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WEAK TYPE INEQUALITY FOR THE

ONE–DIMENSIONAL DYADIC DERIVATIVE

USHANGI GOGINAVA

(Communicated by J. Pečarić)

Abstract. It is shown that the maximal operator of the one-dimensional dyadic derivative of the
dyadic integral is bounded from the dyadic Hardy space H1/2 to the space weak-L1/2 .

1. Martingale Hardy Spaces

Let P denote the set of positive integers, N := P∪{0}. Denote Z2 the discrete
cyclic group of order 2, that is Z2 = {0,1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z2 is given such that the
measure of a singleton is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z2. The elements of G are of the form x =
(x0,x1, ...,xk, ...) with xk ∈ {0,1}(k ∈ N) . The group operation on G is the coordinate-
wise addition, the measure (denote by μ ) and the topology are the product measure
and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

I0 (x) : = G, In (x) := In (x0, ...,xn−1)
: = {y ∈ G : y = (x0, ...,xn−1,yn,yn+1, ...)} ,

(x ∈ G,n ∈ N) .

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the null
element of G, In := In (0) (n ∈ N) . Set en := (0, ...,0,1,0, ...) ∈ G the n th coordinate
of which is 1 and the rest are zeros (n ∈ N) . Let In := G\In.

The norm (or quasinorm) of the space Lp (G) is defined by

‖ f‖p :=

⎛⎝∫
G

| f (x)|p dμ (x)

⎞⎠1/p

(0 < p < +∞) .

The space weak-Lp (G) consists of all measurable functions f for which

‖ f‖weak−Lp(G) := sup
λ>0

λμ (| f | > λ )1/p < +∞.
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The σ -algebra generated by the Ik dyadic intervale of measure 2−k will be de-
noted by Fk (k ∈ N) .

Denote by f =
(

f (n),n ∈ N
)

martingale with respect to (Fn,n ∈ N) (for details

see, e. g. [8, 10]). The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In case f ∈ L1 (G) , the maximal function can also be given by

f ∗ (x) = sup
n∈N

1
μ (In(x))

∣∣∣∣∣∣∣
∫

In(x)

f (u)dμ (u)

∣∣∣∣∣∣∣ , x ∈ G.

For 0 < p < ∞ the Hardy martingale space Hp(G) consists all martingales for
which

‖ f‖Hp
:= ‖ f ∗‖p <∞.

If f ∈ L1 (G) then it is easy to show that the sequence (S2n f : n ∈ N) is a martin-
gale. If f is a martingale, that is f = ( f (0), f (1), ...) then the Walsh-Fourier coefficients
must be defined in a little bit different way:

f̂ (i) = lim
k→∞

∫
G

f (k) (x)wi (x)dμ (x) .

The Walsh-Fourier coefficients of f ∈ L1 (G) are the same as the ones of the mar-
tingale (S2n f : n ∈ N) obtained from f .

A bounded measurable function a is a p-atom, if there exists a dyadic interval I,
such that

a)
∫
I
adμ = 0;

b) ‖a‖∞ � μ(I)−1/p ;
c) supp (a) ⊂ I .
Following the works of Weisz [10] the base of the proof of Theorem 1 is the

following theorem

THEOREM A. (Weisz) Suppose that an operator V is sublinear and, for some
0 < p < 1

sup
ρ>0

ρ pμ
{
x ∈ I : |Va(x)| > ρ

}
� cp < ∞, (1)

for every p−atom a , where I denotes the support of the atom. If V is bounded from
Lp1 to Lp1 for a fixed 1 < p1 � ∞, then

‖V f‖weak-Lp(G) � cp ‖ f‖Hp(G) .



WEAK TYPE INEQUALITY 841

2. The one-dimensional dyadic derivative

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk

the k -th Rademacher function. If n∈N , then n =
∞
∑
i=0

ni2i, where ni ∈ {0,1} (i ∈ N) , i.

e. n is expressed in the number system of base 2. Denote |n| := max{ j ∈ N : n j �= 0} ,
that is, 2|n| � n < 2|n|+1.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

w0 (x) = 1,wn (x) :=
∞

∏
k=0

(rk (x))nk = r|n| (x)(−1)

|n|−1
∑

k=0
nkxk

(x ∈ G, n ∈ P) .

The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1

∑
k=0

wk (x) .

Recall that

D2n (x) =
{

2n, if x ∈ In,
0, if x ∈ In.

(2)

The partial sums of the Walsh-Fourier series are defined as follows:

SM( f ;x) :=
M−1

∑
i=0

f̂ (i)wi (x) .

Butzer and Wagner [1] introduced the concept of the dyadic derivative as follows.
For each function f defined on G set

(dn f ) (x) :=
n−1

∑
j=0

2 j−1 ( f (x)− f (x+ e j)) , x ∈ G.

Then f is said to be differentiable at x∈G if (dn f ) (x) converges as n→∞. It was
verified by Butzer and Wagner [1] that every Walsh function is dyadically differentiable
and

lim
n→∞

(dnwj)(x) = jw j (x) , (3)

moreover it is known that (see e. g. Schipp, Wade, Simon, Pal [5])

(dnwj) (x) =

(
n−1

∑
k=0

jk2
k

)
wj (x) (n ∈ P) . (4)

It is easy to show that for large n from (3) we obtain (2).
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Let W be the function whose Walsh-Fourier coefficients satisfy

Ŵ ( j) :=
∫
G

W (x)wj (x)dμ(x) =
{

1 , j = 0
1/ j, j ∈ P

. (5)

The dyadic integral of f ∈ L1 (G) is introduced by

I f (x) := ( f ∗W )(x) :=
∫
G

f (t)W (x+ t)dt. (6)

For the function f we consider the maximal operator

I∗ f := sup
n∈P

|dn (I f ) |.

The boundedness of I∗ from Lp (G) to Lp (G) (1 < p � ∞) and the weak type
(L1 (G) ,L1 (G)) inequality

sup
α>0

αμ (I∗ f > α) � c‖ f‖1 ( f ∈ L1(G))

are due to Schipp [6]. The dyadic analogue of the differentiation follows from the weak
type inequality:

lim
n→∞

dn (I f ) = f a.e.

if f ∈ L1 (G) is of mean zero (see Schipp[6]). This result for the Vilenkin derivative
can be found in Pál and Simon [4]

Schipp and Simon [7] verified that

‖I∗ f‖1 � c‖| f |‖H1.

Recall that | f | ∈ H1 (G) is equivalent to f ∈ L logL(G) (⊂ H1 (G)) .
Weisz [9] proved that

‖I∗ f‖p � cp ‖ f‖Hp
, (p > 1/2) .

The aim of this paper is to prove that in the case p = 1/2 the maximal operator I∗
has weak

(
H1/2,L1/2

)
-type. In particular, the following is true

THEOREM 1. The maximal operator I∗ of dyadic derivative is bounded from the
Hardy space H1/2 (G) to the space weak-L1/2 (G) .

COROLLARY 1. (Weisz [9]) Let p > 1/2. Then the maximal operator I∗ of dyadic
derivative is bounded from the Hardy space Hp (G) to the space Lp (G) .

Proof of Theorem 1. Set

WN (x) :=
∞

∑
n=2N

wn (x)
n

.
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It is proved in [5, 9] that

|(dnWN)(x)| � |D2n (x)−D2N (x)|1{n>N} (x)

+2F1
N,n (x)+2F2

N,n (x)+
2

2N−n∨1
Vn (x) , n ∈ N, (7)

where

F1
N,n (x) :=

n−1

∑
j=0

2 j
∞

∑
i=n

2−i D2i (x+ e j)
2N−i ∨1

, (8)

F2
N,n (x) :=

∞

∑
k=0

2−k D2n+k (x)
2N−n−k ∨1

, (9)

Vn (x) � c
22n

2n−1

∑
j=1

j
∣∣Kj (x)

∣∣ , (10)

|Kn (x)| � c
m−1

∑
s=0

2s−m
m−1

∑
l=s

D2l (x+ es) , 2m � n < 2m+1. (11)

From (11) we can write

Vn (x) � c
22n

n

∑
m=1

2m−1

∑
j=2m−1

(
m−1

∑
s=0

2s
m−1

∑
l=s

D2l (x+ es)

)
(12)

� c
22n

n

∑
m=1

2m
m−1

∑
s=0

2s
m−1

∑
l=s

D2l (x+ es)

� c
2n

n−1

∑
s=0

2s
n−1

∑
l=s

D2l (x+ es) .

Combining (7)–(12) we obtain that

|(dnWN)(x)| � |D2n (x)−D2N (x)|1{n>N} (x) (13)

+2F1
N,n (x)+2F2

N,n (x)+F3
N,n (x) ,

where

F3
N,n (x) :=

c
2N ∨2n

n−1

∑
s=0

2s
n−1

∑
l=s

D2l (x+ es) . (14)

First we assume that f ∈ H1/2
⋂

L1 . By theorem A the proof of Theorem 1 will
be complete if we show that operator I∗ satisfies (1) and is bounded from L∞ to L∞ .
Since ([9])

sup
n
‖dnW‖1 � c < ∞

we conclude that I∗ is bounded from L∞ to L∞.
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Let a be an arbitrary 1/2-atom with support I and μ (I) = 2−N (n ∈ N) . Without
loss of generality we can suppose that I = IN := IN (0) . For k < 2N , wk is constant on
IN and so

Ia(x) =
∫
G

a(t)WN (x+ t)dμ (t) .

Moreover,
|dn (Ia)(x)| � |a| ∗ |(dnWN) (x)| .

By Theorem A, to verify (1) we have to investigate

μ
{

x ∈ IN : sup
n
|a| ∗ |(dnWN) (x)| � c2λ

}
.

From (13) we can write

μ
{

x ∈ IN : sup
n
|a| ∗ |(dnWN) (x)| � c2λ

}
�

3

∑
i=1

μ
{

x ∈ IN : sup
1�n�N

|a| ∗F(i)
N,n � c2λ

}
+

3

∑
i=1

μ
{

x ∈ IN : sup
n>N

|a| ∗F(i)
N,n � c2λ

}
.

Weisz [9] proved that∫
IN

sup
n>N

(
|a| ∗F(i)

N,n

)p
dμ � cp, 0 < p � 1, i = 1,2,3.

Hence

2λ/2μ
{

x ∈ IN : sup
n>N

|a| ∗F(i)
N,n � c2λ

}
(15)

�
∫
IN

sup
n>N

(
|a| ∗F(i)

N,n

)1/2
dμ � c < ∞, i = 1,2,3.

Since ‖a‖∞ � c22N , from (8) we can write

|a| ∗F(1)
N,n (x)

� c22N
∫
IN

n−1

∑
k=0

2k
∞

∑
i=n

2−i D2i (x+ t + ek)
2N−i∨1

dμ (t)

= c22N
∫
IN

n−1

∑
k=0

2k
N

∑
i=n

2−i D2i (x+ t + ek)
2N−i∨1

dμ (t)

+c22N
∫
IN

n−1

∑
k=0

2k
∞

∑
i=N+1

2−i D2i (x+ t + ek)
2N−i∨1

dμ (t)
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= c
n−1

∑
k=0

2k
N

∑
i=n

D2i (x+ ek)

+c22N
∫
IN

n−1

∑
k=0

2k
∞

∑
i=N+1

2−iD2i (x+ t + ek)dμ (t) .

Consequently,

sup
1�n�N

|a| ∗F(1)
N,n (x) (16)

� c sup
1�n�N

n−1

∑
k=0

2k
N

∑
i=n

D2i (x+ ek)

+c sup
1�n�N

22N
n−1

∑
k=0

2k
∞

∑
i=N+1

2−i
∫
IN

D2i (x+ t + ek)dμ (t)

� c
N−1

∑
k=0

2k
N

∑
i=k

D2i (x+ ek)

+c22N
N−1

∑
k=0

2k
∞

∑
i=N+1

2−i
∫
IN

D2i (x+ t + ek)dμ (t)

= I (N,x)+ II (N,x) .

Let
x ∈ IN (0, ...,0,x j = 1,0, ...,0,xl = 1,xl+1, ...,xN−1)

for some 0 � j < l � N, where

IN (0, ...,0,x j = 1,0, ...,0,xl = 1,xl+1, ...,xN−1)
= IN (0, ...,0,x j = 1,0, ...,0) , if l = N.

Then we obtain that
I (N,x) � c2 j+l.

Let j + l � λ . Then I (N,x) � c2 j+l � c2λ and μ
{
x ∈ IN : I (N,x) > c2λ

}
= 0.

Hence we can suppose that j + l > λ .
It is easy to show that

μ
{

x ∈ IN : I (N,x) > c2λ
}

� c
[λ ]

∑
l=[λ/2]

l

∑
j=[λ ]−l

1
2l + c

N

∑
l=[λ ]

l

∑
j=0

1
2l (17)

� c
[λ ]

∑
l=[λ/2]

l−λ/2+1
2l + c

N

∑
l=[λ ]

l
2l

� c

2λ/2
.
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For II (N,x) we have

II (N,x) � c22N
N−1

∑
k=0

2k
∞

∑
i=N+1

2−i1IN(0,...,0,xk=1,0,...,0) (x)

� c2N
N−1

∑
k=0

2k1IN (0,...,0,xk=1,0,...,0) (x) .

Let
x ∈ IN (0, ...,0,xl = 1,0, ...,0) , for some 0 � l < N.

Then we can write
II (N,x) � c2N+l.

Consequently,

μ
{

x ∈ IN : II (N,x) > c2λ
}

� c
N

∑
l=[λ ]−N

1
2N � c(N−λ/2)

2N � c

2λ/2
. (18)

Combining (16)–(18) we conclude that

μ
{

x ∈ IN : sup
1�n�N

|a| ∗F(1)
N,n � c2λ

}
� c

2λ/2
. (19)

From (9) we have

|a| ∗F(2)
N,n (x) � c22N

∞

∑
k=0

2−k 1
2N−n−k ∨1

∫
IN

D2n+k (x+ t)dμ (t)

� c2n
N−1−n

∑
k=0

D2n+k (x) , x /∈ IN .

Hence

sup
1�n�N

|a| ∗F(2)
N,n (x) � c

N

∑
n=0

2n
N−1−n

∑
k=0

D2n+k (x) .

Let x ∈ Il\Il+1, for some l = 0,1, ...,N−1. Then we can write

sup
1�n�N

|a| ∗F(2)
N,n (x) � c

l

∑
n=0

2n
l−n

∑
k=0

2n+k � c22l,

μ
{

x ∈ IN : sup
1�n�N

|a| ∗F(2)
N,n � c2λ

}
� c

N

∑
l=[λ/2]

1
2l � c

2λ/2
. (20)

It is easy to show that

|a| ∗F(3)
N,n (x) � c22N

2N

n−1

∑
s=0

2s
n−1

∑
l=s

∫
IN

D2l (x+ t + es)dμ (t)

� c
n−1

∑
s=0

2s
n−1

∑
l=s

D2l (x+ es) ,
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sup
1�n�N

|a| ∗F(3)
N,n (x) � c

N−1

∑
s=0

2s
N−1

∑
l=s

D2l (x+ es) = I (N,x) .

Consequently (see (17)),

μ
{

x ∈ IN : sup
1�n�N

|a| ∗F(3)
N,n � c2λ

}
(21)

� μ
{

x ∈ IN : I (N,x) � c2λ
}

� c

2λ/2
.

Combining (13), (15), (19)–(21) we conclude that

μ
{

x ∈ G : I∗a(x) � c2λ
}

� c

2λ/2

which proves the theorem for f ∈ H1/2 (G)∩L1/2 (G) .
If f ∈ H1/2 (G) then fk ∈ L1 (G) and fk → f in H1/2 (G) . We have

μ
{∣∣I∗ f j − I∗ fk

∣∣> cλ
}

� c√
λ

∥∥ f j − fk
∥∥1/2

H1/2
→ 0 as j,k → ∞.

For f ∈ H1/2 (G) we define I∗ f by

I∗ f := lim
n→∞

I∗ fn in measure

which finishes the proof of the theorem. �

Finally, we note that in [2] the author proved that the maximal operator I∗ is not
bounded from the Hardy space Hp (G) to the Hardy space Hp (G) , when 0< p � 1. For
the maximal operator σ∗ of the Fejér means of Walsh-Fourier series Weisz [11] proved
that σ∗ is bounded from the Hardy space H1/2 (G) to the space weak−L1/2 (G) . On
the other hand, the author [3] proved that σ∗ is not bounded the Hardy space H1/2 (G)
to the space L1/2 (G) .

We suspect that I∗ is not bounded from the the Hardy space H1/2 (G) to the space
L1/2 (G) though we could not find any counterexample.
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