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(Communicated by J. Pečarić)

Abstract. In this paper we are concerned with an integrodifferential problem which arises for
instance when we study a Cauchy-type fractional differential equation. This problem involves a
convolution of a kernel with a nonlinear function of the solution together with its derivatives up
to order two. For ordinary (third order) differential equations the kernel is regular while in our
case it is singular and nonintegrable. Combining a desingularization technique due to the second
author with some other estimations, we find bounds for solutions of the problem with different
nonlinearities. Our results are illustrated by an application to fractional differential equations.

1. Introduction

In this work we are interested in the following integro-differential problem with
initial value data⎧⎨

⎩x′′(t) � a(t)+
∫ t

t0
(t− s)α−1F(s,x,x′,x′′)ds, t > t0

x(t0) = k0, x′(t0) = k1,

(1)

where k0,k1 are given constants, a(t) is a nonnegative continuous function and 0 <
α < 1. F here is a nonlinear function of the time variable, the solution x and its first
and second derivatives. Two different classes of functions will be specified in the se-
quel. A similar problem was studied by E. Kurpinar [8] but with a regular kernel.
He generalized an inequality given by Pachpatte ([17,18]) and found some continu-
ous bounds for some classes of nonlinearities and used his results to obtain bounds
on solutions of differential equations of the form x′′′(t) = f (t,x,x′,x′′) with the initial
conditions x(t0) = k0, x′(t0) = k1, x′′(t0) = k2, t0 > 0, where f is a continuous func-
tion and k0,k1 and k2 are real constants. The integral term in (1) may be regarded as
a convolution of the singular kernel 1/t1−α with the nonlinear function F(t,x,x′,x′′).
Our work may then be considered as the singular version of the work of E. Kurpinar.
It is worthmentioning here that because of the singularity (and nonintegrability) of the
kernel the standard methods used in the case of a regular kernel are useless in our sit-
uation. To overcome these difficulties we shall combine a desingularization technique
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due to M. Kirane and N.-e. Tatar [7] which is in turn based on an idea by M. Medved
(see [11,12]). This technique has been proved to be very efficient for different kinds of
problems (see [21]). We refer the reader to the papers [3,4,5,9,10,13] and the references
therein for some other treatements of desingularization and applications to fractional
differential equations.

Our paper is organized as follows. In Section 2 we prepare some tools needed to
prove our theorems. Section 3 contains the statements and proofs of our main results
and in Section 4 we give an application to fractional differential problems.

2. Preliminaries

In this section we state some definitions and lemmas. We denote by Γ(.) the usual
Gamma function.

DEFINITION 1. let [a,b] (−∞ < a < b < ∞) be a finite interval and let AC [a,b]
be the space of functions f which are absolutely continuous on [a,b] . For n positive

integer and D =
d
dt

, we denote by

ACn [a,b] =
{

f : [a,b]−→ R,
(
Dn−1 f

)
(t) ∈ AC [a,b]

}
.

In particular AC1 [a,b] = AC [a,b] .

DEFINITION 2. The Riemann-Liouville fractional integral of order α > 0 of a
real valued Lebesgue-summable function f is defined by

Iαt0 f (t) =
1

Γ(α)

∫ t

t0
(t− s)α−1 f (s)ds

provided that the integral exists.

DEFINITION 3. The fractional derivative (in the sense of Riemann-Liouville) of
order α > 0 of a real valued function f is defined as the left inverse of the fractional
integral of f

Dα
t0 f (t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

t0

f (s)ds
(t− s)α−n+1 , n = [α]+1

provided that the right hand side exists.

The first lemma will be used in Section 4. It will help us get rid of a fractional
derivative in the left hand side of an integro-fractional-differential inequality.

LEMMA 1. Let α > 0, n = [α]+1 and let fn−α(t)= (In−α
t0 f )(t) be the fractional

integral in Definition 2 of order n−α.
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(a) If 1 � p � ∞ and f (t) ∈ Iαt0 (Lp), then

(Iαt0 Dα
t0 f )(t) = f (t).

(b) If f (t) ∈ L1 [t0,T ] and fn−α(t) ∈ ACn [t0,T ] , then the equality

(Iαt0 Dα
t0 f )(t) = f (t)−∑n

j=1

f (n− j)
n−α (t0)

Γ(α− j +1)
(t− t0)α−1,

holds almost everywhere on [t0,T ] . In particular, if 0 < α < 1, then

(Iαt0 Dα
t0 f )(t) = f (t)− f1−α(t0)

Γ(α)
(t − t0)α−1,

where f1−α (t) = (I1−α
t0 f )(t).

The following lemma is part of a desingularization technique used in this paper.

LEMMA 2. If θ ,δ ,ω > 0, then for any t > t0 > 0 we have

t1−θ
∫ t

t0
(t − s)θ−1sδ−1e−ωsds � K

where K = K(θ ,δ ,ω) is a positive constant independent of t. In fact,

K = max
{

1,21−θ
}
Γ(δ )(1+

δ
θ

)ω−δ .

Our last lemma is a well-known result which gives an upper bound for solutions
of a differential inequality.

LEMMA 3. Let V (t) be a positive differentiable function satisfying the inequality

V ′(t) � f (t)V (t)+g(t)V p(t), t ∈ [t0,∞), t0 > 0

where the functions f (t),g(t) are continuous in [t0,∞) , and p � 0, p �= 1 is a constant,
then

V (t) � exp

(∫ t

t0
f (ξ )dξ

)[
Vq(t0)+q

∫ t

t0
g(ξ )exp

(
−q

∫ ξ

t0
f (η)dη

)
dξ

]1
q

for t,ξ ∈ [t0,ρ), where q = 1− p and ρ is chosen so that the expression[
Vq(t0)+q

∫ t

t0
g(ξ )exp

(
−q

∫ ξ

t0
f (η)dη

)
dξ

]

is positive in the subinterval [t0,ρ).

For the proof of Lemma 1 and more on fractional calculus we refer to [6,15,16,19,20].
Lemma 2 is in [14]. The proof of Lemma 3 may be found in [1,2].
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3. The Results

The first result concerns a nonlinearity F satisfying for γ > 0, ν > 0, μ > 0,

( F1 ) |F(t,x,x′,x′′)| � |x′′(t)|[p(t) |x(t)|γ +q(t) |x′(t)|ν + r(t) |x′′(t)|μ]
where p(t), q(t), r(t) are real-valued continuous functions defined on I = [t0,T ] .
To enlighten the statement of our first result let us denote

σ = qmax(γ,ν,μ) for some q > 1
α ,

M = 6q−1K
q
p , where K comes from the appplication of Lemma 2,

Q(t) = max(|p(t)|q , |q(t)|q , |r(t)|q) , C(T ) = 21− 1
q max

t0�t�T
a(t)t1−α > 0,

v(t0) = 3+ |k0|+ |k1|+C(T )tα−1
0 and

G1(t)= Mtq(α−1)
0 eqt+σ(t−t0)Q(t)

[
v−σ (t0)− σM

q
tq(α−1)
0 e−σt0

∫ t

t0
e(q+σ)ξQ(ξ )dξ

]−1

.

It is clear that we may assume, without loss of generality, that C(T ) > 0.

THEOREM 1. Assume that ( F1 ) is satisfied . Let x(t) be a twice continuously
differentiable real-valued function defined on I = [t0,T ] , t0 > 0 , x′′(t) and a(t) be
nonnegative continuous functions. Then for solutions of (1) we have

(i) If σ � 1, then

x(t) � k0 + k1(t− t0)+C(T )tα−1
0

(t− t0)2

2
exp

(
1
q

∫ t

t0
G1(s) ds

)
, t ∈ [t0,ρ1), (2)

where C(T ) is defined above and ρ1 is chosen so that the expression

v−σ (t0)− σM
q

tq(α−1)
0 e−σt0

∫ t

t0
e(q+σ)ξQ(ξ )dξ (3)

is positive in the subinterval [t0,ρ1).
(ii) If 0 < σ < 1, we have a similar result as in (i) with σ replaced by the value

1 in the estimation.

Proof. (i) From (1) and (F1 ) we have

x′′(t) � a(t)+
∫ t

t0
(t − s)α−1x′′(s)

[
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ]
ds.

Applying Hölder inequality we obtain

x′′(t) � a(t)+
(∫ t

t0
(t − s)p(α−1)e−psds

) 1
p

×
[∫ t

t0
eqs (x′′(s))q

(
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ)q
ds

] 1
q
,
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for q > 1 such that 0 <
1
q

< α < 1 and p such that
1
p

+
1
q

= 1. Since p(α−1) > −1,

we can apply Lemma 2 with δ = 1 to get

x′′(t) � a(t)+K
1
p tα−1

×
[∫ t

t0
eqs (x′′(s))q

(
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ)q
ds

] 1
q
.

(4)

By using the following well known (consequence of the Jensen) inequality

(a1 +a2 + ...+an)r � nr−1(ar
1 +ar

2 + ...+ar
n), a1,a2, ...,an � 0, r > 1

twice (once with n = 2 and once with n = 3) , r = q and we find

(t1−αx′′(t))q � C(T )q

+M
∫ t

t0
eqsQ(s)

(
x′′(s)

)q
(
|x(s)|qγ+∣∣x′(s)∣∣qν+

(
x′′(s)

)qμ
)
ds.

(5)

Define a function y(t) to be equal to the right hand side of the inequality (5), that is

y(t) := Cq +M
∫ t

t0
eqsQ(s)

(
x′′(s)

)q
(
|x(s)|qγ +

∣∣x′(s)∣∣qν +
(
x′′(s)

)qμ
)

ds. (6)

Therefore
x′′(t) � tα−1 q

√
y(t) � tα−1

0
q
√

y(t), t � t0 > 0. (7)

An integration of both sides of (7) from t0 to t and taking into account that y(t) is
nonnegative and nondecreasing, yields

∣∣x′(t)∣∣ � |k1|+ tα−1
0

∫ t

t0

q
√

y(s)ds � |k1|+ tα−1
0 (t− t0) q

√
y(t), (8)

and an integration again gives

|x(t)| � |k0|+ |k1|(t− t0)+ tα−1
0

∫ t

t0
(s− t0) q

√
y(s)ds

� |k0|+ |k1|(t− t0)+ tα−1
0

(t − t0)2

2
q
√

y(t).

(9)

Now differentiating (6) and using (7)-(9) we get

y′(t) � MeqtQ(t)tq(α−1)
0 y(t)

[(
1+ |k0|+ |k1|(t− t0)+ tα−1

0
(t − t0)2

2
q
√

y(t)
)qγ

+
(
1+ |k1|+ tα−1

0 (t− t0) q
√

y(t)
)qν

+
(
1+ tα−1

0
q
√

y(t)
)qμ

]
.

(10)
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By the definition of σ , we infer that

y′(t) � MeqtQ(t)tq(α−1)
0 y(t)

[(
1+ |k0|+ |k1|(t− t0)+ tα−1

0
(t − t0)2

2
q
√

y(t)
)σ

+
(
1+ |k1|+ tα−1

0 (t− t0) q
√

y(t)
)σ

+
(
1+ tα−1

0
q
√

y(t)
)σ]

.

(11)

Observe that in case |k0| and |k1| are greater than or equal to 1, then there is no need
to add 1 to the first two terms in the right hand side of (10). Now using the elementary
inequality

aσ +bσ + cσ � (a+b+ c)σ , a,b,c � 0, σ � 1

and the fact that y(t) is positive (C(T ) > 0) we obtain from (11) that

y′(t)
y(t)

� MeqtQ(t)tq(α−1)
0

×
[
3+ |k0|+ |k1|(1+ t− t0)+ tα−1

0

(
1+ t− t0 +

(t− t0)2

2

)
q
√

y(t)
]σ

.

(12)

Let us denote

v(t) := 3+ |k0|+ |k1|(1+ t− t0)+ tα−1
0

(
1+ t− t0 +

(t− t0)2

2

)
q
√

y(t).

Notice that v(t) > 0, v(t0) = 3+ |k0|+ |k1|+C(T )tα−1
0 and

v′(t) = |k1|+ tα−1
0

[
(1+ t− t0) q

√
y(t)+

1
q

y′(t)
y(t)

q
√

y(t)
(

1+ t− t0 +
(t− t0)2

2

)]

� v(t)+
1
q
MeqtQ(t)tq(α−1)

0 v(t)σ+1.

(13)

By Lemma 3 we deduce from (13) the estimate

v(t) � et−t0

[
v−σ (t0)− σM

q
tq(α−1)
0 e−σt0

∫ t

t0
e(q+σ)ξQ(ξ )dξ

] 1
−σ (14)

for t ∈ [t0,ρ1) and ρ1 is chosen so that the expression between brackets is positive in
the subinterval [t0,ρ1). Next, the relations (12) in (14) imply

y′(t)
y(t)

� Meqt+σ(t−t0)Q(t)tq(α−1)
0

[
v−σ (t0)− σM

q
tq(α−1)
0 e−σt0

∫ t

t0
e(q+σ)ξQ(ξ )dξ

]−1

.

(15)
Changing t into s and integrating the inequality (15) from t0 to t we find

y(t) � y(t0)exp

(∫ t

t0
G1(s)ds

)
(16)
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where G1(t) is defined just before the theorem. Using (16) in (9) we obtain the desired
inequality in (2).
The second result concerns a nonlinearity F satisfying

(F2 ) ∣∣F(t,x,x′,x′′)
∣∣ � x′′(t)

×
(∣∣x(t)+ x′(t)+ x′′(t)

∣∣+∫ t

t0
b(t,s)

∣∣x(s)+ x′(s)+ x′′(s)
∣∣ds

)

First, let us denote

N = 2q−1K
q
p , E(t) = max(1,bq(t,t)) ,

F(t0) = |k0|+ |k1|+Ctα−1
0 , C(T ) = 21− 1

q max
t0�t�T

a(t)t1−α ,

G3(t) = Ne3qt−2qt0 tq(α−1)
0 E(t)

[
F−q(t0)−Ntq(α−1)

0 e−2qt0
∫ t

t0
e3qξE(ξ )dξ

]−1

.

THEOREM 2. Assume that F satisfies (F2 ). Suppose that x(t), x′(t) are real-
valued continuous functions defined on I = [t0,T ] and x′′(t), a(t) are nonnegative
continuous functions defined on I. The function b is nonnegative and continuous on
�=

{
(t,s) ∈ I2 : s � t

}
. Moreover, we assume that b(t,s) is nondecreasing in s. Then

solutions of (1) satisfy

x(t) � |k0|+ |k1|(t − t0)+Ctα−1
0

(t− t0)2

2
exp

(
1
q

∫ t

t0
G3(s)ds

)
(17)

for t ∈ [t0,ρ2), where ρ2 is chosen so that the expression

F−q(t0)−Ntq(α−1)
0 e−2qt0

∫ t

t0
e3qξE(ξ )dξ

is positive in the subinterval [t0,ρ2).

The proof of this theorem is similar to that of Theorem 1. Nevertheless, for com-
pleteness, it is helpful to sketch few details before refereeing to the proof of Theorem 1.

Proof. Clearly we have

x′′(t) � a(t)+
∫ t

t0
(t − s)α−1x′′(s)

×
(∣∣x(s)+ x′(s)+ x′′(s)

∣∣+∫ s

t0
b(s,τ)

∣∣x(τ)+ x′(τ)+ x′′(τ)
∣∣dτ)ds.

By Hölder inequality we obtain

x′′(t) � a(t)+
(∫ t

t0
(t− s)p(α−1)e−psds

) 1
p
[∫ t

t0
eqsx′′q(s)

(∣∣x(s)+ x′(s)+ x′′(s)
∣∣

+
∫ s

t0
b(s,τ)

∣∣x(τ)+ x′(τ)+ x′′(τ)
∣∣dτ)q

ds

] 1
q
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for q > 1 such that 0 <
1
q

< α < 1 and p its conjuguate exponent i.e.
1
p

+
1
q

= 1. As

p(α−1) > −1, we can use Lemma 2 with δ = 1, to get

x′′(t) �a(t)+K
1
p tα−1

[∫ t

t0
eqsx′′q(s)

(∣∣x(s)+ x′(s)+ x′′(s)
∣∣

+
∫ s

t0
b(s,τ)

∣∣x(τ)+ x′(τ)+ x′′(τ)
∣∣dτ)q

ds

] 1
q

.

By the discrete Jensen’s inequality with n = 2, r = q and the fact that b(t,s) is nonde-
creasing in s we obtain(

t1−αx′′(t)
)q � Cq +N

∫ t

t0
eqsx′′q(s)E(s)

(∣∣x(s)+ x′(s)+ x′′(s)
∣∣

+
∫ s

t0

∣∣x(τ)+ x′(τ)+ x′′(τ)
∣∣dτ)q

ds,
(18)

where C and N are as above. If we denote the right hand side of (18) by z(t), we easily
see that z(t) > 0 (because C(T ) > 0)), z(t) is nondecreasing and z(t0) = Cq . Further,
from (18), we have for t � t0 > 0

x′′(t) � tα−1 q
√

z(t) � tα−1
0

q
√

z(t). (19)

An integration of both sides of (19) from t0 to t (after replacing t by s) gives∣∣x′(t)∣∣ � |k1|+ tα−1
0

∫ t

t0

q
√

z(s)ds � |k1|+ tα−1
0 (t− t0) q

√
z(t), (20)

and another one gives

|x(t)| � |k0|+ |k1|(t − t0)+ tα−1
0

∫ t

t0
(s− t0) q

√
z(s)ds

� |k0|+ |k1|(t − t0)+ tα−1
0

(t − t0)2

2
q
√

z(t).

(21)

Next, a differentiation of z(t) followed by the use of (19)-(21) implies

z′(t)
z(t)

� Neqttq(α−1)
0 E(t)

×
(
|k0|+ |k1|(1+ t− t0)+ tα−1

0 (1+ t− t0 +
(t− t0)2

2
) q
√

z(t)

+
∫ t

t0

(
|k0|+ |k1|(1+ s− t0)+ tα−1

0 (1+ s− t0 +
(s− t0)2

2
) q
√

z(s)
)

ds

)q

.

Now we put

F(t) := |k0|+ |k1|(1+ t− t0)+ tα−1
0 (1+ t− t0 +

(t − t0)2

2
) q
√

z(t)

+
∫ t

t0

(
|k0|+ |k1|(1+ s− t0)+ tα−1

0 (1+ s− t0 +
(s− t0)2

2
) q
√

z(s)
)

ds
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and complete the proof as in part (i) of Theorem 1.

REMARK 1. 1- It is clear that we have not tried to push the estimates to the ex-
treme. Indeed, for instance in (10) we could have rather used the algebraic inequality
xa � 1+ xb, a � b (see the argument in the Application section).

2- Using (16) in (8) and (7) we can have estimates on x′(t) and x′′(t), respectively.
3- Other nonlinearities can be treated by the same technique. Notice for instance

that there is still room for other nonlinearities involving polynomials in the variable t.
This is due to the applicability of Lemma 2 for values of δ �= 1.

4- Our argument works also for higher order inequalities. That is we can obtain
similar results for⎧⎪⎨

⎪⎩
x(n)(t) � a(t)+

∫ t

t0
(t− s)α−1F

(
s,x(s),x′(s), ...,x(n)(s)

)
ds

x(t0) = k0, x′(t0) = k1, ... , x(n−1)(t0) = kn−1

with n > 3.

4. Application

In this section we present an application illustrating our findings in the previous section.
We will see how to obtain bounds on solutions of some fractional differential problems.
In particular, in case solutions exist locally then these bounds may help proving global
existence in time.

Let us consider the Cauchy-type problem⎧⎨
⎩

Dα
t0

(
x′′(t)

)
= F(t,x,x′,x′′), 0 < α < 1, t ∈ I = [t0,T ] , t0 > 0,

x(t0) = k0, x′(t0) = k1, lim
t→t0

[
(t − t0)1−αx′′(t)

]
= k2,

(22)

where Dα denotes the fractional derivative (in the sense of Riemann-Liouville) of order
α, (0 < α < 1) , and F is a continuous function satisfying the assumption

∣∣F(t,x,x′,x′′)
∣∣ � x′′(t)

[
p(t) |x(t)|γ +q(t)

∣∣x′(t)∣∣ν + r(t)
∣∣x′′(t)∣∣μ]

for γ > 0, ν > 0, μ > 0, and p(t), q(t), r(t) are real-valued continuous functions
defined on I = [t0,T ] .

The weighted initial condition

lim
t→t0

[
(t − t0)1−αx′′(t)

]
= k2

is a natural one. It corresponds to (I1−α
t0 x′′)(t+0 ) = k2Γ(α) or by a notation convention

to (Dα−1
t0 x′′)(t+0 ) = k2Γ(α), see the following lemma which can be found in [3, Lemma

3.2 p. 151]
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LEMMA 4. Let 0 < α < 1 and y(t) be a Lebesgue measurable function on [a,b].
If there exists a.e. a limit

lim
t→a+

[
(t −a)1−αy(t)

]
= c

then there exists a.e. a limit

(I1−α
a+ y)(a+) := lim

t→a+
(I1−α

a+ y)(a+) = cΓ(α).

Assuming that x′′1−α(t) = (I1−α
t0 x′′)(t) ∈ AC [t0,T ] , we can apply Iα to both sides

of the equation in (22) and use Lemma 1 to find

x′′(t)− (I1−α
t0 x′′)(t+0 )
Γ(α)

(t− t0)α−1 = IαF(t,x,x′,x′′)

or

x′′(t) = k2(t− t0)α−1 +
1

Γ(α)

∫ t

t0
(t− s)α−1F(s,x,x′,x′′)ds. (23)

Although the same argument as in the proof of Theorem 1 is applicable here, the
equation (23) presents some differences and therefore some points need to be clarified.
In particular, our function a(t) here is equal to k2(t − t0)α−1 which is singular at t0.
Moreover, the function v(t) we get by a direct application of the argument in the proof
of Theorem 1 is not defined at t0. We shall briefly sketch the proof (of how to obtain
bounds on solutions of (23)) below.

Assume that σ � 1. As in (4) we have

x′′(t) � k2(t− t0)α−1 +
K

1
p (t − t0)α−1

Γ(α)

×
[∫ t

t0
eqsx′′q(s)

(
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ)q
ds

] 1
q

or

(t− t0)1−αx′′(t) � k2 +
K

1
p

Γ(α)

×
[∫ t

t0
eqsx′′q(s)

(
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ)q
ds

] 1
q
.

(24)

Then raising both sides of (24) to the power q we see that

[
(t− t0)1−αx′′(t)

]q � 2q−1kq
2 +

2q−1K
q
p

Γq(α)

×
[∫ t

t0
eqsx′′q(s)

(
p(s) |x(s)|γ +q(s)

∣∣x′(s)∣∣ν + r(s)
(
x′′(s)

)μ)q
ds

]
.

(25)
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Denoting by y(t) the right hand side of (25) we entail that

x′′(t) � (t− t0)α−1 q
√

y(t), t � t0. (26)

Notice that the coefficient of q
√

y(t) is no more a constant (as in the first argument).
The relation (26) implies that

∣∣x′(t)∣∣ � |k1|+
∫ t

t0
(s− t0)α−1 q

√
y(s)ds � |k1|+ (t− t0)α

α
q
√

y(t), (27)

and

|x(t)| � |k0|+ |k1|(t − t0)+
(t − t0)α+1

α(α +1)
q
√

y(t). (28)

On the other hand, we have

y′(t) =
2q−1K

q
p

Γq(α)
eqtx′′q(t)

(
p(t) |x(t)|γ +q(t)

∣∣x′(t)∣∣ν + r(t)
(
x′′(t)

)μ)q

� R(t)y(t)

×
[
pq(t) |x(t)|γq +qq(t)

∣∣x′(t)∣∣νq + rq(t)(t − t0)−μq(α−1) ∣∣(t − t0)1−αx′′(t)
∣∣μq

]
� R(t)Q(t)y(t)

[
3+ |x(t)|σ +

∣∣x′(t)∣∣σ +
∣∣(t− t0)1−αx′′(t)

∣∣σ]
� R(t)Q(t)y(t)

[
3+

(|x(t)|+ ∣∣x′(t)∣∣+ ∣∣(t− t0)1−αx′′(t)
∣∣)σ]

where

R(t) :=
6q−1K

q
p eqt(t− t0)q(α−1)

Γq(α)
(29)

and
Q(t) = max{pq(t),qq(t),rq(t)(t − t0)−μq(α−1)}. (30)

Hence, taking into account the relations (26)-(28), we find

y′(t) � 3R(t)Q(t)y(t)+R(t)Q(t)y(t)

×
[
|k0|+ |k1|(1+ t− t0)+

(
1+

1
α

+
t− t0
α

+
(t − t0)α+1

α(α +1)

)
q
√

y(t)
]σ

.
(31)

Let us designate by v(t) the expression

v(t) := |k0|+ |k1| (1+ t− t0)+
(

1+
1
α

+
t− t0
α

+
(t − t0)α+1

α(α +1)

)
q
√

y(t), (32)

then v(t) > 0, v(t0) = |k0|+ |k1|+21− 1
q
(
1+ 1

α
)
k2 and

v′(t) = |k1|+ y′(t)
qy(t)

q
√

y(t)
(

1+
1
α

+
t− t0
α

+
(t− t0)α+1

α(α +1)

)

+ q
√

y(t)
(

1
α

+
(t − t0)α

α

)
.

(33)



878 FAHIM LAKHAL AND NASSER-EDDINE TATAR

In virtue of (31) we can write

y′(t)
y(t)

� 3R(t)Q(t)+R(t)Q(t)(t− t0)q(α−1)vσ (t). (34)

Hence (33), (34) and the definition of v(t) allow us to derive

v′(t) �
(

1
α

+
3R(t)

q

)
v(t)+

R(t)
q

vσ+1(t).

A direct application of Lemma 3 entails

v(t) � exp

{∫ t

t0

(
1
α

+
3R(ξ )

q

)
dξ

}

×
[
v−σ (t0)− σ

q

∫ t

t0
R(ξ )exp

{
σ

∫ ξ

t0

(
1
α

+
3R(η)

q

)
dη

}
dξ

]−1
σ

.

Therefore

y(t) � y(t0)exp

(∫ t

t0
G3(s)ds

)

with

G3(t) : = 3R(t)Q(t)+R(t)Q(t)(t− t0)q(α−1) exp

{
σ

∫ t

t0

(
1
α

+
3R(ξ )

q

)
dξ

}

×
[
v−σ (t0)− σ

q

∫ t

t0
R(ξ )exp

{
σ

∫ ξ

t0

(
1
α

+
3R(η)

q

)
dη

}
dξ

]−1

.

(35)

Finally, with the help of the relation (28) we get an estimate for x(t)

|x(t)| � |k0|+ |k1|(t − t0)+
21− 1

q k2(t− t0)α+1

α(α +1)
exp

(
1
q

∫ t

t0
G3(s)ds

)
(36)

as long as the expression v−σ (t0)− σ
q

∫ t
t0

R(ξ )exp
{
σ

∫ ξ
t0

(
1
α + 3R(η)

q

)
dη

}
dξ is posi-

tive.

REMARK 2. Notice that if σ
q

∫ t
t0

R(ξ )exp
{
σ

∫ ξ
t0

(
1
α + 3R(η)

q

)
dη

}
dξ < v−σ (t0)

for all t � t0, then solutions exist globally in time.

The above findings may be stated in the following theorem.

THEOREM 3. Under the assumptions of Theorem 1 and σ � 1, we have

x(t) � |k0|+ |k1|(t − t0)+
21− 1

q k2(t− t0)α+1

α(α +1)
exp

(
1
q

∫ t

t0
G3(s)ds

)
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as long as the expression v−σ (t0)− σ
q

∫ t
t0

R(ξ )exp
{
σ

∫ ξ
t0

(
1
α + 3R(η)

q

)
dη

}
dξ is posi-

tive. Furthermore, if

σ
q

∫ t

t0
R(ξ )exp

{
σ

∫ ξ

t0

(
1
α

+
3R(η)

q

)
dη

}
dξ < v−σ (t0)

for all t � t0, then any local solution exists globally in time.

REMARK 3. Note that the assumption that x′′ be nonnegative (in the first two
theorems) is not really restrictive since for equations (which is often the case, as in the
present application) we can work with the absolute value of this expression as in the
relation (23) above.

Discussion. It is worth noting that Dα
t0 (x′′(t)) �= (Dα+2

t0 x)(t). Indeed, from the
property 2.4 p. 75 in [6] we have

(Dα+2
t0 x)(t) = (Dα

t0D
2x)(t)+

x′(t0)(t − t0)−α−1

Γ(−α)
+

x(t0)(t − t0)−α−2

Γ(−1−α)
.

This leads to some difficulties when we apply the fractional integration operator Iα to
both sides of the equation. Clearly, we do not have this problem if we assume that
x(t0) = x′(t0) = 0 or if we assume that the last two terms in (32) are nonnegative. In the
latter case we can get rid of these two terms before applying the operator Iα .
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