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SCHUR-CONVEXITY OF CEBISEV FUNCTIONAL

V. CULJAK AND J. PECARIC

(Communicated by N. Elezovic)

Abstract. In this paper the CebiSev functional T'(f,g:a, b) is regarded as a function of two vari-
ables

1) = == [ f0s0)a = (= [ f0a = [ swan). () € la.b] a1

The property of Schur-covexity (Schur-concavity) of this function is considered. Some applica-
tions for the means are pointed out.

1. Introduction

Let I be an interval with nonempty interior and X = (x;,X2,..,Xx,) and y = (¥i,¥2, .-, ¥n)
in I" be two n-tuples such that x <y, i.e.

k k
Yox < Xy, k=1,...,n—1

i=1 i=1
n n
25 = X
i=1 i=1
where xj;) denotes the i th largest component in x.

DEFINITION 1. Function F : I" — R is Schur-convex on " if

F(xi7x27"7xn) < F(Yi7YZ7-~,)’n)

for each two n-tuples x and y such that it holds x <y on I".
Function F is Schur-concave on /" if and only if —F is Schur-convex.

The next lemma gives us a necessery and sufficient condition for verifying the
Schur-convexity property of F when n =2 ([4, p. 3331, [3, p. 57)).
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LEMMA A 1. Let F : I*> — R be a continuous function on I* and differentiable
in interior of I>. Then F is Schur-convex if and only if it is symmetric and it holds

JdF JF
<8y ax>(y x)=0 ey

forall x,yel, x#y.
The authors in [1] were inspired by some inequalities concerning gamma and
digamma function and proved the following result for the integral arithmetic mean:

THEOREM A 1. Let f be a continuous function on I. Then
1 Y
F(x,y) = y—x/e f(r)dt
F(x,x) = f(x)

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I

2)

Also, in [1], applications to logarithmic mean are given.

COROLLARY A 1. The generalized logarithmic mean defined as follows

1
VW ﬁ
Ly(x,y) = ( ry(y _’;)> L xy>0 3)

1
1/ x5\ >y
Lyi(x,y) = - (y_y)

y—x

L =2
L(x,x) =x “4)

is Schur-convex for r > 2 and Schur-concave for r < 2.
The Cebisev functional T(f,g;a,b) is defined for two Lebesgue integrable f and

g oninterval [a,b] € R as

T(f.gia,b) = — /f dt—(b a/f dt) (bi /b (t)dt).

,¥) € |a,b] X [a,b].

We will consider the function 7' (x,y) := T (f,g;x,y), (x
We will use the well-known Cebisev inequality:

THEOREM A 2. Let f and g be Lebesgue integrable on interval [a,b]. If f and
g are monotonic in the same sense (in the opposite sense) then
T(f.g:a,b) 20 (<0).

In this paper we generalize results in Theorem A 1 and Corollary A 1. As a con-
sequence, a result for the extended generalized logarithmic type mean is pointed out.

(&)
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2. Results

THEOREM 2.1. Let f and g be Lebesgue integrable functions on I = [a,b]. If
they are monotone in the same sense (in the opposite sense) then T (x,y) :=T(f,g;x,y),
(x,y) € [a,b] x [a,b] € R? is Schur-convex (Schur-concave) on [a,b] X |a,b].

Proof. There are three cases to be considered according monotonicity of func-
tions.

Case 1. Let f and g be two increasing functions on [a,b] and x < y. So, we have

Sx) < f(r) < f(y) and g(x) < g(¢) < g(y) and it yields

(fO) = f@)(f () = fx) =0, (6)
(¢(y) —&(1)(g(r) —g(x)) = 0, )
Multiplying these inequalities by Lx and integrating over [x,y] produces two
inequalities
— [ P < W+ 10D [ - 1ws0)
Yy—XxJx h y—XxJx ’
— [ @0dr < (s + 00— [ ()i~ g0g0).
y—XxJx y—XJx

Then, we can estimate T (f, f;x,y)

(7 ) = = [ dt—(y [ 1o dt)2
< (6 + 70D [ 70 r ) - (y% [ f(t)dtf
- (f(y)—y%x nymdr) (y% [ ra- ) ®

and analogues T (g, g;x,y) as follows

T(ggixy) = —— [ gy (L/yg(t)dt)2

y—x X y_x X

< (s0)-— [(sar) (— [ sar-sx)).  ©
( y X/x )(y .X/x )

The functional T(f,g;x, y) can be expressed as

T(f.853) = 50— // (F() = £(5))(a(t) — g(s))deds.

and analogues T (f, f;x,y) and T(g,g;x,y)
1 Yy
T(f53) = 357 / / (F(t) = £(s))>deds,

T(e.gixy) = g [ [ (6)=sto) P
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Using Cauchy inequality we obtain the inequality

sione st ([ o) ([ fo-sorws)
( 2(y—x)? // dfds) 1
( 2y~ x) // 1) 8(s 2‘”‘“)

:T(faf’xay) (gagvxuy) .

In the rest of the proof we will use the short notation for the integral means:

[i= 55 [ f()dr and 3 := 5 [ g(0)dr

According (8) and (9) we have the following estimation
T(f. 82| < [(F0)— DT~ F)2 () —)(E —(x))]?
=[(f=f))E—-8x) (fO)—F)ely) —3)]2.
The AG inequality implies

NI—

(7,85 < 510~ £ E—8(0) + (1)~ T (&) )]

Applying Theorem A 2 the inequality (5) we obtain

T(fg09) < 5[~ F0)E—800) + (F0) - DgO)-B. (10

To prove the Schur-convexity of T(f,g;x,y) by Lemma A 1 the inequality (1) it
is sufficient to prove (BT(%;”) 8T(fgxy))(y x) >0, forall x,y € [a,b], since the

function T (x,y) :=T(f,g;x,y) is evidently symmetric.
Direct calculation yields that

JoT(f,g:x,y)  IT(f,gx,y)
( ay - ax ) (y_x)

— {y%x[—ZT(f,g;x,y) +f(x)g(x) + f(»)g(v) +2fg

0 g0)F +f(x)§+g(x)7]} (v—2) an

—2{ 5T~ 70)E—5) + U0) - Deb) - BN - T(gixn) |- (12
Then, the inequalitiey (10) implies

oT(f,g:x,y)  OT(f,&x,y)
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We have to remark that for x >y the inequalities in (6) and (7) stil are valid.
Furthermore, according the equations in (11) and (12) it is obviously (%’y’”) -

IT (.85,
ILe3) ) (y — x) > 0.

Case 2. Suppose that f and g are both decreasing functions on [a,b] and x < y.

Since f(x) = f(¢) > f(y) and g(x) > g(¢) > g(y) the inequalities in (6) and (7)
again are valid and the proof is the same as in Case 1.

If x >y then the conclusion is tha same as in remark in Case 1.

Case 3. Let f be an increasing function and g decreasing function. Note that
we can considere Case 1 for function f and —g.
According inequality in (10) we have

T(f,—gx.y) < %[(7—f(x))(—§+g(x)) +(f () =) (—g) +2)].
By definition of T'(f,—g;x,y) it holds

~T(f.g55) < ~51(F~ F())(E— 809 + (F6) ~ P)(g(r) ~ )]

and finally we obtain the opposit inequality in (10) for functions f and g:

T(f,g:x,y) > %[(7— f))(E—e)+(f) —Hel) —2)]- (13)
Similarly as in Case 1, according (11) we conclude that

oT(f,g:x,y) OT(f,&x,y)
( dy B dx ) b=x)<0.

and according Lemma A 1 we prove Schur-concavity of Cebisev functional T (f,g:x,y)
with (x,y) in [a,b] x [a,b] € R?.

COROLLARY 2.1. For the generalised logaritmic mean defined by (3) it holds
(i) if (r;s) € (1,00) X (L,00)|J(—00,1) X (—o0,1), then
Gro(x,y) = LT (x,y) — Ll (x,9) - Ly (x,)
is Schur-convex with (x,y) € (0,00) x (0,00);
(ii) if (r,s) € (1,00) X (—o0,1){J(—00,1) X (1,00), then Gys(x,y) is Schur-concave
with (x,y) € (0,00) x (0,0).

Proof. We use Theorem 1 for a function f(¢) =¢~! and g(t) =*~!. Function f
and g are both increasing for r—1 > 0 and s — 1 > 0 and both decreasing for r—1 <0
and s —1 < 0. Function f and g are monotone in the opposite sense for r — 1 > 0 and
s—1<0Oorr—1<0ands—1>0. O

REMARK 2.1. One attempt to obtain Schur convexity of Cebisev functional is
done in [2].
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