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Abstract. We establish several new bounds for the psi function ψ and harmonic numbers Hn .
For example, we prove that

γ +
1
2

log(n2 +n+ c) < Hn < γ +
1
2

log(n2 +n+d),

where the constants c = e2(1−γ)−2= 0.329302... and d = 1/3 = 0.3333... are the best possible,
and

γ +
1
2

log

(
2n+a

e2/(n+1) −1

)
< Hn � γ +

1
2

log

(
2n+b

e2/(n+1) −1

)
,

where a = 2 and b = e2−2γ (e− 1)− 2 = 2.0024... are the best possible constants. Our estima-
tions give extremely accurate values for γ , and they improve some estimations for γ deduced
very recently by C. Mortici.

1. Introduction

The n’th harmonic number Hn is defined by the finite sum Hn =
n
∑

k=1

1
k . There is

a close connection between the harmonic numbers and the psi (or digamma) function
ψ = Γ′/Γ , the logarithmic derivative of the gamma function Γ(z) =

∫ ∞
0 uz−1e−udu (z >

0) , ψ(n + 1) = Hn − γ for n ∈ N . Here γ = 0.5772156... is the Euler’s constant.
The harmonic numbers have important applications in mathematics. For example, they
have applications in number theory, analysis, combinatorics and differential equations.
The most important properties of these numbers can be found in sections 6.3 and 6.4
of [10]. Recently, interesting inequalities for the psi function and these numbers have
been published; see [2, 3, 4, 5, 15, 16] and references therein. In particular, we want to
recall some of them (H. Alzer [2]):

α · log(logn+ γ)
n2 � H1/n

n −H1/(n+1)
n+1 < β · log(logn+ γ)

n2

with best possible constants α = 0.0140.... and β = 1, and

a � exp(Hn+1)− exp(Hn) < b (1.1)
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where the constants a = 1+ log(
√

e− 1) = 0.5672... and b = γ = 0.57721... are the
best possible, and for x > 0 and n ∈ N . Elezović et al [9, Corollary 3] proved in 2000
that

log(x+n−1/2)< ψ(x+n) < log(x+ e−γ+Hn−1).

Finally for x > 0 (N. Batir [4]),

−γ− log(e2/x−1) < ψ(x) < − log(e2/x −1).

In this work we continue our investigations of the psi functions and harmonic num-
bers and establish various new upper and lower bounds for them. One of our theorems
provides the best possible constants α and β in

γ +
1
2

log(n2 +n+α) � Hn < γ+
1
2

log(n2 +n+β ).

Another theorem presents the following sharp bounds for Hn

γ+
1
2

log

(
2n+a

e2/(n+1)−1

)
< Hn � γ+

1
2

log

(
2n+b

e2/(n+1)−1

)
,

where a = 2 and b = e2−2γ(e−1)−2 = 2.0024... are the best possible constants. As
it is shown in the last section our estimations give extremely good approximations for
Euler’s constant and improve some formulas due to C. Mortici [11, 13]. The numerical
and algebraic computations have been carried out with the computer program Mathe-
matica 5. We need the following elementary but very useful lemmas in order to prove
our main results. The first lemma, despite of its simple appearance, is a strong tool
to accelerate and measure the speed of convergence of some sequences having limit 0,
and has proved by C. Mortici in [12]. It is evident from this lemma that the speed of
convergence of the sequence (ωn) is as higher as the value of k is greater.

LEMMA 1.1. If (ωn)n�1 is convergent to zero and there exists the limit

lim
n→∞

nk(ωn−ωn+1) = c ∈ R,

with k > 1 , then there exists the limit

lim
n→∞

nk−1ωn =
c

k−1
.

The next lemma, as far as we know, was first used in [8] (without proof) to establish
some monotonicity results for the gamma function.

LEMMA 1.2. Let f be a function defined on an interval I and lim
x→∞

f (x) = 0 . If

f (x+1)− f (x) > 0 for all x∈ I , then f (x) < 0 . If f (x+1)− f (x) < 0 , then f (x) > 0 .

Proof. Let f (x+1)− f (x) > 0 for all x ∈ I . By mathematical induction we have
f (x) < f (x+n) for all n ∈ N . Letting n → ∞ , we find f (x) < 0. The proof of second
part of the lemma follows from the same argument. �
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LEMMA 1.3. Let x be a positive real number. Then

ψ(n)(x+1)−ψ(n)(x) =
(−1)nn!

xn+1 n = 0,1,2,3, ...; (1.2)

ψ(x) ∼ logx− 1
2x

− 1
12x2 +

1
120x4 + ... (as x → ∞); (1.3)

ψ ′(x) ∼ 1
x

+
1

2x2 + .
1

6x3 −
1

30x5 + ... (as x → ∞) (1.4)

and

ψ ′′(x) ∼− 1
x2 −

1
x3 −

1
2x4 +

1
120x4 + ... (as x → ∞); (1.5)

see [1, pp. 258–260].

2. Main results

Our first theorem is the key for the next theorems.

THEOREM 2.1. For real number x > −1 , we define

φ(x) = e2ψ(x+1)− x2− x. (2.1)

Then φ is strictly increasing and concave in (−1,∞) .

Proof. By differentiating we get

φ ′(x) = 2ψ ′(x+1)e2ψ(x+1)−2x−1, (2.2)

φ ′′(x) = [2ψ ′′(x+1)+4(ψ ′(x+1))2]e2ψ(x+1)−2, (2.3)

and

1
2
e−2ψ(x+1)φ (3)(x) = ψ(3)(x+1)+6ψ ′(x+1)ψ ′′(x+1)+4(ψ ′(x+1))3

= φ1(x), say. (2.4)

Applying (1.2), we find

x2

2
(φ1(x+1)−φ1(x)) = −3x2 +6x+2

x4 −6(ψ ′(x+1))2 +
6
x2ψ

′(x+1)

+
6
x
ψ ′(x+1)−3ψ ′′(x+1) = φ2(x), say. (2.5)

Similarly, we have

(x+1)2(x+2)2

6(x2 +3x+3)
(φ2(x+1)−φ2(x))

=ψ ′(x+1)− 114+298x+321x2+178x3 +51x4 +6x5

6(x+1)2(x+2)2(x2 +3x+3)
= φ3(x), say. (2.6)
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And, finally we get

φ3(x+1)−φ3(x) = − p(x)
q(x)

, (2.7)

where

p(x) = 144+720(x+1)+1560(x+1)2+1872(x+1)3+1308(x+1)4

+504(x+1)5 +84(x+1)6

and
q(x) = 36(x+1)2(x+2)4(x+3)2(x2 +3x+3)(x2 +5x+7).

Since both p and q are positive for all x in (−1,∞) , it results from (2.7) that φ3(x+
1)−φ3(x) < 0 for x >−1. By Lemma 1.2 this means that φ3(x) > 0 since lim

x→∞
φ3(x) =

0, that is, φ2(x+1)−φ2(x) > 0 for x >−1. But this says that φ2(x) < 0 for x >−1 by
Lemma 1.2 since lim

x→∞
φ2(x) = 0. Taking into account (2.5) this implies that φ1(x) > 0

for x > −1 by Lemma 1.2, since lim
x→∞

φ1(x) = 0, that is, φ (3)(x) > 0 by (2.4). This

shows that φ ′′ is strictly increasing in (−1,∞) . Utilizing the asymptotic formulas(1.3),
(1.4) and (1.5), we get

lim
x→∞

φ ′(x) = lim
x→∞

φ ′′(x) = 0, and lim
x→∞

φ(x) =
1
3
. (2.8)

In view of (2.8) and monotonic increase of φ ′′ we get φ ′′(x) < 0 for all x −1, conse-
quently, φ ′(x) > lim

x→∞
φ ′(x) = 0. This proves the assertions of Theorem 2.1. �

Monotonic increase of φ and the facts that φ(0) = e−2γ and lim
x→∞

φ(x) = 1
3 by

(2.8) lead to the following:

COROLLARY 2.2. Let x ∈ [0,∞) . Then

1
2

log
(
x2 + x+ e−2γ)� ψ(x+1) <

1
2

log

(
x2 + x+

1
3

)
, (2.9)

where the scalers e−2γ = 0.329302... and 1/3 = 0.333... are the best possible.

By virtue of φ(1) = e2−2γ −2 and the relation ψ(n+1) = Hn − γ , we obtain

COROLLARY 2.3. Let n ∈ N . Then

γ+
1
2

log
(
n2 +n+α∗)� Hn < γ +

1
2

log
(
n2 +n+β ∗) , (2.10)

where α∗ = e2−2γ −2 and β = 1
3 are the best possible constants.
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THEOREM 2.4. Let x be a non-negative real number. Then we have

1
2

log

(
2x+a

e2/(x+1)−1

)
< ψ(x+1) � 1

2
log

(
2x+b

e2/(x+1)−1

)
, (2.11)

where a = 2 and b = e−2γ(e2 −1) are the best possible constants.

Proof. For x � 0, we define

f (x) = φ(x+1)−φ(x),

where φ is as defined in (2.1) . Differentiation gives f ′(x) = φ ′(x+ 1)− φ ′(x) . Con-
cavity of φ shows that f is strictly decreasing in [0,∞) . Hence, we get

lim
x→∞

f (x) = lim
x→∞

[φ(x+1)−φ(x)] = 0 < f (x) � f (0) = e−2γ(e2 −1)−2,

which is equivalent with (2.11) since

f (x) = e2ψ(x+1)
{

e
2

x+1 −1
}
−2x−2. �

Monotonic decrease of f , and the relations f (1) = φ(2)−φ(1) = e2−2γ(e−1)−4
and lim

x→∞
f (x) = 0 yield the following interesting bounds for the harmonic numbers:

COROLLARY 2.5. Let n ∈ N . Then we have

γ+
1
2

log

(
2n+a

e2/(n+1)−1

)
< Hn � γ+

1
2

log

(
2n+b

e2/(n+1)−1

)
, (2.12)

where a = 2 and b = e2−2γ(e−1)−2 = 2.0024... are the best possible constants.

We note that (2.12) can be written in the form

e2γ (2n+2) < exp{2Hn+1}− exp{2Hn} � e2γ(2n+2.0024...),

which provides a companion of (1.1). Our next theorem gives a monotonicity result for
the sequence σn = Hn− 1

2 log(n2 +n+1/3) .

THEOREM 2.6. For n ∈ N , we define

σn = Hn− 1
2

log(n2 +n+1/3).

Then the sequence (σn) is strictly increasing. Furthermore, we have

lim
n→∞

n4(σn − γ) = − 1
180

. (2.13)
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Proof. For x � 1 let

F(x) = ψ(x+1)− 1
2

log(x2 + x+1/3).

Differentiation yields

F ′(x) = ψ ′(x+1)− 2x+1
2x2 +2x+2/3

and

F ′(x+1)−F′(x) = − 1
9(x+1)2(x2 + x+1/3)(x2 +3x+7/3)

< 0, (2.14)

so that by Lemma 1.2 we have F ′(x) > 0, which means that F is strictly increasing.
Thus, F(n) is increasing for n ∈ N , so is (σn) . In order to prove (2.13) we use (2.14)
and l’Hospital rule. We have

lim
n→∞

n5(σn − γ− (σn+1− γ)) = lim
n→∞

F(n)−F(n+1)
1/n5

=
1
5

lim
n→∞

n6[F ′(n+1)−F′(n)] = − 1
45

,

which implies by Lemma 1.1 that (2.13) is valid. This means that the sequence (σn)
converges to γ like n−4 . �

Our last two theorems offer new bounds for the ψ ′ -function in terms of the psi
function. In [9, Corollary] Elezovic et al proved that

ψ ′(x) < exp{−ψ(x)}
holds for all x > 0. See [5] for an elementary and short proof of this inequality. The
following theorem provides an improvement and a converse to this result.

THEOREM 2.7. For x > 0 the follwing inequalities hold

(x+a∗)e−2ψ(x+1) < ψ ′(x+1) < (x+b∗)e−2ψ(x+1), (2.15)

where the constants a∗ = 1
2 and b∗ = π2

6 e−2γ are the best possible.

Proof. Since φ , defined in (2.1), is concave and φ ′(0)= π2

3 e−2γ−1 and lim
x→∞

φ ′(x)=
0, which can be easily seen by using the asymptotic formulas (1.3) and (1.4), we find
that

0 = lim
x→∞

φ ′(x) < φ ′(x) = 2ψ ′(x+1)e−2ψ(x+1)−2x−1 < φ ′(0) =
π2

3
e−2γ −1,

which is equivalent to (2.15). �
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THEOREM 2.8. For x > 0 we have

1
2

{
2
x2 −1+ e

2
x+1 − e−2ψ(x+1)

}
< ψ ′(x) <

1
2

{
2
x2 +1− e−

2
x + e−2ψ(x+1)

}
. (2.16)

Proof. Let φ be as given in (2.1). Applying the mean value theorem to φ on the
interval [x,x+1] , we obtain

φ(x+1)−φ(x) = φ ′(x+ δx), 0 < δx < 1.

Since φ is concave by Theorem 2.1 we get

φ ′(x+1) < φ(x+1)−φ(x) < φ ′(x).

In view of (1.2), this is equivalent with (2.16). �

3. Approximations of Euler’s constant

The Euler’s constant γ defined by the limit relation

γ = lim
n→∞

(Hn − logn) = 0.57721566...,

where Hn =∑n
k=1

1
k is the n ’th harmonic number, is one of the most important constants

in mathematics, maybe the third next to π and e . For a brief historical description of
γ we refer to [6] and references therein. An important concern for this constant is to
define new sequences convergent to this constant with increasingly higher speed. For
this purpose many mathematicians have derived remarkable sequences to approximate
γ . It is known that the classical sequence Dn = Hn − logn converges to γ very slowly.
Indeed, Young [16] proved that the sequence Dn converges to γ as n−1 . A faster
sequence introduced by DeTemple in [7]. More precisely, he proved that the sequence
(Rn) given by the formula Rn = Hn− log(n+1/2) converges to γ like n−2 . The author
[5] shows numerically that the sequence given by

μn =
n

∑
k=1

1
k

+
1
2

log

(
e1/(n+1)−1

n+1/2

)
(3.1)

gives better results than DeTemple’s sequence Rn . In a very new paper C. Mortici [14]
proved that

lim
n→∞

n3(μn − γ) =
1
48

, (3.2)

which means that the sequence (μn) converges to γ with the rate of convergence n−3 .
In a very recent paper C. Mortici [13] proved that the sequences (un) and (vn) defined
by, respectively,

un = Hn−1 +
1

(6−2
√

6)n
− log(n+1/

√
6), (3.3)
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and

vn = Hn−1 +
1

(6+2
√

6)n
− log(n−1/

√
6) (3.4)

converge to γ like n−3 since

lim
n→∞

|n3(un− γ)| = lim
n→∞

|n3(vn − γ)|=
√

6
108

. (3.5)

A comparison between (3.2) and (3.5) enables us to conclude that our formula (3.1) is
slightly better than formulas (3.3) and (3.4). Better estimations than (3.1), (3.3) and
(3.4) are also proposed by Mortici in [13]. His sequences defined by

αn = Hn−2 +
23

24(n−1)
+

1
24n

− log(n−1/2) (3.6)

and

δn =
un + vn

2
= Hn−1 +

1
2n

− 1
2

log(n2−1/6) (3.7)

converge to γ as n−4 . Indeed he proved that

lim
n→∞

n4(αn − γ) = − 17
960

. (3.8)

lim
n→∞

n4(δn− γ) =
11
720

. (3.9)

From (2.13), (3.8), and (3.9) it is clear that our sequence (σn) given in Theorem 2.6
gives much accurate values for γ than the approximations αn ≈ γ from (3.6) and δn ≈ γ
from (3.7). In view of our underestimate in (2.12) we set

θn = Hn +
1
2

log

(
e2/(n+1)−1

2n+2

)
, (3.10)

which can be easily seen that it converges to γ . Using l’Hospital rule it is easy to see
that lim

n→∞
n5(θn −θn+1) = 1

45 , so that by Lemma 1.1 we get

lim
n→∞

n4θn =
1

180
. (3.11)

Since θn → γ and σn → γ , the arithmetic mean of θn and σn also converges to γ . Let
us define

τn =
θn +σn

2
= Hn +

1
4

log

(
e2/(n+1)−1

2n3 +4n2 +8n/3+2/3

)
.

From (2.13) and (3.11) it results that lim
n→∞

n4τn = 0, which means that the sequence (τn)

converges to γ at rate faster than n−4 . These facts can be seen in the following table.
We note that C. Mortici has established some other new approximation formulas for γ
in [11] but his results obtained in [13] are better than those from [11].
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n |θn − γ| |σn− γ| |τn − γ| |αn− γ| |δn− γ|
1 0.00029 0.00086 0.00028 ——- 0.0139451

2 0.00006 0.00012 0.00003 0.00004 0.00091

10 3.7733 ·10−7 4.5428 ·10−7 3.8478 ·10−8 2.1725 ·10−6 1.5246 ·10−6

25 1.2145 ·10−8 1.3125 ·10−8 4.9028 ·10−10 4.9143 ·10−8 3.9098 ·10−8

50 8.2098 ·10−10 8.5397 ·10−10 1.6499 ·10−11 2.9494 ·10−9 2.4442 ·10−9

100 5.3384 ·10−11 5.4454 ·10−11 5.3557 ·10−13 1.8066 ·10−10 1.5277 ·10−10

500 9.5035 ·10−14 8.8817 ·10−14 3.5527 ·10−15 2.851 ·10−13 2.4424 ·10−13
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