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Abstract. Boundedness of generalized fractional integral operators on generalized Morrey spaces
and their related results were shown by many authors. We consider one of their results in a wider
framework. Moreover, we show some inequalities for another operator on generalized fractional
integrals on generalized Morrey spaces.

1. Introduction

For a function ρ : (0,+∞)→ (0,+∞) , the gerenarlized fractional integral operator
is defined by

Tρ f (x) =
∫

Rn

ρ(|x− y|) f (y)
|x− y|n dy

for any suitable function on f on Rn . For the case ρ(r) = rα , (0 < α < n ), we use the
notation Iα f (x) for Tρ f (x) . Morrey spaces can reflect the boundedness of Iα . Here in
this paper we are concerned with generalized Morrey spaces. For 1 � p < +∞ and a
function φ : (0,+∞) → (0,+∞) , the generalized Morrey norm is defined by

‖ f‖
Lφp

= sup
x∈Rn

r>0

(
1

φ(r)

∫
B(x,r)

| f (y)|pdy

)1/p

,

where B(x,r) stands for the open ball centered at x with radius r . And the generalized
Morrey space Lφp is defined by Lφp = { f ∈ Lp

loc(R
n)|‖ f‖

Lφp
< +∞} . For the case φ(r) =

rλ , (0 � λ < n ), we use the notation Mλ
p for Lφp .

There is a huge amount of literatures dealing with boundedness of fractional in-
tegral operators on Morrey spaces. In this paper, we deal with the boundedness of Tρ
and its variant TK

ρ which is defined by

TK
ρ f (x) =

∫
Rn

ρ(|x− y|) f (y)
|x− y|n(1+ |x− y|)K dy
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for some K � 0. We shall give a deep insight of Tρ and TK
ρ via subtle property of

generalized Morrey spaces. In [7], the authors investigated the operators whose integral
kernel Γ(x,y) satisfies 0 � Γ(x,y) � C/|x− y|n−α(1+ |x− y|)K for some constant C
in connection with elliptic partial differential equations.

The plan of this paper is as follows. In Section 2, we describe known results
on fractional integral operators on Morrey spaces with their generalized versions. In
Section 3, we formulate and prove our theorem on Tρ . In Section 4, we state and prove
our theorems on TK

ρ .
Throughout this paper the letter C stands for a constant not necessarily the same

at each occurrence.

2. Known Results

In this section, we describe some known results on boundedness of fractional in-
tegral operators on Morrey spaces with their generalized version and describe some
inequalities which hold for the function g ·Tρ f (or g · Iα f ) for some function g .

Boundedness of fractional integral operators on Morrey spaces was shown in [14]
as Spanne’s unpublished result as the following Theorem 2.1 states.

THEOREM 2.1. ([14, Theorem 5.4]) Let 0 � λ < n, 1 < p < n/α , 1/s = 1/p−
α/n, λ1 = nλ/(n−α p) . Then there exists a positive constant C such that

‖Iα f‖
M
λ1
s

� C‖ f‖Mλ
p
, (1)

where f ∈ Mλ
p .

Adams strengthened Theorem 2.1 ([1]).

THEOREM 2.2. ([1, Theorem 3.1]) Let 0 � λ < n−α p, 1 < p(< (n−λ )/α) ,
1/s = 1/p−α/(n−λ ) . Then there exists a positive constant C such that

‖Iα f‖Mλ
s

� C‖ f‖Mλ
p
, (2)

where f ∈ Mλ
p .

REMARK 2.3. By Hölder’s inequality, if p1 � p and p1 = (n− λ1)p/(n− λ ) ,
then ‖ · ‖

M
λ1
p1

� ‖ · ‖Mλ
p
. Hence Theorem 2.2 extends Theorem 2.1. In [2], the authors

reproved Theorem 2.2 by using the Hardy-Littlewood maximal operator and proved
Theorem 2.1 as its corollary.

We note Hölder’s inequality on Morrey spaces.

LEMMA 2.4. (Hölder’s inequality on Morrey spaces) Let 0 < s < +∞ , 0 < q <
+∞ , 0 < u < +∞ , 0 � ν < n, 0 � μ < n, and 0 � λ < n. Assume 1/q = 1/u+ 1/s
and that ν/q = μ/u+λ/s. Then

‖g f‖Mν
q

� ‖g‖Mμ
u
‖ f‖Mλ

s
, (3)



SOME INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRAL OPERATORS 851

where f ∈ Mλ
s and g ∈ Mμ

u .

For some function g , we obtain some inequalities for g · Iα f . Using Theorem 2.1
and applying Lemma 2.4 to g · Iα f , we have

THEOREM 2.5. Let 0 � λ < n, 1 < p < n/α , 1/q = 1/u+ 1/p−α/n, ν/q =
μ/u+{nλ/(n−α p)}(1/p−α/n) , and assume g ∈ Mμ

u . Then there exists a positive
constant C such that

‖g · Iα f‖Mν
q

� C‖g‖Mμ
u
‖ f‖Mλ

p
, (4)

where f ∈ Mλ
p .

As a special case q = p in Theorem 2.5, we have

COROLLARY 2.6. Let 0 � λ < n, 1 < p < n/α , g ∈ M0
n/α . Then there exists a

positive constant C such that

‖g · Iα f‖Mλ
p

� C‖g‖M0
n/α

‖ f‖Mλ
p
, (5)

where f ∈ Mλ
p .

REMARK 2.7. We remark that M0
n/α is the Ln/α space by the definition. If we

use Theorem 2.2 for Theorem 2.1, we can obtain an inequality for g · Iα f with g which
belong to the Morrey space (see Corollary 2.9).

Using Theorem 2.2 and applying Lemma 2.4 to g · Iα f , we have

THEOREM 2.8. Let 0 � λ < n−α p, 1 < p(< (n−λ )/α) , 1/q = 1/u+1/p−
α/(n−λ ) , ν/q = μ/u+λ{1/p−α/(n−λ )} , and assume g∈Mμ

u . Then there exists
a positive constant C such that

‖g · Iα f‖Mν
q

� C‖g‖Mμ
u
‖ f‖Mλ

p
, (6)

where f ∈ Mλ
p .

As a special case q = p in Theorem 2.8, we have

COROLLARY 2.9. Let 0 � λ < n−α p, 1 < p(< (n− λ )/α) , g ∈ Mλ
(n−λ )/α .

Then there exists a positive constant C such that

‖g · Iα f‖Mλ
p

� C‖g‖Mλ
(n−λ)/α

‖ f‖Mλ
p
, (7)

where f ∈ Mλ
p .

In [13], Olsen obtained another inequality for g · Iα f . His notations of fractional
integral operators and Morrey spaces are different from ours. However, we can rewrite
it under our notations as follows:
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THEOREM 2.10. [13, Theorem 2] Let Ω be a bounded domain. Suppose that the
non-negative parameters p, q , u , λ , μ , and ν satisfy 1 < p � q < u, λ < n−α p,
1/q = (1/u)(1− μ/n)+ 1/p−α/n, and ν/q = λ/p. Then there exists a constant
C = CΩ depending on Ω and the parameters above such that

‖g · Iα f‖Mν
q

� C‖g‖Mμ
u
‖ f‖Mλ

p
, (8)

for all positive and measureble functions f and g such that the support of f is con-
tained in Ω .

As a special case q = p in Theorem 2.10, we have

COROLLARY 2.11. ([13, Corollary 3]) Let Ω be a bounded domain. Suppose
that the non-negative parameters p, λ , and μ satisfy 1 < p < min{(n−λ )/α,(n−
μ)/α} . Then there exists a constant C = CΩ dependeing on Ω and the parameters
above such that

‖g · Iα f‖Mλ
p

� C‖g‖Mμ
(n−μ)/α

‖ f‖Mλ
p
, (9)

for all positive and measureble functions f and g such that the support of f is con-
tained in Ω .

REMARK 2.12. We compare Corollary 2.9 with Corollary 2.11. In (7), the Mor-
rey norm of g is determined by λ which appears in the Morrey norms of f and g · Iα f .
On the other hand, (9) holds for g which belong to Mμ

(n−μ)/α , where μ is not necessar-

ily the same as λ .

On generalizations of boundedness of fractional integral operators on Morrey spaces,
they studied generalized Morrey spaces earier than for generalized fractional integral
operators. Nakai passed Theorem 2.1 to gerenalized Morrey spaces. Here, to compare
Nakai’s result with ours, we present a precise formulation.

THEOREM 2.13. ([8, Theorem 3]) Let 0 < α < n, 1 < p < n/α , 1/s = 1/p−
α/n. For φ(r) assume that there exist positive constants C1 and A such that

1
C1

� φ(t)
φ(r)

� C1 for r � t � 2r, (10)

∫ +∞

r

φ(t)
tn−α p+1 dt � A

φ(r)
rn−α p , (11)

for every r > 0 . Then there exists a positive constant C such that

‖Iα f‖
Lφ

s/p
s

� C‖ f‖
Lφp

, (12)

where f ∈ Lφp .
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REMARK 2.14. The condition (10) is called the doubling condition. Under the
assumptions (10) and (11), the Hardy-Littlewood maximal operator is known to be
bounded from Lφp to itself, where 1 < p < +∞ (see [8, Theorem 1]).

We note Hölder’s inequality on generalized Morrey spaces.

LEMMA 2.15. (Hölder’s inequality on generalized Morrey spaces) Let 0 < s <
+∞ , 0 < q < +∞ , and 0 < u < +∞ , and let φ(r) , ψ(r) , and η(r) be functions which
satisfy 0 < φ(r) < +∞ , 0 < ψ(r) < +∞ , and 0 < η(r) < +∞ for r > 0 . Assume
1/q = 1/u+1/s and ψ(r) = η(r)q/uφ(r)q/s . Then

‖g f‖Lψq
� ‖g‖Lηu

‖ f‖
Lφs

, (13)

where f ∈ Lφs , g ∈ Lηu .

Using Theorem 2.13 and applying Lemma 2.15 to g · Iα f , we have

THEOREM 2.16. Let 1 < p < n/α and 1/q = 1/u+ 1/p−α/n. Assume that
φ(r) satisfies (10) and (11). Assume also that ψ(r) = η(r)q/uφ(r)q/p and g ∈ Lηu .
Then there exists a positive constant C such that

‖g · Iα f‖Lψq
� C‖g‖Lηu

‖ f‖
Lφp

, (14)

where f ∈ Lφp .

As a special case q = p in Theorem 2.16, we have

COROLLARY 2.17. Let 1 < p < n/α . Assume that φ(r) satisfies (10) and (11)
and assume g ∈ L1

n/α . Then there exists a positive constant C such that

‖g · Iα f‖
Lφp

� C‖g‖L1
n/α

‖ f‖
Lφp

, (15)

where f ∈ Lφp .

Corollary 2.17 was stated as [7, Corollary 2.1]. In [7], the authors obtained the coun-
terpart of Corollary 2.9 on generalized Morrey spaces.

THEOREM 2.18. ([7, Theorem 2.1]) Let 1 < p < +∞ . For φ(r) assume that
there exist positive constants C1 , A, and α and non-negative constants λ and δ with
α p+λ + δ < n such that (10), (11), and

φ(r) � C2r
λ (1+ rδ ) (16)

for every r > 0 . Assume also that g ∈ Lφ(n−λ )/α ∩ Lφ(n−λ−δ )/α . Then there exists a
positive constant C such that

‖g · Iα f‖
Lφp

� C(‖g‖
Lφ(n−λ)/α

+‖g‖
Lφ(n−λ−δ )/α

)‖ f‖
Lφp

, (17)

where f ∈ Lφp .
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When φ(r)= rλ (1+rδ ) , the generalizedMorrey space Lφ(n−λ )/α is the same as Mλ
(n−λ )/α

∩Mλ+δ
(n−λ )/α . As the special case in δ = 0 in Theorem 2.18, we have Corollary 2.9.
In [7], the authors considered a related operator on fractional integrals and showed

an inequality on generalized Morrey spaces. And in [17], the authors proved Theorem
2.10 on generalized Morrey spaces and as its corollary they extended Theorem 2.2 to
generalized Morrey spaces. Their definition of generalized Morrey spaces is different
from ours. In this paper, we shall extend and generalize Theorem 2.18. Hence the
details of the theorems stated in another definition of generalized Morrey spaces are
omitted.

It is known that the results on the generalization of fractional integral operators.
In [9], the author introduced generalized fractional integral operators and studied on
generalization of Hardy-Littlewood-Sobolev’s inequality. Eridani, Gunawan, and Nakai
proved Theorem 2.2 for generalized fractional integral operators on generalized Morrey
spaces ([4], [5], and [6]). Their definition of generalized Morrey spaces is the same as
in the one in [17].

Moreover, Nakai proved boundedness of generalized fractional integral operators
on Orlicz-Morrey spaces ([11, Theorem 7.1], also [10, Theorem 2.2] and [11, Theorem
7.3]). In [11], the author showed Hölder’s inequality on Orlicz-Morrey spaces ([11,
Theorem 4.1]). Recently, under another definition of generalized Morrey spaces, which
is the same as in [17], we have some inequalities for generalized fractional integral
operators on generalized Morrey spaces ([15] and [16]).

3. Our theorem for Tρ

In this section, we state and prove our theorem on Tρ . For simplicity, we write
‖ · ‖p,φ for ‖ · ‖

Lφp
below.

THEOREM 3.1. Let 1 < p < +∞ , 1 < q < +∞ . For φ(r) and ρ(r) assume that
there exist positive constants C1 , C2 , C3 , and α and non-negative constants λ , δ ,
and ε with (α + ε)p+λ + δ < n such that (10), (16), and

ρ(r) � C3r
α(1+ rε) (18)

for every r > 0 . Assume also that

ψ(r) = η1(r)α p/(n−λ )φ(r)1−α p/(n−λ ) = η2(r)(α+ε)p/(n−λ−δ )φ(r)1−(α+ε)p/(n−λ−δ )

and g ∈ Lη1
(n−λ )q/α p∩Lη2

(n−λ−δ )q/(α+ε)p . Then there exists a positive constant C such
that

‖g ·Tρ f‖q,ψ � C
(
‖g‖(n−λ )q/α p,η1

‖ f‖1−α p/(n−λ )
q,φ ‖ f‖α p/(n−λ )

p,φ

+‖g‖(n−λ−δ )q/(α+ε)p,η2
‖ f‖1−(α+ε)p/(n−λ−δ )

q,φ ‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
,

(19)

where f ∈ Lφp ∩Lφq .



SOME INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRAL OPERATORS 855

REMARK 3.2. The function φ(r) = rλ log(2+ r) with 0 � λ < n−α p satisfies
(10) and (16) for every δ > 0 and the function ρ(r) = rα log(2+ r) with 0 < α < n
satisfies (18) for every ε > 0.

REMARK 3.3. In Theorem 3.1, the case ρ(r) = rα , q = p , η1 = η2 = φ(= ψ) is
the same as Theorem 2.18.

As a special case q = p in Theorem 3.1, we have

COROLLARY 3.4. Let 1 < p < +∞ . For φ(r) and ρ(r) assume that there exist
positive constants C1 , C2 , C3 , and α and non-negative constants λ , δ , and ε with
(α + ε)p+λ + δ < n such that (10), (16), and (18) for every r > 0 . Assume also that

ψ(r) = η1(r)α p/(n−λ )φ(r)1−α p/(n−λ ) = η2(r)(α+ε)p/(n−λ−δ )φ(r)1−(α+ε)p/(n−λ−δ )

and g ∈ Lη1
(n−λ )/α ∩Lη2

(n−λ−δ )/(α+ε) . Then there exists a positive constant C such that

‖g ·Tρ f‖p,ψ � C
(‖g‖(n−λ )/α ,η1

+‖g‖(n−λ−δ )/(α+ε),η2

)‖ f‖p,φ , (20)

where f ∈ Lφp .

As a special case δ = ε = 0 in Theorem 3.1, we have

COROLLARY 3.5. Let 0 � λ < n−α p, 1 < p(< (n−λ )/α) , q = α pu/(n−λ ) ,
ν = α pμ/(n− λ )+ λ{1−α p/(n− λ )} , and assume g ∈ Mμ

u . Then there exists a
positive constant C such that

‖g · Iα f‖Mν
q

� C‖g‖Mμ
u
‖ f‖1−α p/(n−λ )

Mλ
q

‖ f‖α p/(n−λ )
Mλ

p
, (21)

where f ∈ Mλ
p ∩Mλ

q .

We compare Corollary 3.5 with Theorem 2.8. Let λ , p , α , q , u , μ , and ν satisfy
the assumption of Corollary 3.5. If we use Theorem 2.8 for f ∈ Mλ

p and g ∈ Mμ
u , we

obtain g ·Iα f ∈M
νp

p# , where p# and νp satisfy 1/p# = 1/u+1/p−α/(n−λ ) , νp/p# =

μ/u+λ{1/p−α/(n−λ )} . Similarly, if we use Theorem 2.8 for f ∈Mλ
q and g∈Mμ

u ,

we obtain g · Iα f ∈ M
νp

q# , where q# and νq satisfy 1/q# = 1/u + 1/q−α/(n− λ ) ,

νq/q# = μ/u+λ{1/q−α/(n−λ )} . If q = p , then q# = p# and νq = νp . Hence the
case q = p in Corollary 3.5 follows from Theorem 2.8. We consider the case q < p . If
q < p then q# < p# and since

n−νq

q# − n−νp

p# =
n−λ

q
− n−λ

p
> 0,



856 S. SUGANO

it follows that (n−νq)/q# > (n−νp)/p# . Hence M
νp

p# is not a proper subset of M
νq

q# .

On the other hand, if q < p then q < p# . Indeed,

1
q
− 1

p# =
1
q
− α p

q(n−λ )
− 1

p
+

α
n−λ

=
1
q
· n−λ −α p

n−λ
+
α p−n+λ
p(n−λ )

=
p
q
· n−λ −α p

p(n−λ )
− n−λ −α p

p(n−λ )

=
n−λ −α p
p(n−λ )

(
p
q
−1

)
> 0,

where we have used 1/u = α p/q(n−λ ) , q < p , and p < (n−λ )/α . Then we obtain

n−ν
q

− n−νp

p# = (n−λ )
(

1
q
− 1

p

)
+

α
n−λ

· p
q
(λ −n)+

α
n−λ

(n−λ )

= (n−λ ) · p−q
pq

+α · q− p
q

=
p−q

q

(
n−λ

p
−α

)
> 0.

Hence it follows that (n−ν)/q > (n−νp)/p# and M
νp

p# is not a proper subset of Mν
q .

Moreover, if q < p then q# < q . Indeed, combining 1/q# = 1/u + 1/q−α/(n−λ )
with 1/u = α p/(n−λ )q , we have 1/q# = α(p/q−1)/(n−λ )+1/q . Since p/q > 1,
it follows that q# < q . Then we obtain

n−νq

q# − n−ν
q

=
α p(n−λ )
q(n−λ )

− α(n−λ )
n−λ

= α
(

p
q
−1

)
> 0.

Since (n− νq)/q# > (n− ν)/q , Mν
q is not a proper subset of M

νq

q# . Considering the

fact mentioned above, if q < p then we have q# < q < p# , similarly, if q > p then we
have q# > q > p# , and neither M

νp

p# nor M
νq

q# is contained in Mν
q . Hence we arrive at

REMARK 3.6. We can not obtain Corollary 3.5 combining boundedness of frac-
tional integral operators on Morrey spaces and Hölder’s inequality on Morrey spaces
as we obtained Theorem 2.8. We also remark that Corollary 3.5 does not follow from
combining boundedness of generalized fractional integral operators on Orlicz-Morrey
spaces with Hölder’s inequality on Orlicz-Morrey spaces obtained in [10] and [11].
(See also Remark 3.13.)

Let L∞c = { f ∈ L∞(Rn)|supp f is compact} . By the monotone convergence theo-
rem, we may assume f ∈ Lφp ∩Lφq ∩L∞c without loss of generality in the proof. (See
[7, p.1129] for the details.) To prove Theorem 3.1, we use a pointwise estimate by the
Hardy-Littlewood maximal operator M the following Lemma 3.7 states.
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LEMMA 3.7. Under the assumptions (10), (16), and (18), we have

|Tρ f (x)|�C
(
M f (x)1−α p/(n−λ )‖ f‖α p/(n−λ )

p,φ +M f (x)1−(α+ε)p/(n−λ−δ )‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
,

(22)
where f ∈ Lφp ∩L∞c .

We remark that, since (α + ε)p+λ + δ < n , there exists a constant C such that

∫ +∞

r

φ(t)
tn−(α+ε)p+1

dt � C
φ(r)

rn−(α+ε)p . (23)

To prove Lemma 3.7, we invoke the following Lemma 3.8 from [8].

LEMMA 3.8. ([8, Lemma 2]) Suppose φ : (0,+∞)→ (0,+∞) satisfies (23). Then
there exist positive constants C0 and μ such that∫ +∞

r

φ(t)
tn−(α+ε)p+1−μ dt � C0

φ(r)
rn−(α+ε)p−μ . (24)

Proof of Lemma 3.7. We follow the argument in [2]. We write, for θ > 0 which
will be determined later,

Tρ f (x) =
∫
|x−y|<θ

ρ(|x− y|) f (y)
|x− y|n dy+

∫
|x−y|�θ

ρ(|x− y|) f (y)
|x− y|n dy = I1 + I2.

By using (18), we can estimate I1 by

|I1| � C
−1

∑
k=−∞

∫
2kθ�|x−y|<2k+1θ

|x− y|α(1+ |x− y|ε)| f (y)|
|x− y|n dy

� C(θα +θα+ε)M f (x). (25)

Let

|I2| � C

(∫
|x−y|�θ

| f (y)|
|x− y|n−α dy+

∫
|x−y|�θ

| f (y)|
|x− y|n−α−ε dy

)
= C(I3 + I4).

First we estimate I3 . Let p′ = p/(p−1) and we take σ1 to satisfy n− (α+ε)p−μ <
σ1 < p(n−α−n/p′) , where μ is a constant in (24). Since n−α = σ1/p+{−(σ1/p+
α−n)} , Hölder’s inequality yields

I3 �
(∫

|x−y|�θ

| f (y)|p
|x− y|σ1

dy

)1/p(∫
|x−y|�θ

|x− y|(σ1/p+α−n)p′ dy

)1/p′

= I5I6.

For I5 , we have by (10)

I5 �
(

+∞

∑
k=0

∫
2kθ<|x−y|�2k+1θ

| f (y)|p
(2kθ )σ1

dy

)1/p

� C

(
+∞

∑
k=0

φ(2kθ )
(2kθ )σ1

)1/p

‖ f‖p,φ .
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We obtain

+∞

∑
k=0

φ(2kθ )
(2kθ )σ1

=
+∞

∑
k=0

(2kθ )n−(α+ε)p−μ

(2kθ )σ1
· φ(2kθ )
(2kθ )n−(α+ε)p−μ

� C
+∞

∑
k=0

(2kθ )n−(α+ε)p−μ

(2kθ )σ1

∫ 2k+1θ

2kθ

φ(t)
tn−(α+ε)p+1−μ dt

� C
θ n−(α+ε)p−μ

θσ1

∫ +∞

θ

φ(t)
tn−(α+ε)p+1−μ dt.

For the last inequality, since σ1 > n− (α + ε)p− μ , we used (2k)n−(α+ε)p−μ−σ1 � 1
for every k � 0. By Lemma 3.8, we conclude

+∞

∑
k=0

φ(2kθ )
(2kθ )σ1

� C
φ(θ )
θσ1

.

On the other hand, it is easy to obtain

I6 = Cθ−n/p+σ1/p+α .

Hence, it follows that
I3 � Cφ(θ )1/pθα−n/p‖ f‖p,φ .

Next we estimate I4 . We take σ2 to satisfy n− (α + ε)p− μ < σ2 < p(n−α − ε −
n/p′) . Since n−α− ε = σ2/p+ {−(σ2/p+α− n+ ε)} , by Hölder’s inequality we
have

I4 �
(∫

|x−y|�θ

| f (y)|p
|x− y|σ2

dy

)1/p(∫
|x−y|�θ

|x− y|(σ2/p+α−n+ε)p′ dy

)1/p′

= I7I8.

Since σ2 > n− (α+ ε)p− μ , by a way similar to the estimate I5 we obtain

I7 � C

(
+∞

∑
k=0

φ(2kθ )
(2kθ )σ2

)1/p

‖ f‖p,φ

� C

(
φ(θ )
θσ2

)1/p

‖ f‖p,φ .

On the other hand, we have

I8 = Cθ−n/p+σ2/p+α+ε .

Hence, it follows that
I4 � Cφ(θ )1/pθα−n/p+ε‖ f‖p,φ .

By the assumption (16), we have

|I2| � Cφ(θ )1/p(1+θε)θα−n/p‖ f‖p,φ

� C(1+θδ/p +θε +θδ/p+ε)θα+(λ−n)/p‖ f‖p,φ . (26)
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Combining (25) with (26), we obtain

|Tρ f (x)| � C
{
(θα +θα+ε)M f (x)+

(
θα+(λ−n)/p +θα+ε+(λ−n+δ )/p

)
‖ f‖p,φ

}
.

We consider two cases. For the case ‖ f‖p,φ/M f (x) � 1, i.e. ‖ f‖p,φ � M f (x) , we
choose θ = (‖ f‖p,φ/M f (x))p/(n−λ ) . Since θ � 1, it follows that

|Tρ f (x)| � C

{(‖ f‖p,φ

M f (x)

)α p(n−λ )

M f (x)+
(‖ f‖p,φ

M f (x)

){p/(n−λ )}{α+(λ−n)/p}
‖ f‖p,φ

}

= CM f (x)1−α p/(n−λ )‖ f‖α p/(n−λ )
p,φ .

For the case ‖ f‖p,φ/M f (x) � 1, we choose θ = (‖ f‖p,φ/M f (x))p/(n−λ−δ ) . In this
case, it follows in a similar way that

|Tρ f (x)| � CM f (x)1−(α+ε)p/(n−λ−δ )‖ f‖(α+ε)p/(n−λ−δ )
p,φ .

Hence, we obtain the desired estimate. �
Now we are ready to give

Proof of Theorem 3.1. Let

|Tρ f (x)| � C
(
M f (x)1−α p/(n−λ )‖ f‖α p/(n−λ )

p,φ +M f (x)1−(α+ε)p/(n−λ−δ )‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
= C(J1(x)+ J2(x)).

Define t ∈ (1,+∞) by 1/t = 1−α p/(n−λ ) . By Hölder’s inequality, we have(
1

ψ(r)

∫
B(x,r)

|g(y)J1(y)|q dy

)1/q

� C

(
1

ψ(r)

∫
B(x,r)

|M f (y)|q/t |g(y)|q dy

)1/q

‖ f‖α p/(n−λ )
p,φ

� C

(
1

φ(r)

∫
B(x,r)

|M f (y)|q dy

)1/tq( 1
η1(r)

∫
B(x,r)

|g(y)|(n−λ )q/α pdy

)α p/(n−λ )q

‖ f‖α p/(n−λ )
p,φ

� C‖g‖(n−λ )q/α p,η1
‖ f‖1−α p/(n−λ )

q,φ ‖ f‖α p/(n−λ )
p,φ .

In the last inequality we used the fact that ‖M f‖q,φ �C‖ f‖q,φ holds under the assump-
tions (10) and (11) (see Remark 2.14). This implies

‖gJ1‖q,ψ � C‖g‖(n−λ )q/α p,η1
‖ f‖1−α p/(n−λ )

q,φ ‖ f‖α p/(n−λ )
p,φ .

In a similar way we have

‖gJ2‖q,ψ � C‖g‖(n−λ−δ )q/(α+ε)p,η2
‖ f‖1−(α+ε)p/(n−λ−δ )

q,φ ‖ f‖(α+ε)p/(n−λ−δ )
p,φ .

This completes the proof of Theorem 3.1. �
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REMARK 3.9. If we use Lemma 3.7 and the boundedness of the Hardy-Littlewood
maximal operator on generalized Morrey spaces, we obtain the boundedness of Tρ on
generalized Morrey spaces. In addition, combining it with Hölder’s inequality on gen-
eralized Morrey spaces, we obtain an inequality for g ·Tρ f . However, the result follows
from Nakai’s theorem [11, Theorem 7.3], which describes the boundedness of Tρ on
Orlicz-Morrey spaces ([12]).

For reference, we describe the result which we mentioned in Remark 3.9.

THEOREM 3.10. ([12]) Let 1 < p < +∞ , 1 < q < +∞ . For φ(r) and ρ(r) as-
sume that there exist positive constants C1 , C2 , C3 , and α and non-negative con-
stants λ , δ , and ε with (α + ε)p + λ + δ < n such that (10), (16), and (18). Let
1 < p1 < +∞ , p1 = p{1/p− (α+ ε)/(n−λ − δ )}/{1/p−α/(n−λ )} , and 1/q =
1/p−α/(n−λ ) . Then there exists a positive constant C such that

‖Tρ f‖q,φ � C
(
‖ f‖p,φ +‖ f‖1−(α+ε)p/(n−λ−δ )

p1,φ ‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
, (27)

where f ∈ Lφp ∩Lφp1 .

Combining Theorem 3.10 with Hölder’s inequality on generalized Morrey spaces, we
have

THEOREM 3.11. Let 1 < p < +∞ , 1 < q < +∞ , 1 < u < +∞ . For φ(r) and ρ(r)
assume that there exist positive constants C1 , C2 , C3 , and α and non-negative con-
stants λ , δ , and ε with (α + ε)p+λ + δ < n such that (10), (16), and (18) for every
r > 0 . Let 1 < p1 < +∞ , p1 = p{1/p−(α+ε)/(n−λ−δ )}/{1/p−α/(n−λ )} , and
1/q = 1/u+1/p−α/(n−λ ) . Assume further that ψ(r) = η(r)q/uφ(r)q{1/p−α/(n−λ )}
and g ∈ Lηu . Then there exists a positive constant C such that

‖g ·Tρ f‖q,ψ � C‖g‖u,η

(
‖ f‖p,φ +‖ f‖1−(α+ε)p/(n−λ−δ )

p1,φ ‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
, (28)

where f ∈ Lφp ∩Lφp1 .

As a special case q = p in Theorem 3.11, we have

COROLLARY 3.12. Let 1 < p < +∞ . For φ(r) and ρ(r) assume that there exist
positive constants C1 , C2 , C3 , and α and non-negative constants λ , δ , and ε with
(α + ε)p+λ +δ < n such that (10), (16), and (18) for every r > 0 . Let 1 < p1 < +∞
and p1 = p{1/p− (α + ε)/(n− λ − δ )}/{1/p−α/(n− λ )} . Assume further that
ψ(r) = η(r)α p/(n−λ )φ(r)1−α p/(n−λ ) and g ∈ Lη(n−λ )/α . Then there exists a positive
constant C such that

‖g ·Tρ f‖p,ψ � C‖g‖(n−λ )/α ,η

(
‖ f‖p,φ +‖ f‖1−(α+ε)p/(n−λ−δ )

p1,φ ‖ f‖(α+ε)p/(n−λ−δ )
p,φ

)
,

(29)
where f ∈ Lφp ∩Lφp1 .

REMARK 3.13. As a special case δ = ε = 0 in Theorem 3.11, we have Theorem
2.8.
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4. Our theorems for TK
ρ

In this section, we show some inequalities for the operator TK
ρ on generalized

Morrey spaces.

THEOREM 4.1. Let 1 < p < +∞ , 1 < q < +∞ . For φ(r) and ρ(r) assume that
there exist positive constants C1 , C2 , C3 , and α and non-negative constants λ , δ ,
and ε with (α + ε)p+λ + δ < n such that (10), (16), and (18).

(1) Let K � (λ + δ )/p+ ε and assume ψ(r) = η(r)α p/nφ(r)1−α p/n and g ∈ Lηnq/α p .
Then there exists a positive constant C such that

‖g ·TK
ρ f‖q,ψ � C‖g‖nq/α p,η‖ f‖1−α p/n

q,φ ‖ f‖α p/n
p,φ , (30)

where f ∈ Lφp ∩Lφq .

(2) Let K � δ/p+ε and assume ψ(r)=η(r)α p/(n−λ )φ(r)1−α p/(n−λ ) and g∈Lη(n−λ )q/α p .
Then there exists a positive constant C such that

‖g ·TK
ρ f‖q,ψ � C‖g‖(n−λ )q/α p,η‖ f‖1−α p/(n−λ )

q,φ ‖ f‖α p/(n−λ )
p,φ , (31)

where f ∈ Lφp ∩Lφq .

REMARK 4.2. In Theorem 4.1 (1), the case ρ(r) = rα , q = p , and η = φ(= ψ)
was shown in [7, Theorem 2.2].

To prove Theorem 4.1, we need the following Lemma 4.3.

LEMMA 4.3. Assume (10), (16), and (18).

(1) If K � (λ + δ )/p+ ε , then we have

|TK
ρ f (x)| � CM f (x)1−α p/n‖ f‖α p/n

p,φ , (32)

where f ∈ Lφp ∩L∞c .

(2) If K � δ/p+ ε , then we have

|TK
ρ f (x)| � CM f (x)1−α p/(n−λ )‖ f‖α p/(n−λ )

p,φ , (33)

where f ∈ Lφp ∩L∞c .

Proof. We prove only (1), since we can prove (2) by the same method as in the
proof of (1). We write, for θ > 0 which will be determined later,

TK
ρ f (x) =

∫
|x−y|<θ

ρ(|x− y|) f (y)
|x− y|n(1+ |x− y|)K dy

+
∫
|x−y|�θ

ρ(|x− y|) f (y)
|x− y|n(1+ |x− y|)K dy = I′1 + I′2.
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By using (18), as in the proof of Lemma 3.7, we can estimate I′1 by

|I′1| � Cθα min

{
1+θε ,

1+θε

θK

}
M f (x)

� CθαM f (x),

since K � ε . For I′2 , let

|I′2| � C

(∫
|x−y|�θ

| f (y)|
|x− y|n−α(1+ |x− y|)K dy

+
∫
|x−y|�θ

| f (y)|
|x− y|n−α−ε(1+ |x− y|)K dy

)
= C(I′3 + I′4).

As in the proof of Lemma 3.7, for I′3 we have by (16),

I′3 � Cθα−n/pθλ/p min

{
1+θδ/p,

1+θδ/p

θK

}
‖ f‖p,φ

� Cθα−n/p‖ f‖p,φ , (34)

since K � (λ + δ )/p . Similarly, for I′4 , we have by (16),

I′4 � Cθα−n/pθλ/p+ε min

{
1+θδ/p,

1+θδ/p

θK

}
‖ f‖p,φ

� Cθα−n/p‖ f‖p,φ , (35)

since K � (λ + δ )/p+ ε . From (34) and (35) we have

|I′2| � Cθα−n/p‖ f‖p,φ .

Then it follows that

|TK
ρ f (x)| � C

(
θαM f (x)+θα−n/p‖ f‖p,φ

)
.

We choose θ =
(‖ f‖p,φ/M f (x)

)p/n
and we obtain

|TK
ρ f (x)| � CM f (x)1−α p/n‖ f‖α p/n

p,φ . �

We prove only (1) of Theorem 4.1, since we can prove (2) by the same method as
in the proof of (1) by using Lemma 4.3 (2).

Proof of Theorem 4.1 (1). Let 1/t = 1−α p/n . By Hölder’s inequality and the
boundedness of the Hardy-Littlewood maximal operator on generalized Morrey spaces,
we have
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(
1

ψ(r)

∫
B(x,r)

|g(y)TK
ρ f (y)|q dy

)1/q

� C

(
1

ψ(r)

∫
B(x,r)

|M f (y)|q/t |g(y)|q dy

)1/q

‖ f‖α p/n
p,φ

� C

(
1

φ(r)

∫
B(x,r)

|M f (y)|q dy

)1/tq( 1
η(r)

∫
B(x,r)

|g(y)|nq/α pdy

)α p/nq

‖ f‖α p/n
p,φ

� C‖g‖nq/α p,η‖ f‖1−α p/n
q,φ ‖ f‖α p/n

p,φ .

This implies

‖g ·TK
ρ f‖q,ψ � C‖g‖nq/α p,η‖ f‖1−α p/n

q,φ ‖ f‖α p/n
p,φ . �

As we mentioned for Tρ in Section 3, if we use Lemma 4.3, we obtain the follow-
ing theorems.

THEOREM 4.4. Let 1 < p < +∞ , 1 < q < +∞ , 1 < u < +∞ . For φ(r) and
ρ(r) assume that there exist positive constants C1 , C2 , C3 , and α and non-negative
constants λ , δ , and ε with (α + ε)p+λ + δ < n such that (10), (16), and (18).

(1) Let 1/s = 1/p−α/n and K � (λ +δ )/p+ε . Then there exists a positive constant
C such that

‖TK
ρ f‖s,φ � C‖ f‖p,φ , (36)

where f ∈ Lφp .

(2) Let 1/s = 1/p−α/(n−λ ) and K � δ/p+ε . Then there exists a positive constant
C such that

‖TK
ρ f‖s,φ � C‖ f‖p,φ , (37)

where f ∈ Lφp .

THEOREM 4.5. Let 1 < p < +∞ , 1 < q < +∞ , 1 < u < +∞ . For φ(r) and
ρ(r) assume that there exist positive constants C1 , C2 , C3 , and α and non-negative
constants λ , δ , and ε with (α + ε)p+λ + δ < n such that (10), (16), and (18).

(1) Let 1/q = 1/u+1/p−α/n and K � (λ + δ )/p+ ε . Assume that

ψ(r) = η(r)q/uφ(r)q(1/p−α/n)

and g ∈ Lηu . Then there exists a positive constant C such that

‖g ·TK
ρ f‖q,ψ � C‖g‖u,η‖ f‖p,φ , (38)

where f ∈ Lφp .
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(2) Let 1/q = 1/u+1/p−α/(n−λ) and K � δ/p+ ε . Assume that

ψ(r) = η(r)q/uφ(r)q{1/p−α/(n−λ )}

and g ∈ Lηu . Then there exists a positive constant C such that

‖g ·TK
ρ f‖q,ψ � C‖g‖u,η‖ f‖p,φ , (39)

where f ∈ Lφp .

REMARK 4.6. As we mentioned in Remark 3.9, (2) of Theorems 4.4 and 4.5 fol-
low from [11, Theorem 7.3].

We only prove (1) of Theorems 4.4 and 4.5.

Proof of Theorem 4.4 (1). By using (32) and the boundedness of the Hardy-
Littlewood maximal operator on generalized Morrey spaces, we have

‖TK
ρ f‖s,φ � C sup

x∈Rn

r>0

(
1

φ(r)

∫
B(x,r)

|M f (y)|(1−α p/n)sdy

)1/s

‖ f‖α p/n
p,φ

� C‖ f‖1−α p/n
p,φ ‖ f‖α p/n

p,φ

= C‖ f‖p,φ . �

Proof of Theorem 4.5 (1). Let 1 < s < +∞ and 1/s = 1/p−α/n . By Hölder’s
inequality on Morrey spaces, we have

‖g ·TK
ρ f‖q,ψ � ‖g‖u,η‖TK

ρ f‖s,φ . (40)

Combining (36) with (40), we arrive at the desired inequality. �

Acknowledgements

I am grateful to the referee for valuable comments and advices. I thank Professor
Eiichi Nakai for his valuable comment mentioned in Remark 3.9. I also thank Professor
Kazuhiro Kurata and Professor Yoshihiro Sawano who read the first version of this
paper and gave me useful comments.

RE F ER EN C ES

[1] D. R. ADAMS, A note on Riesz potentials, Duke Math. J., 42, 4 (1975), 765–778.
[2] F. CHIARENZA AND M. FRASCA, Morrey spaces and Hardy-Littlewood maximal function, Rend.

Mat. Appl., 7, 7 (1987), 273–279.
[3] D. EDMUNDS, V. KOKILASHVILI, AND A. MENSKI,Bounded and compact integral operators, Math.

Appl. vol. 543, Springer, 2002, Chapter 6.
[4] ERIDANI, H. GUNAWAN, On generalized fractional integrals, J. Indonesian Math. Soc. (MIHMI), 8,

3 (2002), 25–28.



SOME INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRAL OPERATORS 865

[5] ERIDANI, H. GUNAWAN, AND E. NAKAI, On generalized fractional integral operators, Sci. Math.
Jpn. 60, 3 (2004), 539–550.

[6] H. GUNAWAN, A note on the generalized fractional integral operators, J. Indonesian Math. Soc.
(MIHMI), 9, 1 (2003), 39–43.

[7] K. KURATA, S. NISHIGAKI, AND S. SUGANO, Boundedness of integral operators on generalized
Morrey spaces and its application to Schrödinger operators, Proc. Amer. Math. Soc., 128, 4 (2000),
1125–1134.

[8] E. NAKAI, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials
on generalized Morrey spaces, Math. Nachr., 166 (1994), 95–103.

[9] E. NAKAI, On generalized fractional integrals, Taiwanese J. Math., 5, 3 (2001), 587–602.
[10] E. NAKAI, Generalized fractional integrals on Orlicz-Morrey spaces, Proceedings of International

Symposium on Banach and Function Spaces (Kitakyushu, 2003), 323–333, Yokohama Publishers,
Yokohama, 2004.

[11] E. NAKAI, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math., 188
(2008), 193–221.

[12] E. NAKAI, private communication.
[13] P. A. OLSEN, Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial

Differential Equations, 20 (1995), 2005–2055.
[14] J. PEETRE, On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71–87.
[15] Y. SAWANO, S. SUGANO, AND H. TANAKA, Generalized fractional integral operators and fractional

maximal operators in the framework of Morrey spaces, to appear in Trans. Amer. Math. Soc.
[16] Y. SAWANO, S. SUGANO, AND H. TANAKA, A note on generalized fractional integral operators on

generalized Morrey spaces, Boundary Value Problems, Volume 2009, Article ID 835865, 18 pages,
doi:10.1155/2009/835865.

[17] S. SUGANO AND H. TANAKA, Boundedness of fractional integral operators on generalized Morrey
spaces, Sci. Math. Jpn., 58, 3 (2003), 531–540.

[18] JINRONG WANG, X. XIANG, W. WEI, AND QIAN CHEN, The generalized Gronwall inequal-
ity and its application to periodic solutions of integrodifferential impulsive periodic system on Ba-
nach space, Journal of Inequalities and Applications, Volume 2008, Article ID 430521, 22 pages,
doi:10.1155/2008/430521.

(Received September 28, 2009) Satoko Sugano
Kobe City College of Technology

8-3 Gakuen-higashimachi
Nishi-ku, Kobe 651-2194

Japan
e-mail: sugano@kobe-kosen.ac.jp

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


