of [10, Theorem 1.2] concerns only the smaller family L (N) ,
and states that for all N ∈ N, f ∈ L (N) and t > 0,∫ 2π

0
log
(
1+ t|DN(eiθ )|2

)
dθ �

∫ 2π

0
log
(
1+ t| f (eiθ )|2

)
dθ . (1)

As discussed in [10], this implies the sharp Littlewood conjecture for f ∈ L (N) , as
well as similar sharp p -norm inequalities (see below) for the range 0 < p � 4, by
means of some simple integrations over the t > 0. The result in the present paper still
concerns only the smaller family L (N) , but we generalize (1) in the sense of giving a
“vectorized” or “polarized” version of it, as follows:
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THEOREM 1.1. Let K � 1 and let N1,N2, . . . ,NK � 1 be given integers. Then for
any fk ∈ L (Nk) and any real tk > 0, 1 � k � K , we have the inequality

∫ 2π

0
log

(
K

∑
k=1

tk|DNk (e
iθ )|2

)
dθ �

∫ 2π

0
log

(
K

∑
k=1

tk| fk(eiθ )|2
)

dθ . (2)

The special case K = 2, N1 = 1 is the old result (1). As in [10], the above theorem
immediately implies some p -norm inequalities in Lp(dθ ) in the range 0 < p � 4:∣∣∣∣∣∣

∣∣∣∣∣∣
(

K

∑
k=1

tk|DNk (e
iθ )|2

) 1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
p

�

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K

∑
k=1

tk| fk(eiθ )|2
) 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣
p

, 0 < p � 2, (3)

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K

∑
k=1

tk|DNk (e
iθ )|2

) 1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
p

�

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K

∑
k=1

tk| fk(eiθ )|2
) 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣
p

, 2 � p � 4. (4)

(To deduce this, we replace K by K + 1 in the theorem, put NK+1 = 1, and then use
certain integral identities for the power functions xp in terms of log(1+ tx),0 < t <∞ ,
as in [6, p. 211–212, Lemma 11.1, Ch. 4], [15, Theorem 4], or [10, page 9].)

The proof of Theorem 1.1 is essentially the same as the proof of the special case
(1) in [10], as will be seen in §2. The basic lemma is again the total unimodularity
of (0,1) “interval matrices” M (whose intervals of 1’s occur in their columns, for
instance). The only new step is to invoke this fact for the general case of a “polar-
ized determinant” Dn(Ak1 ,Ak2 , . . . ,Akn) of several n×n Gram matrices Ak = MkMk

∗ ,
instead of only for cases of the type Dn(I, I, . . . , I,A,A, . . . ,A) with only the two ma-
trices I and A = MM∗ , as was implicitly done in [10]. The “polarized determinant”
Dn(A1,A2, . . . ,An) of the n× n matrices Ai can be defined as 1

n! times the coefficient
of x1 . . .xn in det(x1A1 + . . .+ xnAn), where the xi are scalars. It has traditionally been
called the “mixed discriminant” and has been useful in work on the van der Waerden
conjecture [1], [8]. It was also used in [12] in connection with certain matrices M hav-
ing complex entries of modulus � 1, or 0. In this paper we implicitly use the idea of
polarized determinant, but we omit explicit use of the notation Dn(A1,A2, . . . ,An) in
the formal lemmas and proofs.

2. Proof of Theorem 1.1.

LEMMA 2.1. Let K,n ∈ N , and for k = 1, . . . ,K let Mk be any (rectangular)
n×mk matrices over C . If xk are scalars and Ak := Mk(Mk

∗) , then

det(x1A1 + . . .+ xKAK) = ∑
n1+...+nK=n

γ(n1, . . . ,nK) xn1
1 . . .xnK

K , (5)

where the coefficients γ(n1, . . . ,nK) are given by

γ(n1, . . . ,nK) = ∑
(S1,...,SK)

∣∣det
(

S1
∣∣ . . .

∣∣ SK
) ∣∣2 (6)
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where each Sk denotes an n× nk matrix obtained by choosing some nk columns of
Mk (that is, from nk distinct column indices) ,

(
S1
∣∣ . . .

∣∣ SK
)

denotes the n× n
matrix consisting of the K blocks S1, . . . ,SK , and the sum is over all ordered K -tuples
(S1, . . . ,SK) of such choices (an empty sum being zero by convention).

Proof. This is a known result [1]. To prove it, consider the two “block” matrices B
and C defined by B :=

(
x1M1

∣∣ . . .
∣∣ xKMK

)
and C :=

(
M1
∣∣ . . .

∣∣MK
)

Clearly, BC∗ =
x1A1 + . . .+ xKAK . Now apply the Binet-Cauchy theorem to expand det(BC∗) . �

REMARK 1. In the notation of polarized determinants Dn , the above coefficients
are given by

γ(n1, . . . ,nK) =
n!

n1! . . .nK!
Dn(A

〈n1〉
1 , . . . ,A〈nK〉

K ), (7)

where A〈n1〉
1 means A1, . . . ,A1 repeated n1 times, etc. [1].

We review the following facts already used in [10]:

LEMMA 2.2. [4] Let S be a square matrix with entries in {0,1} such that in
each column the 1 ’s occur in consecutive row positions (i.e. in an “interval”). Then:
(i) detS ∈ {−1,0,1} . (ii) If S′ is a matrix with integer entries satisfying S′ = S mod 2,
then |detS′| � |detS| .

Proof. For (i) see [4, p. 853] or [10, Lemma 2.3]. (ii) follows from (i) by noting
that detS′ = detS mod 2. �

COROLLARY 2.3. Let K,n ∈ N , and for k = 1, . . . ,K let Mk be n×mk matrices
with entries in {0,1} such that in each column the 1 ’s occur in consecutive row posi-
tions. Let M′

k be n×mk matrices with integer entries such that M′
k = Mk mod 2 for

each k . If tk � 0 are scalars and Ak := Mk(Mk
∗), A′

k := M′
k(M

′
k
∗) , then

det(t1A1 + . . .+ tKAK) � det(t1A′
1 + . . .+ tKA′

K) . (8)

Proof. Expand both sides of (8) using Lemma 2.1. Then we have∣∣det
(

S1
∣∣ . . .

∣∣ SK
) ∣∣2 �

∣∣det
(

S′1
∣∣ . . .

∣∣ S′K ) ∣∣2 (9)

for each of the corresponding terms in (6), by Lemma 2.2 applied to the matrices S :=(
S1
∣∣ . . .

∣∣ SK
)

and S′ :=
(

S′1
∣∣ . . .

∣∣ S′K ) (which correspond to the same K -tuple of
choices of column indices). �

REMARK 2. For an n×n Hermitian matrix A � 0 with eigenvalues λi , let ||A||p
denote the lp -norm (λ p

1 + . . .+λ p
n )1/p . Corollary 2.3 implies lp -norm inequalities for

the two matrices on either side of (8), in the same manner as discussed after Theorem
1.1 (by replacing K with K + 1 and taking MK+1 = M′

K+1 = I , the n× n identity
matrix): ∣∣∣∣t1A1 + . . .+ tKAK

∣∣∣∣
p �

∣∣∣∣t1A′
1 + . . .+ tKA′

K

∣∣∣∣
p , 0 < p � 1, (10)
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and, if each M′
k has its entries specifically in {−1,0,1} , then also∣∣∣∣t1A1 + . . .+ tKAK

∣∣∣∣
p �

∣∣∣∣t1A′
1 + . . .+ tKA′

K

∣∣∣∣
p , 1 � p � 2. (11)

The extra assumption is needed for (11) since that part of the implication relies upon
the l1 -norms of both sides being the same.

Proof of Theorem 1.1. The proof is the same as the one in [10, Theorem 1.2],
except that here we use Corollary 2.3 in one of the steps. We will repeat the details for
completeness: Let ψ(θ )=∑K

k=1 tk| fk(eiθ )|2 , and for each n∈N let T (n,ψ) be the n×
n Toeplitz matrix T (n,ψ)i j = ψ̂( j− i), 1 � i, j � n , where ψ̂(m) is the usual Fourier
coefficient, ψ̂(m) =

∫ 2π
0 ψ(θ )e−imθdθ/2π . By a theorem of Szegö [7, §5.1, pp. 64-65],

(detT (n,ψ))1/n → exp(
∫ 2π
0 logψ(θ )dθ/2π) as n → ∞ . Fix n . It is easy to check that

T (n,ψ) = t1A′
1+ . . .+tKA′

K where each A′
k =M′

k(M
′
k
∗) with M′

k being the n×(n+Nk−
1) Toeplitz matrix (M′

k)i j = f̂k( j− i) , where f̂k(m) =
∫ 2π
0 fk(eiθ )e−imθdθ/2π , m ∈ Z ;

the coefficient of zm in the polynomial fk(z) . For the special case when all fk = DNk ,
denote the matrices M′

k by Mk , and denote ψ by ψ0 . It is clear that Mk has entries in
{0,1} , M′

k has entries in {−1,0,1} , M′
k = Mk mod 2, and that in each column of Mk

the 1 entries occur in an interval. Hence detT (n,ψ0) � detT (n,ψ) , by Corollary 2.3.
Taking n th roots and letting n → ∞ on both sides of the latter inequality completes the
proof, by the above theorem of Szegö. �

3. Remarks and Questions

3.1. The proof of (8) in Corollary 2.3 actually proceeded by establishing the for-
mally stronger coefficient-wise inequality

Dn(A1,A2, . . . ,An) � Dn(A′
1,A

′
2, . . . ,A

′
n). (12)

(This may be called a “polarization” of its special case detA1 � detA′
1 , whence the

title of this paper.) We want to note now that, as in (2) of Theorem 1.1, the stronger
inequality (12) may also be written in terms of integrals over circles, that is, in the case
of Toeplitz matrices Ak and A′

k generated as before by the Mk of some DNk(e
iθ ) and

the M′
k of the fk(eiθ ) respectively, for k = 1, . . .n . In such a case one can invoke the

polarized version of the identity of Heine and Szegö [2, Theorem 1], by which the right
hand side of (12) becomes the multiple integral

1
(2π)n

∫ 2π

0
. . .

∫ 2π

0

(
n

∏
k=1

| fk(eiθk )|2
)

Δ(θ1, . . . ,θn)dθ1 . . .dθn (13)

where Δ(θ1, . . . ,θn) = ∏
1�p<q�n

|eiθp −eiθq |2 . (The left hand side of (12) is of course the

same integral with the fk replaced by the DNk .)
We note that a similar kind of polarization occurred in the original motivating

work of Hardy, Littlewood, and Gabriel ([9], [5]) on Lp -norm results concerning L̃ .
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There the authors proved a rearrangement theorem for all polynomials, with arbitrary
coefficients, which can be specialized to our context as the following result: For even
integers p = 2s � 2 one has || f (eiθ )||p � ||DN(eiθ )||p , for all f ∈ L̃ (N) having com-
plex coefficients of modulus 1 or 0. Their proof proceeded via a stronger, polarized
version, essentially that∫ 2π

0
| f1(eiθ )|2| f2(eiθ )|2 . . . | fs(eiθ )|2dθ �

∫ 2π

0
|DN1(e

iθ )|2|DN2(e
iθ )|2 . . . |DNs(e

iθ )|2dθ
(14)

for any Nk and fk ∈ L̃ (Nk) with coefficients of modulus 1 or 0. By a stretch of the
imagination, one could view these integrals as being similar to those in (13) above.
In fact, one simply replaces Δ by a singular measure concentrated on the “diagonal”
θ1 = . . . = θn of the n -torus. It would thus be interesting to investigate what other
“weights” in place of Δ would yield true inequalities (in one direction or the other).

3.2. To what extent can the hypotheses that fk ∈L (Nk) be relaxed, in the inequal-
ities proved in this paper? For example, can we allow fk ∈ L̃ (Nk) ? The strong term-
wise inequality (9) is trivially false in general for fk ∈ L̃ (Nk) , even when the polynomi-
als fk have coefficients in {0,1} (take K = n = 1,N1 = 2 and f1(z) = 1+z2 ). Going up
one level of summation, does the inequality (12) hold whenever fk ∈ L̃ (Nk) ? The an-
swer is again no; numerical work by the author has uncovered counterexamples to (12)
with n = 7, N1 = 2, f1(z) = 1+ cz, N2 = 6 = N3 = . . . = N7, f2(z) = 1+∑5

j=1 c jz j =
f3(z) = . . . = f7(z) , with some complex coefficients satisfying |c j| = 1 = |c| . What

if only ±1 coefficients (and gaps) are allowed in the definition of L̃ (N) , that is
fk(z) = ∑Nk

j=1±zn j ?

3.3. We finally mention questions on the subject of sharp Lp inequalities for real

p : It seems natural to ask whether (4) holds for all p � 2, and for all fk ∈ L̃ (Nk)
with coefficients of modulus 1 or 0, or at least for all fk ∈ L (Nk) , and whether matrix
versions hold, such as (11) for all p � 1. In connection with the integer p case, a
natural matrix version of (14) would be to ask whether

trace(A′
1A

′
2 . . .A′

s) � trace(A1A2 . . .As) (15)

for the matrices discussed above in 3.1, when fk ∈ L̃ (Nk) have coefficients of modulus
1 or 0. By taking absolute values of everything inside the trace, one sees that (15) holds
trivially for fk ∈L (Nk) , and one could envision adapting the rearrangement arguments
of [5] to prove it for L̃ . However, this would not imply anything for non-integer p ’s.
Instead, to prove (11) for non-integers p > 2, one may need to study some further
homogeneous polynomials in the matrix entries, generalizing elementary symmetric
polynomials (such as in [11] and [13]).
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