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(Communicated by A. Ben-Israel)

Abstract. Motivated by the Hadamard maximum determinant problem we study the quantities
am,n = maxdet(AAT ) where A is a m× n matrix with entries 1 and −1 . We find the exact
values of a2,n and a3,n and for a general m we give upper and lower bounds for am,n .

1. Introduction

Let m and n be positive integers. We denote by Mm,n(−1,1) the set of all m×n
matrices whose elements are 1 or −1. We will write as usual Mn(−1,1) instead of
Mn,n(−1,1) . By Hadamard’s classical inequality we have that det(A)2 � nn for every
A ∈ Mn(−1,1) . It easy to see that this upper bound can be reached only if n = 2 or
n ≡ 0 (mod 4) . A matrix A ∈ Mn(−1,1) such that (detA)2 = nn is called a Hadamard
matrix. It is a long standing conjecture that n× n Hadamard matrices exist for every
n ≡ 0 (mod 4) .

One can show that if A ∈ Mm(−1,1) and B ∈ Mn(−1,1) are Hadamard matrices
and ⊗ denotes the Kronecker product then A⊗B ∈ Mmn(−1,1) is again a Hadamard
matrix and therefore the set of Hadamard matrices is a graded sub-semigroup of the
graded semigroup

(⊔
n�1 Mn(−1,1),⊗)

.
The Hadamard maximum determinant problem (see Brenner and Cummings [1])

asks to find max{|det(A)| : A ∈ Mn(−1,1)} . H. Ehlich in [3] and [4] gave upper
bounds for n ≡ 1,2 (mod 4) and n ≡ 3 (mod 4) respectively. Moreover, it is shown
in [6] that for n ≡ 1,2 (mod 4) the upper bounds obtained by Ehlich are attained for
infinitely many values of n .

For up-to-date information regarding this difficult problem we are referring to
the web page http://www.indiana.edu/~ maxdet/ which maintained by W. Or-
rick and B. Solomon. The reader will find known bounds on maximal determinants at
http://www.indiana.edu/~ maxdet/bounds.html

In this paper we would like to address a similar question for non-square matrices.
Namely we are interested in giving upper bounds for the following quantities:

am,n = max{det(AAT ) : A ∈ Mm,n(−1,1)}
where m � n are positive integers and AT denotes the transpose of A . For m = 2 and
m = 3 we will find the exact values of a2,n and a3,n . For a general m we give upper
and lower bounds for am,n .
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2. The Results

Suppose that A∈Mm,n(−1,1) , m � n , and Am is the set of all m×m submatrices
of A . By the Binet-Cauchy formula det(AAT ) = ∑B∈Am det(B)2 . It is easy to see that
if B ∈ M2,2(−1,1) then det(B) = 0 or |det(B)| = 2 and if B ∈ M3,3(−1,1) then
det(B) = 0 or |det(B)| = 4. Therefore in order to determine a2,n and a3,n we have to
determine the maximum number of 2×2 and 3×3 non-zero minors that a 2×n and,
respectively, 3×n matrix can have.

LEMMA 1. a) Let A ∈Mn(−1,1) where n ∈ {2,3} . Then det(A) = 0 if and only
if two columns of A are proportional.

b) If A ∈M4(−1,1) and det(A) = 0 then A has two proportional columns or two
proportional rows.

REMARK. For n = 2 or n = 3, replacing A with AT we get that det(A) = 0 if
and only if two rows of A are proportional. Hence we get that A has two proportional
rows if and only if it has two proportional columns.

Proof. a) The “if” part is obvious. Also the “only if” part for n = 2 is straight-
forward. We will prove the “only if” part for n = 3. Let A = (ai j) ∈ M3(−1,1) with

detA = 0. For j = 1,2,3 let a j =

⎡
⎣a1 j

a2 j

a3 j

⎤
⎦ be the columns of A . If A has rank 1 then

any two columns are proportional and there is nothing to prove. We will assume then

that A has rank 2. For example we assume that

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ �= 0

Since det(A) = 0 there exist three real numbers, α,β ,γ ∈ R , not all equal to zero,
such that αa1 +βa2 + γa3 = 0. If γ = 0 then a1 and a2 are proportional and we are
done. Suppose that γ �= 0. Dividing by γ we can assume that γ = 1. Hence we have
that

αa11 +βa12 = −a13

αa21 +βa22 = −a23.

As we assumed that

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ �= 0 and ai j ∈ {−1,1} we must have that

∣∣∣∣a11 a12

a21 a22

∣∣∣∣∈
{−2,2} . At the same time

∣∣∣∣a11 a13

a21 a23

∣∣∣∣∈ {−2,0,2} and

∣∣∣∣a13 a12

a23 a22

∣∣∣∣∈ {−2,0,2} . It follows

that α,β ∈ {−1,0,1} . If α,β ∈ {−1,1} then αa11 +βa12 is an even integer which is
impossible since a13 is odd. It follows then that at least one of α and β must be zero
and part a) follows.

b) Suppose that A = (ai j) ∈ M4(−1,1) is a matrix with det(A) = 0. Let P be
the set of all matrices X ∈M4(−1,1) that have either two proportional columns or two
proportional rows. We have to show that A ∈ P . Note that P is invariant under the
following operations: interchanging two rows, interchanging two columns, multiplying
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a column by −1, multiplying a row by −1. We can assume then that ai1 = 1 for
1 = 1,2,3,4. We distinguish two cases:

Case 1: there exists j ∈ {2,3,4} such that ∑4
i=1 ai j �= 0. If ∑4

i=1 ai j = ±4 then
either ai j = 1 ∀i or ai j = −1 ∀i and the column j will be proportional to the first
column. If ∑4

i=1 ai j =±2 then the j -th column will contain three entries equal to 1 and
one entry equal to −1 or three entries equal to −1 and one entry equal to 1. Without
loss of generality (since P is invariant under the operations mentioned above) we can
assume then that a14 = a24 = a34 = −1 and a44 = 1. Adding the first column to the
last one we get that

detA = 2det

⎡
⎣1 a12 a13

1 a22 a23

1 a32 a33

⎤
⎦

and hence the determinant of this last matrix is equal to 0. By part a) it must have two

proportional columns. If

⎡
⎣a1i

a2i

a3i

⎤
⎦ = ε

⎡
⎣1

1
1

⎤
⎦ where ε ∈ {−1,1} and i ∈ 2,3 then either

a4i = ε in which case the i-th column of A is proportional to the first one, or a4i = −ε

and then the i-th column is proportional to the fourth one. Suppose now that

⎡
⎣a12

a22

a32

⎤
⎦ is

proportional to

⎡
⎣a13

a23

a33

⎤
⎦ . Since a12,a22,a32 ∈ {−1,1} two of them must be equal. Say

that a12 = a22 . By proportionality we must have that a13 = a23 as well. It follows then
that the first two rows of A are equal.

Case 2: ∑4
i=1 ai j = 0 for j = 2,3,4. Adding the first, second and third row of A

to the last one we get that

det(A) = 4det

⎡
⎣a12 a13 a14

a22 a23 a24

a32 a33 a34

⎤
⎦

and the last matrix must have then two proportional columns. Say that

⎡
⎣a12

a22

a32

⎤
⎦ =

ε

⎡
⎣a13

a23

a33

⎤
⎦ where ε ∈ {−1,1} . As we assumed that ∑4

i=1 ai2 = 0 and ∑4
i=1 ai3 = 0 it

follows that a42 = −∑3
i=1 ai2 = −ε ∑3

i=1 ai3 = εa43 . We deduce that the second and
third row of A are proportional. �

REMARKS. 1) If A ∈ M4(−1,1) has rank at most 2 then it must have both two
proportional rows and two proportional columns, the proof of this fact being the same
as the one for part a) of the theorem above.

2) If n = 4 then there are singular matrices that do not have two proportional
columns (and, by taking the transpose, there are singular matrices that do not have two
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proportional rows) and for n � 5 there exist singular matrices that do not have two
proportional columns or two proportional rows as the following two examples show:

⎡
⎢⎢⎣

1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 −1 1 −1 1
1 −1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 1 −1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦ .

We denote by N the set of non-negative integers. For n ∈ N , n � 1, we denote
by R[X1,X2, . . . ,Xn] the ring of polynomials in n variables with coefficients in R . For
P ∈ R[X1,X2, . . . ,Xn] and j ∈ {1,2, . . . ,n} be denote by degXi

P the degree of P when
P is viewed as a polynomial in the variable Xj and having as coefficients polynomials
in the remaining variables (in other words P ∈ R[X1, . . . ,Xj−1,Xj, . . .Xn][Xj]).

LEMMA 2. Suppose that P ∈ R[X1,X2, . . . ,Xn] is a symmetric polynomial with
positive coefficients such that degXi

P = 1 for every i ∈ {1,2, . . . ,n} . Let M > 0 and
k, p ∈ N be some constants such that p � n−1 .

a) If A = {(x1,x2, . . . ,xn) ∈ R
n : x j � 0 ∀ j and ∑n

j=1 x j = M} then

max{P(x1,x2, . . . ,xn) : (x1,x2, . . . ,xn) ∈ A} = P(M
n , M

n , . . . , M
n ).

b) If B = {(x1,x2, . . . ,xn) ∈ N
n : ∑n

j=1 x j = kn+ p} and we set a j = k for 1 � j �
n− p and a j = k+1 for j > n− p then

max{P(x1,x2, . . . ,xn) : (x1,x2, . . . ,xn) ∈ B} = P(a1,a2, . . . ,an) .

Proof. We begin with the following simple observation: if x1,x2,y1,y2 are real
numbers such that x1 + x2 = y1 + y2 and |x1 − x2| < |y1− y2| then y1y2 < x1x2 .

a) Since A is a compact subset of R
n and the real-valued function (x1,x2, . . . ,xn)∈

R
n → P(x1,x2, . . . ,xn) is continuous, it reaches its maximum value in A . We denote by

μ this maximum value and we set

Ã = {(x1,x2, . . . ,xn) ∈ A : P(x1,x2, . . . ,xn) = μ}.

Let f : Ã → R , f (x1,x2, . . . ,xn) = ∑n
i< j(xi − x j)2 . Ã is a compact set and f is a con-

tinuous function. Therefore f has a minimum point in Ã . Let (a1,a2, . . . ,an) ∈ Ã
be a minimum point for f . We claim that one must have a1 = a2 = · · · = an . In-
deed, let’s assume that there exists i, j ∈ {1,2, . . . ,n} , i �= j , such that ai �= a j . With-
out loss of generality we can assume that a1 �= a2 . Let b1 = b2 = a1+a2

2 and let
Q : R×R → R , Q(x1,x2) = P(x1,x2,a3, . . . ,an) . We have that b1 +b2 = a1 +a2 and
b1 = b2 � 0 and therefore (b1,b2,a3, . . . ,an) ∈ A . At the same time, given the prop-
erties of P , Q is of the form Q(x1,x2) = αx1 +αx2 +βx1x2 for some non-negative
numbers α and β . Since |b1−b2| < |a1−a2| , it follows from the observation that we
started the proof with that a1a2 < b1b2 , hence Q(a1,a2, . . . ,an) � Q(b1,b2,a3, . . . ,an)
and therefore P(a1,a2, . . . ,an) � P(b1,b2,a3, . . . ,an) . As (a1,a2, . . . ,an) was a maxi-
mum point for P we deduce that (b1,b2,a3, . . . ,an) is a maximum point as well (and
P(a1,a2, . . . ,an) = P(b1,b2,a3, . . . ,an)). That means that (b1,b2,a3, . . . ,an) ∈ Ã . On
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the other hand f ((b1,b2,a3, . . . ,an) < f (a1,a2, . . . ,an) and this is a contradiction with
our choice of (a1,a2, . . . ,an) as a minimum point for f . In this way we proved that
a1 = a2 = · · · = an . Because (a1,a2, . . . ,an) ∈ A we must have that ∑n

j=1 a j = M and

therefore a1 = a2 = · · · = an = M
n . However (a1,a2, . . . ,an) was a point in Ã and we

conclude that P(M
n , M

n , . . . , M
n ) = μ which finishes the proof of part a).

b) Note that B is finite and therefore (x1,x2, . . . ,xn) ∈ B → P(x1,x2, . . . ,xn) has a
maximum point in B . We set:

ν = max{P(x1,x2, . . . ,xn) : (x1,x2, . . . ,xn) ∈ B}
B̃ = {(x1,x2, . . . ,xn) ∈ B : P(x1,x2, . . . ,xn) = ν},

g : B̃ → R, g(x1,x2, . . . ,xn) =
n

∑
i< j

(xi − x j)2.

Obviously B̃ is finite. Let (a1,a2, . . . ,an) ∈ B̃ be a minimum point for g . We claim
that |ai−a j| � 1 for every i, j ∈ {1,2, . . . ,n} . As above the proof of this claim will be
by contradiction. We assume that there exists i, j ∈ {1,2, . . . ,n} such that |ai − a j| �
2. Without loss of generality we can assume that a1 � a2 − 2. Let b1 = a1 + 1 and
b2 = a2−1, Q : R×R → R , Q(x1,x2) = P(x1,x2,a3, . . . ,an) . We have that b1 +b2 =
a1 +a2 , b1 � 0, b2 � 0, and |b1 −b2| < |a1 −a2| . As in the proof of a) we have that
(b1,b2,a3, . . . ,an) ∈ B and P(a1,a2, . . . ,an) � P(b1,b2,a3, . . . ,an) which implies that
(b1,b2,a3, . . . ,an) ∈ B̃ . We notice that g((b1,b2,a3, . . . ,an) < g(a1,a2, . . . ,an) which
is a contradiction with the fact that (a1,a2, . . . ,an) is a minimum point for g and the
claim is proved.

Next we claim that ai ∈ {k,k +1} for every i ∈ {1,2 . . . ,n} . Otherwise it would
exists i such that either ai � k−1 or ai � k+2.

We assume that there exists i such that ai � k− 1 and we will reach a contra-
diction. Without loss of generality we can assume that a1 � k− 1. Since ∑n

j=1 a j =
kn + p we have that ∑n

j=2 a j � k(n− 1) + p + 1 � k(n− 1) + 1. At the same time

max{a2, . . . ,an}� 1
n−1 ∑

n
j=2 a j � k+ 1

n−1 > k . We deduce that there exists j ∈{2, . . . ,n}
such that a j � k +1. However we would have then that |a j −a1| � 2 which is a con-
tradiction.

We assume that there exists i such that ai � k + 2 and again we will reach a
contradiction. As before we assume that a1 � k + 2. We have that ∑n

j=2 a j � k(n−
1)+ p− 2 � k(n− 1)+ n− 3 and hence min{a2, . . . ,an} � 1

n−1 ∑
n
j=2 a j � k + n−3

n−1 <
k +1. We deduce that there exists j ∈ {2, . . . ,n} with a j � k which implies again the
contradictory inequality |a j −a1| � 2.

It remains to notice that from ∑n
j=1 a j = kn+ p it follows that the set {i : ai = k}

has n− p elements and the set {i : ai = k+1} has p elements. From the symmetry of
P we may assume that a j = k for 1 � j � n− p and a j = k+1 for j � n . �

THEOREM 1. If for A ∈ M2,n(−1,1) we denote by nA the number of non-zero

2×2 minors of A then max{nA : A∈Mn(−1,1)}=
⌊

n2

4

⌋
and therefore a2,n = 4

⌊
n2

4

⌋
.
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Proof. Suppose that A is a matrix in M2,n(−1,1) . For every j ∈ {1,2, . . . ,n} we
let

a j =
[
a1 j

a2 j

]

Let also

v1 =
[
1
1

]
, v2 =

[−1
1

]

We set, for l ∈ {1,2} , Cl = { j ∈ {1,2, . . . ,n} : a j = vl or a j = −vl} and we denote by
xl the number of elements of Cl . According to Lemma 1 the set of non-zero minors of
A is in bijection with C1×C2 . Therefore nA = x1x2 . As x1 +x2 = n , Lemma 2 implies
that max{nA : A∈Mn(−1,1)}= k2 if n= 2k and max{nA : A∈Mn(−1,1)}= k(k+1)
if n = 2k+1. In both cases we get that max{nA : A ∈ Mn(−1,1)} =

⌊
n2

4

⌋
. �

THEOREM 2. If for A ∈ M3,n(−1,1) we denote by nA the number of non-zero
3×3 minors of A then max{nA : A∈Mn(−1,1)}=ψ(n) and therefore a3,n = 16ψ(n)
where ψ(n) is given by:

ψ(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4k3, if n = 4k

4k3 +3k2, if n = 4k+1

4k3 +6k2 +2k, if n = 4k+2

4k3 +6k2 +6k+1, if n = 4k+3

.

Proof. Suppose that A is a matrix in M3,n(−1,1) . For every j ∈ {1,2, . . . ,n} we
let

a j =

⎡
⎣a1 j

a2 j

a3 j

⎤
⎦

Let also

v1 =

⎡
⎣1

1
1

⎤
⎦ , v2 =

⎡
⎣−1

1
1

⎤
⎦ , v3 =

⎡
⎣ 1
−1
1

⎤
⎦ , v4 =

⎡
⎣ 1

1
−1

⎤
⎦

We set, for l ∈ {1,2,3,4} , Cl = { j ∈ {1,2, . . . ,n} : a j = vl or a j =−vl} and we denote
by xl the number of elements of Cl . According to Lemma 1 the set of non-zero minors
of A is in bijection to

(C1×C2×C3)∪ (C1×C2×C4)∪ (C1×C3×C4)∪ (C2×C3×C4).

Therefore nA = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 . Note also that x1 + x2 + x3 +
x4 = n . Hence we have to determine

max{P(x1,x2,x3,x4) : x1,x2,x3,x4 ∈ N, x1 + x2 + x3 + x4 = n}
where P(x1,x2,x3,x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 . Obviously P is a symmet-
ric polynomial with positive coefficients and of degree 1 in each variable and therefore
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we can apply Lemma 2. It now remains to consider four cases: n = 4k , n = 4k + 1,
n = 4k+2, n = 4k+3 and to compute P(k,k,k,k) , P(k+1,k,k,k) , P(k+1,k+1,k,k)
and, respectively, P(k+1,k+1,k+1,k) . In each of these cases we will get the formula
for ψ(n) . �

COROLLARY 1. For every m � n positive integers am,n � χ(m,n) where χ(m,n)
is defined as follows:

χ(m,n) =

⎧⎪⎨
⎪⎩

(16ψ(n))l, if m = 3l

n(16ψ(n))l, if m = 3l +1

4	 n2

4 
(16ψ(n))l, if m = 3l +2

.

Proof. Let A ∈ Mm,n(−1,1) and let a j , j = 1,2, . . . ,m be the row vectors of A .

Suppose that m = 3l . We let for k = 1,2, . . . l Ak =

⎡
⎣a3(k−1)+1

a3(k−1)+2

a3(k−1)+3

⎤
⎦ ∈ M3,n(−1,1) and

hence A =

⎡
⎢⎢⎣

A1

A2

· · ·
Al

⎤
⎥⎥⎦ . Using a well-known inequality (see for example [5]) and Theorem 2

we have:

det(AAT ) � det(A1A
T
1 )det(A2A

T
2 ) · · ·det(AlA

T
l ) � (16ψ(n))l.

If m = 3l+1 we define Ak for k = 1,2, . . . l as before and Al+1 = am . If m = 3l+2

then we let Al+1 =
[
am−1

am

]
. We use the same inequality as before the only difference

is that in the case m = 3l +2 we need to use Theorem 1 as well. In the case m = 3l +1
we use the obvious fact that am(am)T = n . �

The following proposition gives a lower bound for am,n in terms of am,m . For
results regarding lower bounds for am,m see [2].

PROPOSITION 1. Let n = km + p where p ∈ {0,1, . . . ,m− 1} . Then am,n �
am,m(k+1)pkm−p .

Proof. Let B∈Mm(−1,1) be such that det(B)2 = det(BBT )= am,m . Let b1, . . . ,bm

be the column vectors of B . We define the matrix A∈Mm,n as follows: A = [B B · · · B
b1 · · · bp] if p � 1 and A = [B B · · · B] if p = 0 where, in both cases the matrix B ap-
pears k times. Note now that that if C is m×m submatrix of A then either det(C) = 0
or C is obtained from B by a permutation of its columns. Therefore the absolute value
of each non-zero m×m minor of A is am,m . On the other hand, since each of the
columns b1, · · · ,bp appear k+1 times among the columns of A and bp+1, · · · ,bm ap-
pear m− k times, we get altogether (k+1)pkm−p m×m non-zero minors. �
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