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WEAK TYPE INEQUALITY FOR THE
ONE-DIMENSIONAL DYADIC DERIVATIVE

USHANGI GOGINAVA

(Communicated by J. Pecari¢)

Abstract. Tt is shown that the maximal operator of the one-dimensional dyadic derivative of the
dyadic integral is bounded from the dyadic Hardy space H)/, to the space weak-Ly ;.

1. Martingale Hardy Spaces

Let P denote the set of positive integers, N:=PU{0}. Denote Z, the discrete
cyclic group of order 2, that is Z, = {0, 1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z, is given such that the
measure of a singleton is 1/2. Let G be the complete direct product of the countable
infinite copies of the compact groups Z,. The elements of G are of the form x =
(X0, X1 5 -y Xgy ...) With x € {0, 1} (k € N). The group operation on G is the coordinate-
wise addition, the measure (denote by ) and the topology are the product measure
and topology. The compact Abelian group G is called the Walsh group. A base for the
neighborhoods of G can be given in the following way:

I() (x) L= G, In (x) = In (xo,...,xn_l)
L= {y €G: y= (x07"‘7xn717yn7yn+17"‘)}7
(xe G,neN).

These sets are called the dyadic intervals. Let 0 = (0:i€ N) € G denote the null
element of G, I, :=1,(0) (n € N). Set ¢, :=(0,...,0,1,0,...) € G the n th coordinate
of which is 1 and the rest are zeros (n € N). Let I, := G\I,.

The norm (or quasinorm) of the space L, (G) is defined by

1/p
= | [ireraunt | ©<p<ie).
G
The space weak-L, (G) consists of all measurable functions f for which
I ek ) = Sup 24t (1> AP < e
>
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The o -algebra generated by the I dyadic intervale of measure 2% will be de-
noted by Fi (k € N).

Denote by f = ( f ne N) martingale with respect to (F,,n € N) (for details
see, e. g. [8, 10]). The maximal function of a martingale f is defined by

=]
neN

Incase f € L; (G) , the maximal function can also be given by

£ (%) = sup——— /if Y (), xe G

neN ,LL

For 0 < p < oo the Hardy martingale space H,(G) consists all martingales for
which

11, = 171, < o

If f € L;(G) then it is easy to show that the sequence (Sy-f : n € N) is a martin-
gale. If f is a martingale, thatis f = (f(*), f(1)| .} then the Walsh-Fourier coefficients
must be defined in a little bit different way:

= hm/f du(x).

koo

The Walsh-Fourier coefficients of f € Li (G) are the same as the ones of the mar-
tingale (Sonf : n € N) obtained from f.

A bounded measurable function a is a p-atom, if there exists a dyadicinterval I,
such that

a) [adu =0;
1

b) flall.. < u(D)~'/7;

c)supp (a)C I

Following the works of Weisz [10] the base of the proof of Theorem 1 is the
following theorem

THEOREM A. (Weisz) Suppose that an operator V is sublinear and, for some
O0<p<l1
supp? u{xel:|Va(x)|>p} <cp<eo, (1)
p>0
for every p—atom a , where I denotes the support of the atom. If V is bounded from
Ly, to Ly, fora fixed 1 < py < oo, then

IV lwear-r,6) < €p 1, 6)
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2. The one-dimensional dyadic derivative

For k € N and x € G denote

the k-th Rademacher function. If n € N, then n= ¥, n;2%, where n; € {0,1} (i €N),i.
i=0
e. n is expressed in the number system of base 2. Denote |n| := max{j € N:n; # 0},
that is, 21"l < n < 21,
The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

[n]—1

> n X mpxg
wo (x) = 1wy (x) := [ ] (e (x))™ = Tinf (%) (=1) #=0 (xeG,neP).
k=0

The Walsh-Dirichlet kernel is defined by

n—1

D, ()C) = Z Wi ()C) :

k=0
Recall that

2" iftxely,

Do (x) = {0, ifx T, 2)

The partial sums of the Walsh-Fourier series are defined as follows:

M-1 _
Su(f;x) = 26 f@)wi(x).

Butzer and Wagner [1] introduced the concept of the dyadic derivative as follows.
For each function f defined on G set

n—1
(dnf) (x) := Z?)ZH (f(x) = f(x+e)), x€G.

Then f is said to be differentiable at x € G if (d,.f) (x) converges as n — oo. It was
verified by Butzer and Wagner [1] that every Walsh function is dyadically differentiable
and

lim (d,w;) (x) = jw; (x), (3)

n—oo

moreover it is known that (see e. g. Schipp, Wade, Simon, Pal [5])

n—1
(dawj) (x) = (Z ij"> wi(x) (neP). 4)
k=0

It is easy to show that for large n from (3) we obtain (2).
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Let W be the function whose Walsh-Fourier coefficients satisfy

o 1, j=0
W () ::/W(x)wj(x)d,u(x):{l/j{ ep- )
G
The dyadic integral of f € L, (G) is introduced by
1f () 1= (£ W) (x /f W (x+1)d ©)

For the function f we consider the maximal operator

I'f :=supld, (Lf) |.

nelP
The boundedness of I* from L, (G) to L,(G) (1 < p <o) and the weak type
(L1 (G),L; (G)) inequality

supap (I'f > o) <cl|fll; (f€Li(G))

a>0

are due to Schipp [6]. The dyadic analogue of the differentiation follows from the weak
type inequality:

limd, (If)=f ae.

Nn—o0

if f € L;(G) is of mean zero (see Schipp[6]). This result for the Vilenkin derivative
can be found in P4l and Simon [4]
Schipp and Simon [7] verified that

£l < el e,

Recall that |f| € H (G) is equivalentto f € LlogL(G) (C H; (G)) .
Weisz [9] proved that

A, <epllflla, . (p>1/2).

The aim of this paper is to prove that in the case p = 1/2 the maximal operator I*
has weak (Hl /2L /2) -type. In particular, the following is true

THEOREM 1. The maximal operator I* of dyadic derivative is bounded from the
Hardy space H,  (G) to the space weak-Ly/;(G).

COROLLARY 1. (Weisz [9]) Let p > 1/2. Then the maximal operator I* of dyadic
derivative is bounded from the Hardy space H), (G) to the space L, (G).

Proof of Theorem 1. Set
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It is proved in [5, 9] that

|(d, W) (x)] < [Dan (x) = Dow (%) 1 vy (%)

2
4‘2Fﬁﬁ(x)4‘2Fﬁm(x)+’§ﬁ:;§7fv%(x)»”EEN}
where
> sz-l-e)
J —i 2 J
FN" 2222 2N1\/1 ’
— DnA )
k otk \A)
FN” 22 2Nnk\/1
2" —1

Vn( 22n 2]|K ’

m—1

CZZS mZDzz X+ ey) M << L

From (11) we can write

1 m—1  m—1
DN O LHE)

m=1 j=pm-1 \ s=0

m—1 m—1

<5325 b
< 2%2%)2‘Y£D21 (x+e5).

Combining (7)—(12) we obtain that

[(d, W) (x)| < [Don (x) = Don (%) Lsy (%)
+2Fy, (x) +2Fy , (x) + Fy , (x),

where
c n—1 n—1

F1\3/,n (x) == AV ZOZS lz: Dy (x+es).
= =

843

(7

®)

€))

(10)

(11)

12)

13)

(14)

First we assume that f € Hy/;(\L1. By theorem A the proof of Theorem 1 will

be complete if we show that operator I* satisfies (1) and is bounded from L.,

Since ([9])
sup [|d, W, <c <oo
n

we conclude that I* is bounded from L., to Le..

t0 Loo.
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Let a be an arbitrary 1/2-atom with support / and u (I) =2~V (n € N). Without

loss of generality we can suppose that I = Iy := Iy (0). For k < 2V, wy is constant on
Iy and so

Ia(x):/a(t)WN(x—i-t)d,u(t).
G
Moreover,

|, (Ta) (x)] < la] +[(d. W) (x)]-

By Theorem A, to verify (1) we have to investigate

u {xe Iy : suplal|* |(d,Wy) (x)| = 02’1}.
n

From (13) we can write
u {x €Iy : suplal = |(d,Wy) (x)| > CZ)L}

3
<2,u{x€71v sup |a\*F czl}
-1

1<n<N
3 _ .
—l—Zu{xEIN : sup\a|*FA(,')n >c2’l}.
i— n>N ’
Weisz [9] proved that

P

/suanl*FN)n) du<c, 0<p<l, i=123.
n>N

Iy

Hence
22y {x €Ty suplal+ ) > cz*} (15)
n>N ’

1/2
</sup<\a|*FN)n) du<c<oo, i=1,2,3.
i n>N
N

Since ||al|., < ¢2?V, from (8) we can write

jal * Fy') (x)

n

Dy (x+1
< 6221\’/ ZZkZZ— Mu’u 0

2N-iv ]

= 0221\’/ 2 2k22— wd‘u (t)

2N=iv/ ]

oo

i Dyi (
_|_C22N/22k Z 9~ Mdu(l)

N
i=N+1 28V
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n—1 N
=C 2 2k2D2i (x+€k)

+CZ2N/22" S 27Dy (x 1 +e)du ).
i=N+1

Consequently,

sup |l Fy') (x) (16)

n
1<n<N

n=1 N
<c sup 3 2EN Dyi(x+e)
ISn<N k=0  i=n

n—1 i
+c sup 22V Y 20 Y 2_I/D2i(x+t+ek)d“(t)
I<n<N §=0  i=N+1

N-1 N
<c ), 2]‘2D2,~ (x+ex)

k=0 i=k
+c22N22k Y 2 /Dz, (1 4+ e) dp (1)
k=0 i=N+1

I(N,x)+1I(N,x).

Let
x€ly (O,...,07)Cj =1,0,...,0,x; = 1,xl+17...,xN,1)
for some 0 < j <! <N, where

IN (O,...,07)Cj = 1707...,0,)6[ = 1,xl+17...,xN,1)
=Iy(0,...,0,x; = 1,0,...,0),if [=N.

Then we obtain that
I(N,x) < 2/,

Let j+1<A. Then I(N,x) < 2/ < c2* and u{x €Iy :I(N,x) >c2*} =0.
Hence we can suppose that j+1 > A.
It is easy to show that

u{rely: IV > 2t} < cz 2 +c2221 (17)

1=[A/2] j=[A]— 1=[A]j=0
YR
<c 2 721 +c 2 ?
1=[%/2] 1=[A]
C

<m~
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For II (N,x) we have

N—1 oo
X)) <2V Y2 Y 270, 0g=10..0) (%)
k=0 i=N+1

N—1
<2V ¥ 20, 0=10...0) (0)-
k=0
Let
x€ly(0,...,0,x; =1,0,...,0), forsome0<I<N.

Then we can write
II(N,x) < 2V,

Consequently,

1 _c(N=-21/2) ¢

N
- .
y{erN.H(N,x)>c2}gcl_%}NzNg 2 <5

Combining (16)—(18) we conclude that
ulxely: sup |a|*EV) > 2 <
1<n<N N 242

From (9) we have
i 1
\a| *FA(]?')I ()C) < 022N 2 zikm /D2n+k (x—l—t)d,u (l)
k=0 Iy

N—1-n
<c2" Y Dy (x), x¢1y.
k=0

Hence
N—1—-n

sup \a|*FNn 022" 2 Dyuir (x

1<n<N
Let x € [\I;11, forsome [ =0,1,....N — 1. Then we can write
sup |a| *FN () <e 2 2" 2 2k e,

N
1<n<N n=0 k=0

N
_ 1
u{xEIN sup |a|*FN,)l c21}<c D igﬁ.
1<n<N 1=[A/2]

It is easy to show that

2 2N n—1 n—1

al* ) () < S5 22512/1)21 (x+1+e)du (1)

n—1 n—1
<c 2N Dyxtey),
s=0 [=s

(18)

19)

(20)
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N—1 N-1
sup [al + Fy)) (x) S¢ Y 2 Y Dy (x+e) =1(N,).
IsnsN ' s=0 I=s

Consequently (see (17)),

u {x €ly: sup |a|+F}) > cz’t}
1<n<N '

— A C
<u{x€IN:I(N,x)>c2 }gm.

Combining (13), (15), (19)—(21) we conclude that

u{xeG:I*a(x)}eZ’l}Sm

which proves the theorem for f € H,/, (G) MLy (G).
If f € Hy/>(G) then f; € L1 (G) and fi — f in Hy /5 (G). We have

w{|rf =T fi| > A}

c
< - .

vl

For f € H/,(G) we define I" f by

el = Oas ik oo,

I'f:= limI"f, in measure
Nn—oo

which finishes the proof of the theorem. [
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2y

Finally, we note that in [2] the author proved that the maximal operator I* is not
bounded from the Hardy space H, (G) to the Hardy space H), (G), when 0 < p < 1. For
the maximal operator 6* of the Fejér means of Walsh-Fourier series Weisz [11] proved
that 0™ is bounded from the Hardy space H,, (G) to the space weak—L,/, (G). On
the other hand, the author [3] proved that 6* is not bounded the Hardy space H ), (G)

to the space Ly (G) .

We suspect that I* is not bounded from the the Hardy space H| ) (G) to the space

Ly, (G) though we could not find any counterexample.
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