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A POWER MEAN INEQUALITY FOR THE GRÖTZSCH RING FUNCTION
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Abstract. The Grötzsch ring function has numerous applications in geometric function theory
and its properties have been investigated by many authors. Here we extend an earlier functional
inequality involving the Grötzsch ring function and the geometric mean, due to Anderson, Va-
manamurthy and Vuorinen, to the case of power mean.

1. Introduction

Throughout this paper we let r′ =
√

1− r2 for 0 < r < 1. The complete elliptic
integrals of the first and second kinds [8, 10] are defined by⎧⎪⎨

⎪⎩
K (r) =

∫ π/2
0

dθ√
1−r2 sin2 θ

,

K ′(r) = K (r′),
K (0) = π

2 , K (1) = ∞,

and ⎧⎨
⎩

E (r) =
∫ π/2
0

√
1− r2 sin2 θdθ ,

E ′(r) = E (r′),
E (0) = π

2 , E (1) = 1.

In the sequel, we will use the symbols K and E for K (r) and E (r) , respectively.
For r ∈ (0,1) , the Grötzsch ring function [13] is defined as

μ(r) =
π
2

K ′

K
.

The Grötzsch ring function μ(r) is a strictly decreasing homeomorphismof the interval
(0,1) onto (0,∞) , with limit values μ(0+) =∞ , μ(1−) = 0. This function represents
the modulus of the plane Grötzsch ring B2 \ [0,r] , where B2 is the open unit disk
in the complex plane, and it occurs frequently in the study of conformal invariants,
quasiconformal mapings and Ramanujan’s classical modular equations [1, 3, 6, 12, 13,
14, 16, 18, 19, 17].
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Recently, many interesting inequalities and elementary estimates of μ(r) were
obtained, see [3, 4, 5, 6, 13, 14, 15, 17]. By [6, Theorem 5.12 and p. 369], it is easy to
see that the function μ(r) satisfies the following geometric mean inequality:√

μ(s)μ(t) � μ(
√

st), (1)

here s, t ∈ (0,1) , equality holds if and only if s = t .
The geometric mean belongs to the family of power means, which is defined for

x,y > 0 and real parameters λ by

Mλ (x,y) =

(
xλ + yλ

2

)1/λ

for λ �= 0, M0(x,y) =
√

xy.

Many interesting properties of power means are given in [9] and [11].
Using this notation, inequality (1) can be written as

M0(μ(s),μ(t)) � μ(M0(s,t)). (2)

It is natural to look for the extension of (2) to other power means. More precisely, we
ask: for which real number λ is the inequality Mλ (μ(s),μ(t)) � μ(Mλ (s,t)) valid for
all 0 < s, t < 1? It is the aim of this paper to answer this question.

Our main result is the following theorem:

THEOREM. Let λ be a real number. The inequality

Mλ (μ(x),μ(y)) � μ(Mλ (x,y)) (3)

holds for all x,y ∈ (0,1) if and only if λ � 0 . For λ � 0 , the sign of equality is valid
in (3) if and only if x = y. There is no value of λ for which the reverse inequality holds
for all x,y ∈ (0,1) .

Note that inequality (3) applies e.g. when λ = −1 and M−1(x,y) equals the har-
monic mean H(x,y)= 2xy/(x+y) . Another generalization of (1) can be easily obtained
from a result of R. Balasubramanian, S. Ponnusamy, M. Vuorinen in [7, Theorem 1.5].

2. Lemmas

In order to prove our main result we need some lemmas, which we present in this
section. We establish some properties of certain functions, which are defined in terms
of the complete elliptic integrals of the first and second kinds, K and E , respectively.

For 0 < r < 1, now we list some derivative formulas(cf. [6, Appendix E, pp.
474–475]:

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,

and
d
dr

μ(r) = − π2

4rr′2K 2 .

The following Lemma 1 is from [6, Theorem 3.21(1),(7), Exercise 3.43(32); 2,
Lemma 5.2(2)].
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LEMMA 1. (1) The function f1(r) = (E − r′2K )/r2 is strictly increasing and
convex from (0,1) onto (π/4,1) .

(2) The function f2(r) = r′2K is strictly decreasing from (0,1) onto (0,π/2) .
(3) The function f3(r) = (K −E )/r2K is increasing from (0,1) onto (1/2,1) .
(4)The function f4(r) = r′2K /E is strictly decreasing from (0,1) onto (0,1) .

LEMMA 2. For 0 < r < 1 , let g(r) = π+4K ′(K −E )
π+2r′2K K ′ . Then g(r) is strictly increas-

ing from (0,1) onto (0,∞) .

Proof. By differentiation,

(π +2r′2K K ′)2g′(r) = 4

[
(K −E )

E ′ − r2K ′

r′r2 (− r
r′

)+K ′ rE
r′2

]
(π +2r′2K K ′)

−[π +4K ′(K −E )]
π−4E ′K

r

=
−4(K E ′ − r2K K ′ −E E ′)

rr′2
(π +2r′2K K ′)

+
4(K E ′ −K ′E +K K ′)2

r

=
4(π+2r′2K K ′)

rr′2
E

(
E ′− r′2K

E

E ′−r2K ′

r′2

)
+

(π−4K E ′)2

r
,

for the third equality, the Legendre identity [2, 6]:

K E ′ +K ′E −K K ′ = π/2

is used. Then g′(r) is positive by lemma 1, and g(0+) = lim
r→0+

π+4r2K ′K K −E
r2K

π+2r′2K K ′ = 0,

g(1−) = ∞ . Hence g(r) is strictly increasing from (0,1) onto (0,∞) . �

LEMMA 3. Let λ be a real number. The function h(r) = μ(r)λ−1

rλ r′2K 2 is strictly in-
creasing on (0,1) if and only if λ � 0 .

Proof. We rewrite h(r) =
(
μ(r)

r

)λ
1

r′2K 2μ(r) . By logarithmic differentiation,

h′(r)
h(r)

= λ
[

1
μ(r)

(
− π2

4rr′2K 2

)
− 1

r

]

−2
1
r′
(
− r

r′
)
−2

1
K

E − r′2K
rr′2

− 1
μ(r)

(
− π2

4rr′2K 2

)

=
π +2r′2K K ′

2rr′2K K ′

(
π +4K ′(K −E )
π +2r′2K K ′ −λ

)
,

which is positive for all r ∈ (0,1) if and only if λ � 0 by Lemma 2. �
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3. Proof of the main result

We are now in a position to prove the main result.

Proof of theorem. We only need prove the inequality (3) for λ �= 0. We may
suppose that x � y . Define

F(x,y) = μ
(
Mλ (x,y)

)λ − μ(x)λ + μ(y)λ

2
, λ �= 0.

Let t = Mλ (x,y) , then ∂ t
∂x = 1

2 ( x
t )
λ−1 . If x < y , we have that t > x . By differentiation,

we have

∂F
∂x

=
λ
2
μ(t)λ−1

(
− π2

4tt ′2K (t)2

)(x
t

)λ−1− λ
2
μ(x)λ−1

(
− π2

4xx′2K (x)2

)

= −π2λxλ−1

8

(
μ(t)λ−1

tλ t ′2K (t)2
− μ(x)λ−1

xλ x′2K (x)2

)

which is positive if and only if λ < 0 by Lemma 3. Hence F(x,y) is strictly increasing
with respect to x and F(x,y) � F(y,y) = 0. We now obtain the inequality

μ
(
Mλ (x,y)

)λ
� μ(x)λ + μ(y)λ

2
,

that is μ
(
Mλ (x,y)

)
� Mλ (μ(x),μ(y)) , with the equality if and only if x = y . �
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