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ON QUERMASSINTEGRAL AND WILLS CONJECTURE

FANGWEI CHEN

(Communicated by Y. Burago)

Abstract. In this paper we investigate the relative quermassintegrals of convex bodies. We obtain
an lower bound of the relative quermassintegral Wi(K;E) . Specially, we give another stronger
Wills inequality.

1. Introduction

A geometric inequality describes the relations between the invariants of geometric
objects. Perhaps the best and the most remarkable one is the classical isoperimetric
inequality that relates volume to area of a plane domain: Among domains with fixed
areas, the disc has the shortest circumlength. That is, the domain D with area A and
perimeter L satisfies

L2 −4πA � 0, (1.1)

with equality if and only if D is a disc.
A strengthening inequality of (1.1) was given by T. Bonnesen, who demonstrated

in 1929, that is if D has circumradius R and inradius r , then

L2−4πA � π2(R− r)2, (1.2)

with equality when and only when D is a disc. Inequality (1.2) can be derived from the
inequality

0 � A−λL+λ 2π , r � λ � R. (1.3)

Inequality (1.3) with λ = r is known as the Bonnesen’s inradius inequality.
The inequality (1.3) have been extended by J. Zhou and F. Chen (see [10]) onto

a plane of constant curvature (the hyperbolic plane and the projective plane). They
obtain the Bonnesen-type inequalities for the domains in a plane of constant curvature.
On higher dimensional space, J. M. Wills [9] conjectured in 1970 that

0 � V − rS+(n−1)rnωn, (1.4)
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where V and S denote the n -dimensional volume of a convex body K and the n -
dimensional surface area of K in Rn , respectively, r denotes the inradius of K , and ωn

is the volume of the n -dimensional unit ball. Note that,

ωn =
π

n
2

Γ(1+ n
2 )

,

where Γ(·) is the gamma function. Inequality (1.4) would be an extension of Bon-
nesen’s inradius inequality to higher dimensions.

The inequaity (1.4) was proved simultaneously in 1973 by J. Bokowski [1] and V.
I. Diskant [4]. In 1979 R. Osserman [8] showed that

0 � V − rS+(n−1)rnωn

(
S

nrn−1ωn

) n−2
n−1

. (1.5)

In 1988, J. S. Yanger [5] derived an stronger result,

0 � V − rS+(n−1)r2W2 +(n−1)(n−2)
∫ r

0
(r− s)V (K−s, . . . ,K−s,K−r,B,B)ds,

where W2 is the second quermassintegral of K , K−s and K−r are the inner parallel
bodies of K , and V (K−s, . . . ,K−s,K−r,B,B) is a mixed volume.

In 1997 N. S. Brannen [3] derived another inequality

0 � V − rS+n
n−2

∑
i=0

∫ r

0
tV(K−t , . . . ,K−t︸ ︷︷ ︸

i

K, . . . ,K,B,B)dt,

and the strengthening of the Wills conjecture is

0 � V − rS+

[
n

n−2

∑
i=0

i
i+1

(
n−1

i

)
ri+1Wi+1(K−r)

]
+(n−1)rnωn, (1.6)

where Wi+1 is the (i+1)-st quermassintegral.
In this paper we give another lower bound of the relative quermassintegral Wi(K;E) ,

which has a corollary strengthening the Wills conjecture. We obtain

Wi(K;E) �
n−i

∑
j=0

(
n− i

j

)
λ jWi+ j(K−λ ;E). (1.7)

A strengthening of the Wills conjecture is the following

0 � V (K)− rnW1(K;E)+
n−1

∑
j=1

(
n−1

j

)∫ r

0
λ jWj+1(K−λ ;E)dλ . (1.8)
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2. Quermassintegral

Let K and L be convex bodies in n -dimensional Euclidean space En . Their
Minkowski sum is defined by K + L := {k + l : k ∈ K, l ∈ L} , if λ is a scalar then
λK := {λk : k ∈ K} . Let K ∈ Rn be a Minkowski linear combination of m convex
bodies, i.e.,

K = λ1K1 +λ2K2 + . . .+λmKm, λ1, . . . ,λm � 0,

then the volume of K can be expressed as the n-th degree homogeneous polynomial in
the λi as follows:

V (K) = ∑
1�p1,...,pn�m

V (Kp1 ,Kp2 , . . . ,Kpn)λp1λp2 . . .λpn .

Here the summation is extended over all pi independently as i varies from 1 to n
(see [7]). The coefficient V (Kp1 ,Kp2 , . . . ,Kpn) is called mixed volume. Mixed volume
has several properties, we present here, which we will use it later (see [1]).

LEMMA 1. Let V (K1,K2, . . . ,Kn) denote the mixed volume, then

• V (K1,K2, . . . ,Kn) is symmetric in its arguments.

• V (K1,K2, . . . ,Kn) is a Minkowski multi-linear functional.

• V (K1,K2, . . . ,Kn) is monotone, such that if K1 ⊂ K′
1 , then

V (K1,K2, . . . ,Kn) � V (K′
1,K2, . . . ,Kn).

The mixed volume V (K, . . . ,K︸ ︷︷ ︸
n−i

B, . . . ,B︸ ︷︷ ︸
i

) with i copies of the unit ball B in Rn will

be denoted by Wi(K) and is called the i-th quermassintegral of K . It can be shown that
W0(K) = V (K) , nW1(K) = S(K) and Wn(K) = ωn .

The generally relative quermassintegrals of convex bodies are defined by

Wi(K;E) = V (K, . . . ,K,︸ ︷︷ ︸
n−i

E, . . . ,E︸ ︷︷ ︸
i

). (2.1)

The i-th relative quermassintegral of sK + tL (s, t � 0) satisfies the following (see [7]
for more details).

PROPOSITION 1. Let K and L be convex bodies in Rn , E be a fixed convex body
in Rn , s, t � 0 and Wi( · ;E) be the i-th relative quermassintegral, then

Wi(sK + tL;E) =
n−i

∑
j=0

(
n− i

j

)
sn−i− jt jV (K, . . . ,K,︸ ︷︷ ︸

n−i− j

L, . . . ,L,︸ ︷︷ ︸
j

E, . . . ,E︸ ︷︷ ︸
i

). (2.2)
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This formula is an extension of the Steiner’s formula in three dimensional space.
The relative inner parallel body of K with respect to the fixed convex body E at a
distance λ (0 � λ � r(K; E)) is defined by

K−λ (E) = {x : x+λE ⊆ K},
we simply it as K−λ . Where the relative inradius r(K; E) is defined by

r(K; E) = sup{r : some translate o f rE ⊆ K}.

LEMMA 2. Let E be a fixed convex body and K be any convex body in Rn , r
denotes the relative inradius of K , for each λ (0 � λ � r) , then

K−λ +λE ⊆ K. (2.3)

Now we have the following theorem.

THEOREM 1. Let E be a fixed convex body, K be any convex body in Rn with
i-th relative quermassintegral Wi(K;E) , and relative inradius r . For all 0 � λ � r , we
have

Wi(K;E) �
n−i

∑
j=0

(
n− i

j

)
λ jWi+ j(K−λ ;E). (2.4)

Proof. By formula (2.3) and combining with the third property of Lemma 1, we
have

Wi(K;E) = V (K, . . . ,K,︸ ︷︷ ︸
n−i

E, . . . ,E︸ ︷︷ ︸
i

)

� V (K−λ +λE, . . . ,K−λ +λE,︸ ︷︷ ︸
n−i

E, . . . ,E︸ ︷︷ ︸
i

) = Wi(K−λ +λE;E).

By formula (2.2), it says

Wi(K;E) � Wi(K−λ +λE;E) =
n−i

∑
j=0

(
n− i

j

)
λ jWi+ j(K−λ ;E). (2.5)

We complete the proof of (2.4). �
Note that nW1(Kλ ;E) = V ′(Kλ ) , where V ′(Kλ ) denotes the derivative of V (Kλ ) ,

then we obtain the following two corollaries by replacing with the i = 0 or i = 1.

COROLLARY 1. When i = 0 , Theorem 1 becomes

V (K−λ ) � V (K)−λV ′(K−λ )−
n

∑
j=2

(
n
j

)
λ jWj(K−λ ;E), (2.6)

which gives us an upper bound for the volume of K−λ .
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COROLLARY 2. When i = 1 in Theorem 1, we obtain

V (K−λ ) � V (K)−nλW1(K;E)+n
n−1

∑
j=1

(
n−1

j

)∫ λ

0
t jWj+1(K−t ;E)dt. (2.7)

Proof. When i = 1, Theorem 1 becomes

W1(K;E) �
n−1

∑
j=0

(
n−1

j

)
λ jWj+1(K−λ ;E). (2.8)

Replace with W1(K−λ ;E) by 1
nV

′(K−λ ) , it says

V ′(K−λ ) � nW1(K;E)−n
n−1

∑
j=1

(
n−1

j

)
λ jWj+1(K−λ ;E), (2.9)

take t instead of λ in (2.9), and integrate both sides from 0 to λ with respect to t , we
obtain

V (K)−V(K−λ ) � nλW1(K;E)−n
n−1

∑
j=1

(
n−1

j

)∫ λ

0
t jWj+1(K−t ;E)dt.

So we obtain

V (K−λ ) � V (K)−nλW1(K;E)+n
n−1

∑
j=1

(
n−1

j

)∫ λ

0
t jWj+1(K−t ;E)dt.(2.10)

We complete the proof of Corollary 2. �
By Corollary 1 and Corollary 2 we obtain

COROLLARY 3. Let K be a convex body in En , K−λ be the relative inner parallel
body of K (0 � λ � r ), Wi(K;E) denotes the i-th relative quermassintegral, then we
have

W1(K;E)−W1(K−λ ;E) � 1
λ

n−1

∑
j=1

(
n−1

j

)∫ λ

0
t jWj+1(K−t ;E)dt

+
1
n

n

∑
j=2

(
n
j

)
λ j−1Wj+1(K−λ ;E).

The following lemma is useful in the next computation.

LEMMA 3. Let n, λ and r be real numbers, then the following equality holds

n

(
n−1

i

)∫ r

0
tn−1−i(r− t)idt = rn. (2.11)
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Let E = B (a unit ball in Rn ) and 0 � λ � r , since the mixed volume are mono-
tone, and (r−λ )B ⊆ K−λ , we obtain

Wi(K−λ ) = V (K−λ , . . . ,K−λ ,B, . . . ,B︸ ︷︷ ︸
i

)

� V ((r−λ )B, . . . ,(r−λ )B,B, . . . ,B︸ ︷︷ ︸
i

) = (r−λ )n−iωn.
(2.12)

So we can say that the (2.7) is a strengthening of the Wills conjecture.
In fact if we let E = B and λ = r in (2.7), then

0 � V (K)− rS(K)+n
n−1

∑
j=1

(
n−1

j

)∫ r

0
t jWj+1(K−t )dt

� V (K)− rS(K)+n
n−1

∑
j=1

(
n−1

j

)∫ r

0
t jWj+1((r− t)B)dt

= V (K)− rS(K)+n
n−1

∑
j=1

(
n−1

j

)∫ r

0
t j(r− t)n−1− jωndt (2.13)

= V (K)− rS(K)+ (n−1)rnωn.

So we proved the following

THEOREM 2. Let K be a convex body in Rn , r = r(K;E) be the relative inradius
of K , and Wi(K;E) denote the i-th relative quermassintegral of K . Then the inequality
(2.7) is stronger than the Wills inequality.

REMARK 1. When n = 2 , (2.13) becomes the Bonnesen inequality on plane.
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Elem. Math., 28 (1973), 43–44.

[2] T. BONNESEN, Les problèmes des Isopérimètres et des Isépiphanes, Gauthier-Villars, Paris, 1929.
[3] N. S. BRANNEN, The Wills conjecture, Trans. Amer. Math. Soc., 349 (1997), 3977–3987.
[4] V. I. DISKANT, A generalization of Bonnesen’s inequalities (Russian), Dokl. Akad. Nauk SSSR, 213

(1973), 519–521.
[5] J. R. SANGWINE-YANGER,Bonesen-style inequalities for Minkowski relative geometry, Trans. Amer.

Math. Soc., 307 (1988), 373–382.
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