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WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS

WITH KERNEL SATISFYING HÖRMANDER TYPE CONDITIONS
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(Communicated by L. Pick)

Abstract. In this paper we study inequalities with weights for fractional operators Tα given by
convolution with a kernel Kα which is supposed to satisfy some size condition and a fractional
Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have
been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional oper-
ators include as particular cases the classical fractional integral Iα , fractional integrals associated
to an homogeneous function and fractional integrals given by a Fourier multiplier.

1. Introduction

Suppose that T is a convolution integral operator with kernel K which satisfies
some regularity condition and suppose that we know of some behavior on T with re-
spect to Lebesgue measure. Sometimes, if one wants to know the behavior of T when
we change the measure, i.e., when we consider the measure w(x)dx where w is a
weight, i.e., 0 � w ∈ L1

loc(R
n) , we get an inequality of the type∫

|T f |pw � C
∫

[MT f ]pw , (1.1)

for all 0 < p <∞ and w ∈ A∞ , where MT is a maximal operator related to the operator
T which is normally easier to deal with. In general, MT is strongly related with the
kernel K and it will be bigger as much rough will be the kernel.

For T a Calderón-Zygmund singular integral operator (i.e., K ∈ H∗
∞ using the no-

tation in [11]) inequality (1.1) holds with MT = M , where M is the Hardy-Littlewood
maximal operator (see [5]). If T is a singular integral operator with less regular kernel
as in [10], then inequality (1.1) holds with MT = Mr , where Mr f = [M(| f |r)]1/r for
some 1 � r < ∞ (see [20]). The value of the exponent r is determined by the smooth-
ness of the kernel, namely, the kernel satisfies an Lr′ -Hörmander condition (see the
precise definition in section 3). In [12], the Lr -Hörmander condition is generalized to
the scale of the Orlicz spaces. For a Young function A , the LA -Hörmander condition
is introduced in that paper (for A(t) = tr we get the Lr -Hörmander condition) and it
is proved that if the kernel satisfies the LA -Hörmander condition, then inequality (1.1)
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holds with MT = MA , where A is the complementary function of A and MA is the Or-
licz maximal operator associated to A (see the definition in section 2). The correspond-
ing inequality (1.1) for commutators (with symbol b ∈ BMO) of Calderón-Zygmund
singular integrals appears in [16]. For commutators of generalized singular integrals,
associated to a kernel satisfying a Hörmander type condition given by a Young function
A , the corresponding inequality (1.1) appears in [11].

In 1974, Muckenhoupt and Wheeden [13] proved inequality (1.1) for T the clas-
sical Riesz potential Iα and MT the fractional maximal function Mα , defined for
0 < α < n and locally integrable function f by

Iα f (x) =
∫

Rn

f (y)
|x− y|n−α dy and Mα f (x) = sup

x∈B

1

|B|1− α
n

∫
B
| f (y)|dy .

For the commutators of fractional integral operators, inequalities of the type (1.1) can
be found in [6] and [1].

There are fractional integrals with less regular kernel than the Riesz transform. In
[9], Kurtz stated a fractional Lr -Hörmander type condition and he applied it to study
the boundedness with weights of fractional integrals given by a multiplier (see Section
4 for definitions). Other generalization of fractional integrals are those whose kernel
is associated to an homogeneous function Ω . Suppose that Ω is homogeneous of
degree zero and Ω ∈ L1(Sn−1) , where Sn−1 denotes the unit sphere on R

n . Define the
fractional integral associated to Ω by

TΩ,α f (x) =
∫

Rn

Ω(y/|y|)
|y|n−α f (x− y)dy.

With suitable integrability conditions on the function Ω , the boundedness of this op-
erator was studied for several authors (see for example [4] and [7]). In a more general
context and with an aditional condition on Ω , that is, Ω satisfying the Ls(Sn−1)-Dini
smoothness condition, Segovia and Torrea [21], studied the good weights for this op-
erator and its commutators. The Ls(Sn−1)-Dini smoothness condition on Ω provides a

fractional Ls -Hörmander type condition on the kernel Kα(x) = Ω(x/|x|)
|x|n−α .

In this paper we study convolution operators Tα f = Kα ∗ f which include as par-
ticular cases the operators TΩ,α and the fractional integrals associated to a multiplier as
in [9]. We shall obtain inequalities of the type (1.1) for these operators when its kernels
Kα satisfy a size condition and a fractional LA -Hörmander condition (we will denote it
by Hα ,A ). We would like to point out that no boundedness of the operator Tα is used
to derive (1.1). Moreover, if we know some boundedness of the operator Tα and Kα
satisfies a size condition and a suitable fractional LA -Hörmander condition we shall
prove (1.1) for the commutators of Tα .

These results will allow us to obtain, for general operators Tα and its commutators,
two-weight inequalities of the type

∫
|T f |pw � C

∫
| f |pM̃T w , (1.2)
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for 1 < p <∞ and with no assumptions on the weight w . The operators M̃T are again
suitable maximal operators related with T and not necessarily the same for inequalities
(1.1) and (1.2).

There is a great amount of works that deal with inequalities of the type (1.2). When
T is a Calderón-Zygmund operator (with kernel K ∈ H∗

∞ ), inequality (1.2) holds with
MT = M[p]+1 , where [p] is the integer part of p and, for k ∈N , Mk denotes the Hardy-
Littlewood maximal function iterated k times (see [15]). The corresponding result for
commutators (with symbol b ∈ BMO) of Calderón-Zygmund singular integrals was
proved in [16]. For T a singular integral associated to a kernel K satisfying a general
Hörmander’s condition given by a Young function A , the corresponding results, that
include as particular cases those of C. Pérez, have been proved in [11]. When T is the
Riesz fractional integral Iα , inequality (1.2) holds with MT = Mα p(M[p]) (this result
is also due to C. Pérez, see [18]). For commutators (with symbol b ∈ BMO) of Iα see
[1] and [2].

The paper is organized as follows. Section 2 contains preliminaries and definitions
that are needed to state the results. In Section 3 we state and prove the Coifman type
inequality (1.1) for generalized fractional integrals and their commutators. Section 4
is devoted to give some applications. In Section 5 we state a strong type two-weight
norm inequality from the Coifman type inequality and we apply it to the examples in
Section 4.

2. Preliminaries

A function A : [0,∞) → [0,∞) is said to be a Young function if it is continuous,
convex, increasing and satisfies A (0) = 0 and A (t) → ∞ as t → ∞ .

Given a Young function A , define the A -mean Luxemburg norm of a function f
on a ball (or a cube) B by

|| f ||A ,B = inf

{
λ > 0 :

1
|B|

∫
B
A

( | f |
λ

)
� 1

}
. (2.1)

It is well known that if A (t) and B(t) are Young functions and A (t) � CB(t)
for all t � t0 then || f ||A ,B � C|| f ||B,B , for all balls B and functions f . Thus, the
behavior of A (t) for t � t0 is not important. If A ≈ B , i.e., there are constants
t0,c1,c2 > 0 such that c1A (t) � B(t) � c2A (t) for t � t0 , then || f ||A ,B ≈ || f ||B,B .

Each Young function A has an associated complementary Young function A
satisfying

t � A −1(t)A
−1

(t) � 2t, t > 0.

There is a generalization of Hölder’s inequality

1
|B|

∫
B
| f g| � || f ||A ,B||g||A ,B, (2.2)

and even another one that will be used later (see [14]): If A ,B and C are Young
functions and

A −1(t)B−1(t) � C−1(t)
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then
‖ f g‖C ,B � 2‖ f‖A ,B‖g‖B,B. (2.3)

When A (t) = t set A (t) = 0 if 0 � t � 1 and A (t) = ∞ otherwise. Observe that A

is not a Young function, still LA can be identified with L∞ . Also, writing A
−1

(t)≡ 1,
the previous Hölder inequalities make sense if one of the functions is A or A .

For a complete account on Young functions and Orlicz spaces see [19] and [14].
For each locally integrable function f and 0 � α < n , the Orlicz fractional maxi-

mal operator associated to the Young function A is defined as

Mα ,A f (x) = sup
B	x

|B|α/n|| f ||A ,B.

For α = 0, write MA instead of M0,A . When A (t) = tr , r > 1, then we write
Mα ,A =Mα ,r and if r = 1 we simply write Mα ,A = Mα which is the classical fractional
maximal operator. For α = 0 and A (t) = t , then M0,A = M is the Hardy-Littlewood
maximal operator.

For 1 < p < ∞ , a Young function A is said to belong to Bp if there exists c > 0

such that
∫ ∞
c

A (t)
t p

dt
t < ∞ . This condition appears first in [17] and it was shown that

A ∈ Bp if and only if MA is bounded on Lp(dx) .

We shall work with weights in the Muckenhoupt classes Ap , 1 � p �∞ , which are
defined as follows. Let w be a non-negative locally integrable function and 1 � p <∞ .
We say that w ∈ Ap if there exists Cp < ∞ such that for every ball B ⊂ R

n

(
1
|B|

∫
B
w(x)dx

)(
1
|B|

∫
B
w(x)1−p′ dx

)p−1

� Cp.

when 1 < p < ∞ , and for p = 1,

1
|B|

∫
B
w(y)dy � C1 w(x), for a.e. x ∈ B,

which can be equivalently written as Mw(x) � C1 w(x) for a.e. x ∈ R
n . Finally we

set A∞ = ∪p�1Ap . It is well known that the Muckenhoupt classes characterize the
boundedness of the Hardy-Littlewood maximal function on weighted Lebesgue spaces.
Namely, w ∈ Ap , 1 < p <∞ , if and only if M is bounded on Lp(w) and w ∈ A1 if and
only if M is of weak type (1,1) with respect to the measure w(x)dx .

3. The Coifman type inequalities

In this paper, we shall consider convolution operators Tα f = Kα ∗ f , 0 < α < n ,
where the kernels Kα are supposed to satisfy conditions that ensure certain control
on their size and their smoothness. From now on, we adopt the following conven-
tion: |x| ∼ s will stand for the set {s < |x| � 2s} and ‖ f‖A ,|x|∼s will stand for
‖ f χ {|x|∼s} ‖A ,B(0,2 s).
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DEFINITION 3.1. Let A be a Young function and let 0 � α < n . The kernel Kα
is said to satisfy the Sα ,A condition, denote it by saying Kα ∈ Sα ,A , if there exists a
constant C > 0 such that

‖Kα‖A ,|x|∼s � Csα−n.

When α = 0 we simply write S0,A = SA and when A (t) = t we write Sα ,A =
Sα . Observe that if Kα ∈ Sα , that is, there exists a constant C > 0 such that∫

|x|∼s
|Kα(x)|dx � Csα ,

then the operator Tα is well defined for example for L∞c functions, i.e., bounded func-
tions with compact support.

In [9] a sort of fractional Hörmander condition appears in the scale of Lr spaces.
As mentioned in the introduction, the Lr -Hörmander conditions for singular integrals
and its commutators have been generalized to the scale of Orlicz spaces (see [12] and
[11]). In this way, the same can be done for fractional operators and its commutators.

DEFINITION 3.2. Let A be a Young function and let k be an integer number,
k � 0. We say that the kernel Kα satisfies the Lα ,A ,k -Hörmander condition, we write
K ∈ Hα ,A ,k , if there exist c � 1 and C > 0 (depending on A and k ) such that for all
y ∈ R

n and R > c |y|
∞

∑
m=1

(2m R)n−α mk ‖Kα(·− y)−Kα(·)‖A ,|x|∼2m R � C.

The exponent k in the condition Hα ,A ,k is related with the order of the com-
mutator. If A gives rise to Lr , 1 � r � ∞ , we recover the fractional Lr -Hörmander
condition and simply write Hα ,r,k instead of Hα ,A ,k . For fractional operators we shall
use the condition Hα ,A ,0 that we shall simply denote by Hα ,A .

The following condition is related to the classical Lipschitz condition (H∗
∞ in [11]).

DEFINITION 3.3. The kernel Kα is said to satisfy the H∗
α ,∞ condition if there

exist c � 1 and C > 0 such that

|Kα (x− y)−Kα(x)| � C
|y|

|x|n+1−α , |x| > c|y| .

It is easy to see that for any k � 0, H∗
α ,∞ ⊂Hα ,∞,k ⊂Hα ,A ,k for every Young func-

tion A .

Next we shall state and prove one of the main results in this paper, a Coifman type
estimate for the operator Tα .



886 A. L. BERNARDIS, M. LORENTE AND M. S. RIVEROS

THEOREM 3.4. Let A be a Young function and 0 � α < n. Let Tα = Kα ∗ f with
Kα ∈ Sα ∩Hα ,A . Then for any 0 < p < ∞ and any w ∈ A∞ ,

∫
Rn

|Tα f (x)|p w(x)dx � C
∫

Rn
[Mα ,A f (x)]pw(x)dx , f ∈ L∞c , (3.1)

whenever the left-hand side is finite.

Observe that in Theorem 3.4 we do not assume any boundedness on the operator
Tα .

Proof. For simplicity we may assume that c = 1 in the condition Hα ,A . First we
shall prove that if w ∈ A∞ , 0 < p < ∞ , 0 < δ < min{1, p} and f ∈ L∞c , then

M�
δ (Tα f )(x) � CMα ,A f (x), (3.2)

where M�
δ f = (M�| f |δ )1/δ with

M� f (x) = sup
x∈B

inf
a∈R

1
|B|

∫
B
| f (y)−a|dy.

Fix x ∈ R
n , and a ball B = B(xB,R) containing x . For B̃ = B(xB,2R) , set f1 = f χ B̃

and f2 = f − f1 . Choose a = |Tα f2(xB)|δ . Then, by Jensen’s inequality and an easy
inequality |tδ − sδ |1/δ � |t− s| ,
(

1
|B|

∫
B
||Tα f |δ (y)−a|dy

)1/δ
� 1

|B|
∫

B
|Tα f (y)−Tα f2(xB)|dy

� 1
|B|

∫
B
|Tα f1(y)|dy+

1
|B|

∫
B
|Tα f2(y)−Tα f2(xB)|dy

� I + II.

Since Kα ∈ Sα we have

I � 1
|B|

∫
B

(∫
B̃
|Kα(y− z) f (z)|dz

)
dy

=
1
|B|

∫
B̃
| f (z)|

(∫
B
|Kα (y− z)|dy

)
dz

� 1
|B|

∫
B̃
| f (z)|

(∫
|y−z|�3R

|Kα(y− z)|dy

)
dz

� C
(3R)α

|B|
∫

B̃
| f (z)|dz � CMα f (x).
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Notice that Mα f (x) � CMα ,A f (x) . To estimate II observe that using (2.2) with A

and A and the fact that Kα ∈ Hα ,A , we get

|Tα f2(y)−Tα f2(xB)|

=
∣∣∣∣
∫

Rn�B̃
Kα(y− z) f (z)dz−

∫
Rn�B̃

Kα(xB − z) f (z)dz

∣∣∣∣
�

∫
|z−xB|>2R

| f (z)||Kα (y− z)−Kα(xB − z)|dz

�
∞

∑
m=1

∫
2mR<|z−xB|�2m+1R

| f (z)||Kα (y− z)−Kα(xB − z)|dz

�C
∞

∑
m=1

(2mR)n|| f ||A ,|z−xB|∼2mR||Kα(y−·)−Kα(xB −·)||A ,|z−xB|∼2mR

�CMα ,A f (x),

so its integral average over B with respect to the y-variable gives the same bound for
II .

The reasoning to complete the proof follows the same arguments given in [11].
Here we include them for the sake of completeness. By the extrapolation results ob-
tained in [6], the inequality (3.1) will hold for all 0 < p < ∞ and all w ∈ A∞ if,
and only if, it holds for some fixed exponent 0 < p0 < ∞ and all w ∈ A∞ . There-
fore, fix p0 ∈ (1,∞) , w ∈ A∞ and f ∈ L∞c , and assume without loss of generality
that ‖Mα ,A f‖Lp0 (w) and ‖Tα f‖Lp0 (w) are both finite. Since w ∈ A∞ , then there ex-
ists r > 1 (that can be taken greater than p0 ) such that w ∈ Ar . Observe that for all
0 < δ < p0/r < 1, we have that 1 < r < p0/δ and thus, w ∈ Ap0/δ . Then

‖Mδ (Tα f )‖Lp0 (w) =
∥∥M

(|Tα f |δ )∥∥ 1
δ

L
p0
δ (w)

� C‖Tα f‖Lp0 (w) < ∞.

The right hand side is finite by assumption. Then, applying the Fefferman-Stein in-
equality (see [8]) and (3.2),∫

Rn
|Tα f |p0w�C

∫
Rn

[Mδ (Tα f )]p0w�C
∫

Rn
[M�

δ (Tα f )]p0w�C
∫

Rn
[Mα ,A f ]p0w. �

REMARK 3.5. If Kα ∈ Sα ∩Hα ,∞ we get (3.1) for any 0 < p < ∞ and for all
w ∈ A∞ with A (t) = t , which means Mα on the right hand side.

3.1. Commutators

Now we are going to state and prove a Coifman type inequality for the commuta-
tors of the operator Tα .

Recall that a locally integrable functions b is said to belong to BMO if

‖b‖BMO = sup
B

1
|B|

∫
B
|b(x)−bB|dx <∞,
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where the sup runs over all balls (or cubes) B⊂R
n and bB denotes the integral average

of b over B .
Given b ∈ BMO, define the k -th order commutator of Tα , k � 0, by

Tk
α ,b f (x) =

∫
Rn

[b(x)−b(y)]k Kα (x− y) f (y)dy.

Note that for k = 0, Tk
α ,b = Tα . Also observe that Tk

α ,b f = bTk−1
α ,b f −Tk−1

α ,b (b f ) , k � 1.

THEOREM 3.6. Let Tα be a convolution operator with kernel Kα and suppose
that Tα is bounded from Lq0(dx) to Lp0(dx) , for some 1 < p0,q0 < ∞ . Let b ∈ BMO

and k ∈ N . Let A and B be Young functions such that A
−1

(t)B−1(t) � C −1
k (t)

with Ck(t) = t(1 + log+ t)k . If Kα ∈ Sα ∩Hα ,B,k then, for any 0 < p < ∞ and any
w ∈ A∞ ,∫

Rn
|Tk
α ,b f (x)|p w(x)dx � C‖b‖pk

BMO

∫
Rn

[Mα ,A f (x)]p w(x)dx, f ∈ L∞c , (3.3)

whenever the left-hand side is finite.

Proof. First we shall prove the following inequality

M�
δ
(
Tk
α ,b f

)
(x) � C

k−1

∑
j=0

‖b‖k− j
BMOMε(T

j
α ,b f )(x)+C‖b‖k

BMOMα ,A f (x), (3.4)

for 0 < δ < ε < 1 and k � 1. As in the proof of Lemma 5.1 in [11] we write inequality
(5.4) in [11] for Tm

α ,b instead of Tm
b , 0 � m � k . To obtain the estimates of the terms I

and III in (5.4) for our operators we proceed as in [11], by using the conditions Hα ,B

and Hα ,A ,k instead of the corresponding ones with α = 0. Notice that by the relation
among the funtions A , B and Ck we get that Hα ,B,k ⊂ Hα ,A ,k . In order to estimate
the term II for the operator Tα , we proceed as in the proof of Theorem 3.4. In fact,
using that Kα ∈ Sα , inequality (2.2) with C k and Ck and inequality (2.3) for A , B ,
Ck ,

II =
(

1
|B|

∫
B
|Tα((bB̃ −b)k f1)(y)|δ dy

) 1
δ

� 1
|B|

∫
B

(∫
B̃
|Kα(y− z)(b(z)−bB̃)

k f (z)|dz

)
dy

� 1
|B|

∫
B̃
|b(z)−bB̃|k| f (z)|

(∫
|y−z|�3R

|Kα (y− z)|dy

)
dz

� C
(3R)α

|B|
∫

B̃
|b(z)−bB̃|k| f (z)|dz

� C|B| αn ‖(b−bB̃)
k‖C k,B̃

‖ f‖A ,B̃ � C ||b||kBMOMα ,A f (x).

Observe that we do not use any boundedness of the operator Tα to obtain inequality
(3.4).
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To finish the proof observe that, by extrapolation, it suffices to obtain the theorem
for some fixed exponent 0 < p0 < ∞ and all w ∈ A∞ . Therefore, choose p0 such that
the operator Tα is bounded from Lq0(dx) to Lp0(dx) . As in [11] we first consider w
and b ∈ L∞ and we proceed by induction. Notice that for f ∈ L∞c and j ∈ N ,

||T j
α ,b f ||Lp0 =

∥∥∥∥∥
j

∑
m=0

Cm, jb
j−mTα(bm f )

∥∥∥∥∥
Lp0

� C||b|| jL∞ || f ||Lq0 < ∞.

Then, since w ∈ L∞ , we have that ||T j
α ,b f ||Lp0 (w) <∞ for all 0 � j � k−1 and f ∈ L∞c .

The rest of the proof follows the same steps as in Theorem 3.3, part (a) in [11]. �

REMARK 3.7. As in [11], changing in Theorem 3.6 the hypothesis on the kernel
by the condition Kα ∈ Sα ∩Hα ,∞,k , then (3.3) still holds with A (t) = Ck(t) = t(1 +
log+ t)k .

4. Applications

We start this section with a proposition which shows the relation between the con-
ditions Sα ,A and Hα ,A ,k with the corresponding ones for α = 0.

PROPOSITION 4.1. If Kα (x) = |x|αK(x) with K ∈HA ,k∩SA then Kα ∈Hα ,A ,k∩
Sα ,A .

Proof. It is clear that Kα ∈ Sα ,A is equivalent to K ∈ SA . To prove that Kα ∈
Hα ,A ,k let |x| ∼ s and |y| < s/2 then s/2 < |x− y| < 5s/2 and therefore, by the mean
value theorem,

|Kα(x− y)−Kα(x)| � |x− y|α |K(x− y)−K(x)|+ |K(x)|||x− y|α−|x|α |

� Csα
[
|K(x− y)−K(x)|+ |y|

s
|K(x)|

]
.

Let R > 0 and s = 2mR . Then, for |y| < R and |x| ∼ 2mR , we have

|Kα(x− y)−Kα(x)| � C(2mR)α
[|K(x− y)−K(x)|+2−m|K(x)|] .

Therefore, since K ∈ HA ,k ∩SA ,

∞

∑
m=1

(2mR)n−α mk‖Kα(·− y)−Kα(·)‖A ,|x|∼2mR

�C
∞

∑
m=1

(2mR)n mk‖K(·− y)−K(·)‖A ,|x|∼2mR

+C
∞

∑
m=1

2−m mk(2mR)n‖K‖A ,|x|∼2mR � C. �
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The fractional integral operator. Note that the kernel of the fractional integral
Iα , Kα(x) = 1

|x|n−α , belongs to Sα ∩H∗
α ,∞ ⊂ Sα ∩Hα ,∞,k , for all k � 0. Consequently,

by Remarks 3.5 and 3.7 we get that (3.3) holds for all k � 0 with A (t) = t(1+ log+ t)k .

The fractional integral operator with rough kernel. Denote by Sn−1 the unit
sphere of R

n . For x �= 0, we write x′ = x/|x| . Consider a function Ω defined on Sn−1 .
This function can be extended to R

n \ {0} as Ω(x) = Ω(x′) (notice the abuse in also
calling the extension Ω). Thus Ω is a homogeneous function of degree 0. Given a
Young function B we define the LB -modulus of continuity of Ω as

ϖB(t) = sup
|y|�t

‖Ω(·+ y)−Ω(·)‖B,Sn−1.

Set Kα (x) = Ω(x)/|x|n−α and let TΩ,α be the corresponding operator with kernel
Kα . We can then prove the following proposition for Kα .

PROPOSITION 4.2. Let Ω ∈ LB(Sn−1) and k � 0 . If

∫ 1

0

(
1+ log

1
t

)k
ϖB(t)

dt
t

< ∞, (4.1)

then Kα ∈ Sα ∩Hα ,B,k .

Proof. First, notice that Ω ∈ LB(Sn−1) implies that K(x) = Ω(x)
|x|n ∈ SB . In fact,

since

1
|B(0,s)|

∫
|x|∼s

B

( |K(x)|
λ

)
dx =

C
sn

∫
Sn−1

∫ 2s

s
B

( |Ω(x′)|
λρn

)
ρn−1dρdσ(x′)

� C
∫

Sn−1
B

( |Ω(x′)|
λ sn

)
dσ(x′),

then ||K||B,|x|∼s � Cs−n||Ω||B,Sn−1 .

On the other hand, it was proved in [11] that if Ω ∈ LB(Sn−1) and if Ω satisfies
(4.1), then K ∈ HB,k . Now, from Proposition 4.1, Kα ∈ Hα ,B,k ∩ Sα ,B ⊂ Hα ,B,k ∩
Sα . �

An immediate consequence of this proposition is that if Ω ∈ LA (Sn−1) and (4.1)
holds with k = 0 and ϖA in place of ϖB then TΩ,α verifies (3.1). In the particular
case that A (t) = tr , inequality (3.1) holds with Mα ,r′ in the right hand side.

On the other hand, if k > 0, let Ω be such that TΩ,α is bounded from Lp(dx)
to Lq(dx) for some 1 < p,q < ∞ (for example, any Ω in L

n
n−α (Sn−1) works fine).

Let A , B be Young functions such that A
−1(t)B−1(t) � C −1

k (t) with Ck(t) =
t(1 + log+ t)k . Then, if Ω verifies the hypothesis of the above proposition, the com-
mutators of TΩ,α satisfy (3.3). In the particular case that B(t) = tr inequality (3.3)
holds with Mα ,Lr′ (logL)kr′ ; if B(t) = tr(1+ log+ t)kr , (3.3) holds with Mα ,r′ ; if B(t) =
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tr(1+ log+ t)k , (3.3) holds with Mα ,Lr′ (logL)k (see table 2 in [11]).

Multipliers. Given a function m defined in R
n consider the multiplier operator

Tm defined a priori for functions f in the Schwartz class by T̂m f (ξ ) = m(ξ ) f̂ (ξ ) . Let
β = (β1, · · · ,βn) denote a multi-index of non-negative integers and |β |= β1 + · · ·+βn .
As in [9], given 1 � s < ∞ , l ∈ N and 0 < α < n , we say that m ∈ M(s, l,α) if there
exists a constant B such that |m(x)| � B|x|−α and

sup
R>0

R|β |+α ‖Dβm‖Ls,|ξ |∼R < +∞, for all |β | � l.

As a consequence of Theorem 3.6 we obtain the following result.

COROLLARY 4.3. Assume that m ∈ M(s, l,α) , with 1 < s � 2 and n
s < l � n.

Then, for all k � 0 and any ε > 0 we have that for all 0 < p < ∞ and w ∈ A∞ ,∫
Rn

|Tk
α ,b f (x)|pw(x)dx � C

∫
Rn

[Mα , n
l +ε f (x)]pw(x)dx, f ∈ L∞c , (4.2)

whenever the left-hand side is finite.

Proof. Decompose the operator Tm as in [10]. To do that, let φ ∈C∞ be a nonneg-
ative function supported in {ξ : 1/2 < |ξ |< 2} so that ∑ j∈Z φ j(ξ ) =∑ j∈Z φ(2− j ξ ) =
1, ξ �= 0. Write mj(ξ ) = φ j(ξ )m(ξ ) and so m(ξ ) = ∑ j∈Z mj(ξ ) for ξ �= 0. Set
Kα , j = (mj)ˇ and

mN(ξ ) = ∑
| j|�N

mj(ξ ), KN
α (x) = (mN)ˇ(x) = ∑

| j|�N

Kα , j(x).

Proceeding as in the final part of the proof of Lemma 1 of [10], only that working with
KN
α instead of KN , d = l , t = s and p = 1, we obtain that since l > n

s , then∫
|x|∼R

|KN
α (x)|dx � CRα ,

where C does not depend on N . This implies that KN
α ∈ Sα .

By the same Lemma 1 of [10] and the same replacements as above, we get that if
m ∈ M(s0, l0,α) and n

s0
< l0 < n

s0
+1 then

‖KN
α (·− y)−KN

α (·)‖
Ls′0 ,|x|∼R

� CR−n+α
( |y|

R

)l0− n
s0

, |y| < R
2

, (4.3)

where C does not depend on N . This implies that KN
α ∈ Hα ,s′0,k for all k � 0 and this

happens uniformly on N : for all R > 0 and |y| < R ,

∞

∑
j=1

(2 j R)n−α jk‖KN
α (·− y)−KN

α (·)‖
Ls′0 ,|x|∼2 j R

� C
∞

∑
j=1

jk
( |y|

2 j R

)l0− n
s0

� C
∞

∑
j=1

jk2
− j (l0− n

s0
) � C,
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where C does not depend on N . Observe that by the same arguments than in Propo-
sition 6.2 of [11], KN

α ∈ Hα ,B,k with B(t) = tr(1 + log+ t)kr uniformly in N , for all
1 < r < (n/l)′ .

To finish the proof of the corollary, take N > 1 and consider the operator TN
m

whose kernel is KN
α . Since KN

α ∈ Sα ∩Hα ,r for all 1 < r < ( n
l )

′ , then TN
m verify (3.1)

with Mα ,A = Mα , n
l +ε for all ε > 0 with a constant independent of N .

Set now A (t) = tr (1 < r < ( n
l )

′ ) and B(t) = tr(1+ log+ t)k r as before. Then

A
−1(t)B−1(t) � CC −1

k (t) . Since KN
α ∈ Hα ,B,k and TN

m map Lp(dx) to Lq(dx) , 1 <
p < n/α and 1/q = 1/p−α/n (see [9]), then Theorem 3.6 applies and therefore (3.3)
holds with Mα ,A = Mα ,r′ with a constant independent of N . A standard approximation

argument as in [10] leads to the desired estimate for Tm and Tk
m,b . �

5. Two weights inequalities

For operators such that their adjoints satisfy a Coifman type inequality it is possi-
ble to obtain two-weight norm inequalities, using a duality argument (see for example
[15] and [11]).

THEOREM 5.1. Let A be a Young function, 0 � α < n and 1 < p < n/α . Sup-
pose that there exist Young functions E and D such that E ∈ Bp′ , E −1(t)F−1(t) �
A

−1
(t) with F (t) = D(t p) and the function Φ(t) = tD ′(t)−D(t) for t > 1 is also a

Young function. If T is a linear operator such that its adjoint T ∗ satisfies that for all
w ∈ A∞ , ∫

Rn
|T ∗ f (x)|p′ w(x)dx � C

∫
Rn

[Mα ,A f (x)]p
′
w(x)dx, f ∈ L∞c (5.1)

then, for any weight u,∫
Rn

|T f (x)|p u(x)dx � C
∫

Rn
| f (x)|p Mα p,Du(x)dx,

= C
∫

Rn
| f (x)|p Mα(MΦu)(x)dx, f ∈ L∞c .

(5.2)

REMARK 5.2. For the applications below, and since all the operators considered
here are of convolution type, proving (5.1) for T ∗ or T turns out be equivalent.

Proof of Theorem 5.1. Fix a weight u . The key point here is to prove that (Mα p,Du)δ

∈ A1 , for all 0 < δ < 1. Then, the rest of the proof will follow standard arguments.
Therefore let us start observing that the conditions on the Young functions D and Φ ,
and Theorem 1.1 in [3] give that Mα p,Du ≈ Mα(MΦu) . On the other hand, we can
restrict ourselves to the set {x : Mα p,Du(x) < ∞} or suppose that the functions f have
support contained in this set. By duality, (5.2) turns out to be equivalent to∫

Rn
|T ∗ f (x)|p′ [Mα p,Du(x)]1−p′ dx � C

∫
Rn

| f (x)|p′ [u(x)]1−p′ dx, f ∈ L∞c .
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Again observe that Mα p,Du(x) = ∞ would imply [Mα p,Du(x)]1−p′ = 0. Therefore,
by Corollary 1.2 and Remark 1.3 in [3] we know that (Mα p,Du)δ belongs to A1 for
all 0 < δ < 1. Thus, choosing r > p′ and δ = (p′ − 1)/(r− 1) , (Mα p,Du)1−p′ =
[(Mα p,Du)δ ]1−r ∈ Ar ⊂ A∞ , and so (5.1) can be applied. This and the generalized
Hölder’s inequality for A , E and F , yields∫

Rn
|T ∗ f (x)|p′ [Mα p,Du(x)]1−p′ dx � C

∫
Rn

[Mα ,A f (x)]p
′
[Mα p,Du(x)]1−p′ dx

� C
∫

Rn
[ME ( f u−

1
p )(x)]p

′
[Mα ,F (u

1
p )(x)]p

′
[Mα p,Du(x)]1−p′ dx

= C
∫

Rn
[ME ( f u−

1
p )(x)]p

′
[Mα p,Du(x)]

p′
p [Mα p,Du(x)]1−p′ dx

= C
∫

Rn
[ME ( f u−

1
p )(x)]p

′
dx � C

∫
Rn

| f (x)u(x)−
1
p |p′ dx

= C
∫

Rn
| f (x)|p′ [u(x)]1−p′ dx,

where we have used that E ∈ Bp′ and so ME is bounded on Lp′(dx) (see [17]). �

Next we want to apply Theorem 5.1 to the examples considered in section 4. In
order to do that we shall assume hypothesis in the kernels Kα that ensure the bounded-
ness of the operators Tα from Lp(dx) to Lq(dx) , for all 1 < p,q < ∞ with 1

q = 1
p − α

n
plus the hypothesis in Theorem 3.3 (Theorem 3.1 in the case k = 0). Notice that if Tα
is bounded as before then, for all f ∈ L∞c , w ∈ A∞∩L∞ and b ∈ L∞ ,

||Tk
α ,b f ||Lq(w) � ||w||1/q

L∞

∥∥∥∥∥
k

∑
m=0

Cm,kb
k−mTα(bm f )

∥∥∥∥∥
Lq

� C||w||1/q
L∞ ||b||kL∞ || f ||Lp < ∞,

for any k � 0. Therefore, under the hypothesis in Theorem 3.3 (respectively Theorem
3.1) we obtain (5.1) for the operators Tk

α ,b for all w ∈ A∞∩L∞ and b ∈ L∞ . To remove
the restrictions on the functions w and b we proceed as in the proof of Theorem 3.3,
part (a) in [11].

The classical fractional integral. In the case that A (t) = t we have that the
hypotheses on the Young functions in Theorem 5.1 hold, if p � 2, for the functions

E (t) = t p′(1+ log+ t)−1−ε p′
p and D(t) = t(1+ log+ t)p−1+ε , because p− 1+ ε > 1,

and so Remark 1.4 of [3] can be applied. If 1 < p < 2, then the hypotheses on the Young
functions in Theorem 5.1 hold for E (t) = t p′(1+ log+ t)−p′/p and D(t) = t(1+ log+ t) ,
because again Remark 1.4 of [3] can be applied (with p = 1 and β = 1).

Then, we obtain inequality (5.2) for Iα with D(t) = t(1 + log+ t)[p] . This was
obtained by Pérez in [18]. In this case, Mα p,D is equivalent to Mα p(M[p]) . For the k-th
order commutator of Iα , we begin with A (t) = t(1+ log+ t)k , k ∈ N and Theorem 5.1
holds with D(t) = t(1+ log+ t)[(k+1)p] . This was first obtained in [1].
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The fractional integral with rough kernel. Let us consider the fractional op-
erator TΩ,α f = Kα ∗ f , where Kα(x) = Ω(x)

|x|n−α and Ω is as in the previous sections.

If Ω ∈ LA (Sn−1)∩L
n

n−α (Sn−1) and satisfies (4.1) with k = 0 and A in place of B ,
then we have that the Coifman type inequality holds with Mα ,A on the right hand
side. Thus Theorem 5.1 can be applied to this operator. In the particular case that
A (t) = tr , r > p , (5.2) holds with D(t) = t(r/p)′(1 + log+ t)(r/p)′(p−1)+ε and ε > 0
small enough. It suffices to apply Theorem 5.1 with E (t) = t p′(1+ log+ t)−1−δ , and

F (t) = t
rp

r−p (1+ log+ t)(r/p)′(p−1)+ε , where δ > 0 is some number small enough that
is related with ε > 0.

For the commutator of this operator, assume that Ω ∈ LB(Sn−1)∩ L
n

n−α (Sn−1)
satisfies (4.1), where B(t) = tr , r > p . Then the Coifman type inequality holds
with A (t) = tr

′
(1 + log+ t)kr′ and, consequently, inequality (5.2) holds with D(t) =

t(r/p)′(1+ log+ t)(r/p)′((k+1)p−1)+ε and ε > 0 small enough (see table 1 in [11]).

The fractional integral associated to a multiplier. Suppose that we are under the
same hypotheses as in Corollary 4.3. For these operators we have that the Coifman type
inequality holds with Mα , n

l +ε on the right hand side, for both, Tm and Tk
m,b . Therefore

we obtain the following.

COROLLARY 5.3. If 1 < p < r < (n/l)′ , k � 0 and u is a weight, then∫
Rn

|Tk
m,b f (x)|pu(x)dx � C

∫
Rn

| f (x)|pMα p,Du(x)dx, f ∈ L∞c , (5.3)

where D(t) = t(r/p)′(1+ log+ t)(r/p)′(p−1)+ε and ε > 0 is small enough.

The proof is the same as for TΩ,α in the case A (t) = tr , since the Coifman type
inequality holds with Mα ,r′ , and r′ = n/l + ε . Let us observe that, as was point out in

[11], since ε is at our choice, we can consider D(t) = t(r/p)′ for any p < r < (n/l)′ in
(5.3).
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