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EXTENSIONS OF INEQUALITIES

INVOLVING KANTOROVICH CONSTANT

MAREK NIEZGODA

(Communicated by S. Varošanec)

Abstract. In this paper, two methods of extending inequalities involving Kantorovich constant
are presented. An inequality of Mićić et al. [Linear Algebra Appl., 318 (2000), 87–107] on
positive linear maps and geometric mean of positive definite matrices is extended to arbitrary
matrices having accretive transformation. A result of Dragomir [JIPAM 5 (3), Art.76, 2004] is
applied to give new sufficient conditions for Greub-Reinboldt’s inequality to hold.

1. Introduction and motivation

Throughout this paper, Cn is the complex space of column n -vectors with inner

product 〈x,y〉=
n
∑
j=1

x jy j and norm ‖x‖= 〈x,x〉1/2 for x,y ∈Cn . By Mn(C) we denote

the C∗ -algebra of all complex n×n matrices. The symbol (·)∗ stands for the conjugate
transpose of a matrix. As usual, I denotes the n× n identity matrix. For a matrix
X ∈ Mn(C) , we write X � 0 (resp. X > 0) if X is positive semidefinite (resp. positive
definite). A linear map Φ : Mn(C) → Mk(C) is said to be positive if Φ(X) � 0 for
X � 0. Hereafter for a matrix X ∈ Mn(C) we denote

ReX := (X +X∗)/2. (1)

Let A and B be n×n positive definite matrices. The geometric mean of A and B
is defined by

A�B := A1/2(A−1/2BA−1/2)1/2A1/2 (2)

(see [1, 10]). The following result holds. If

0 < mI � A � MI and 0 < mI � B � MI , (3)

then for x ∈ Cn

(x∗Ax)1/2 · (x∗Bx)1/2 � M +m

2
√

mM
x∗A�Bx
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(see [8, 17]). The number κ(m,M) = (M+m)2
4mM is called Kantorovich constant [17,

p. 688]. Note that
√
κ(m,M) = M+m

2
√

mM
is the ratio of the arithmetic to geometric mean

of m and M . Furthermore, κ(m,M) = κ(
√ m

M ,
√

M
m ) .

Mićić et al. [11, Corollary 3.7] showed that if

0 < m1I � A � M1I and 0 < m2I � B � M2I ,

then

Φ(A)�Φ(B) �
√

M1M2 +
√

m1m2

2 4
√

m1m2M1M2
Φ(A�B).

In particular, if (3) holds then

Φ(A)�Φ(B) � M +m

2
√

mM
Φ(A�B). (4)

Recently Lee [10, Theorem 4] proved (4) under the assumption of the form mA �
B � MA with positive definite matrices A and B and positive scalars m,M . Niezgoda
[15, Theorem 1.1] presented a proof of (4) by using the positive definite matrix Z =
|B1/2A−1/2| = (A−1/2BA−1/2)1/2 such that mI � Z � MI with positive scalars m,M .

In this note, our first aim is to extend (4) with the help of any Z ∈ Mn(C) such
that Z∗Z = A−1/2BA−1/2 and

Re(Z−mI)∗(MI−Z) � 0 (5)

(see (1)). The condition (5), originated by Dragomir [5, 6], is known to be very useful
in deriving matrix inequalities [3, 4, 5, 6, 13, 14, 15, 16]. It is related to the notion of
accretive operators. In Section 2 we utilize such operators to generalized inequality
(4). Related results are also given.

In Section 3 we study vectorial intervals to give another method of extending the
range of applicability of some known inequalities. It is worth emphasising that some
standard assumptions for many inequalities to hold are related to vectorial intervals
induced by one (self-dual) cone, e.g. Rn

+ in Rn or the Loewner cone Ln of posi-
tive semidefinite matrices in the (real) space Hn of n× n Hermitian matrices. In our
approach, intervals are induced by an arbitrary pair of dual convex cones. This and
special Dragomir’s condition similar to (5) (see (18)) allow to establish some new suf-
ficient conditions for such inequalities to be still valid. In Theorem 3.2 we reinterpret
[3, Theorem 2.2] in the context of dual bases of the underlying linear space. In Corol-
lary 3.5, we illustrate the above ideas by the classical inequality of Greub - Reinboldt
(see [7]). In Corollary 3.6, we provide some new conditions implying G-R inequality.
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2. Making use of accretive operators

A matrix C ∈ Mn(C) is said to be accretive if Re 〈Cx,x〉 � 0 for all x ∈ Cn [5,
p. 2753].

For a matrix Z ∈ Mn(C) and scalars m,M ∈ C , the symbol Cm,M(Z) stands for
the transform

Cm,M(Z) := (Z−mI)∗(MI−Z) (6)

(see [5, p. 2752]).
It is not hard to verify that

Cm,M(Z) is accretive iff ReCm,M(Z) � 0 (7)

iff Re 〈(Z−mI)x,(MI−Z)x〉 � 0 for x ∈ Cn (8)

(see (1)).
Let A and B be n×n positive definite matrices. It is well known that the geometric

mean X0 = A�B is the unique solution of the equation

XA−1X = B with restriction X > 0

(see [10, p. 806]). Hence Z0 = A−1/2X0A−1/2 satisfies the equation

Z2 = A−1/2BA−1/2 with restriction Z > 0.

In the sequel, we are interested in any Z ∈ Mn(C) satisfying equation

Z∗Z = A−1/2BA−1/2. (9)

The solution of (9) is not unique, since Z = UZ0 with unitary U satisfies (9).
By analogy to (2), we denote

A�ZB := A1/2ZA1/2,

where Z satisfies (9).
We are now in a position to give an extension of [10, Theorem 4] and [16, Theo-

rem 1.1] (cf. [11, Corollary 3.7]).

THEOREM 2.1. Let A and B be n× n positive definite matrices and let scalars
m,M ∈ C with Re(mM) > 0 . Let Z ∈ Mn(C) satisfy Z∗Z = A−1/2BA−1/2 . Assume
Φ : Mn(C) → Mk(C) is a strictly positive linear map.

If Cm,M(Z) is accretive, then

Φ(A)�Φ(B) � 1

2
√

Re(mM)
Φ(Re ((M +m)A�ZB)). (10)

If in addition scalars m,M are positive, then (10) gives

Φ(A)�Φ(B) � M +m

2
√

mM
Φ(Re (A�ZB)). (11)
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Proof. Since
√

Re (mM)Φ(A) and 1√
Re (mM)

Φ(B) are positive definite matrices,

it follows from the arithmetic-geometric inequality that

Φ(A)�Φ(B) � 1
2

(√
Re(mM)Φ(A)+

1√
Re (mM)

Φ(B)

)
(12)

(see [17, p. 690]).
On the other hand, if Cm,M(Z) is accretive, then (6) and (7) guarantee that

(Re(mM))I +Z∗Z � Re(M +mZ),

which implies

√
Re(mM)I +

1√
Re (mM)

Z∗Z � 1√
Re(mM)

Re(M +mZ) (13)

(see [15, Proposition 2.1]). Simultaneously, A1/2Z∗ZA1/2 = B . So, by pre- and post-
multiplying both sides of the inequality (13) by A1/2 , we obtain

√
Re (mM)A+

1√
Re(mM)

B � 1√
Re (mM)

A1/2(Re (M +mZ))A1/2.

By using the positivity of Φ we get

√
Re(mM)Φ(A)+

1√
Re(mM)

Φ(B) � 1√
Re (mM)

Φ(A1/2(Re (M +mZ))A1/2).

(14)
Moreover,

A1/2(Re(M +mZ))A1/2 = Re((M +m)A�ZB). (15)

Combining (12), (14) and (15) we deduce that (10) holds.
Inequality (11) is a direct consequence of (10). �

In Corollary 2.2, inequality (17) corresponds to a special case of [17, Theorem 2.2]
with two factors (see also [8]).

COROLLARY 2.2. Let A and B be n×n positive definite matrices and let scalars
m,M ∈ C with Re(mM) > 0 . Let Z ∈ Mn(C) satisfy Z∗Z = A−1/2BA−1/2 .

If Cm,M(Z) is accretive, then for h ∈ Cn we have

〈Ah,h〉1/2〈Bh,h〉1/2 � 1

2
√

Re(mM)
〈(Re ((M +m)A�ZB))h,h〉. (16)

If in addition scalars m,M are positive, then (16) reduces to

〈Ah,h〉1/2〈Bh,h〉1/2 � M +m

2
√

mM
〈(Re (A�ZB))h,h〉. (17)
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Proof. Straightforward application of Theorem 2.1 to the map Φ(X) = h∗Xh for
X ∈ Mn(C) . �

By using the spectral decomposition of Hermitian matrices, one can prove Le-
mma 2.3 giving examples of the accretivity of the transform Cm,M(Z) . This lemma can
be used to demonstrate inequalities (10) and (16) with some standard assumptions on
A and B .

LEMMA 2.3. (i) Let Z be an n×n Hermitian matrix and let m,M be real scalars
with m � M.

Then the operator Cm,M(Z) is accretive if and only if

mI � Z � MI.

(ii) Let A and B be n×n positive definite matrices. Denote Z = (A−1/2BA−1/2)1/2 .

If
mA � B � MA with positive scalars m,M ,

then the operator C√
m,
√

M(Z) is accretive.

(iii) Let A and B be n×n positive definite matrices. Denote Z = (A−1/2BA−1/2)1/2 .

If

m1I � A � M1I and m2I � B � M2I with positive scalars m1,M1,m2,M2 ,

then the operator C√ m2
M1

,
√

M2
m1

(Z) is accretive.

As a result related to Theorem 2.1 and Corollary 2.2, we now quote a reverse to
Cauchy-Schwarz inequality due to Dragomir [3, Theorem 2.2] (cf. [12, Proposition 3.4,
part (c)]).

THEOREM 2.4. (Dragomir [3, Theorem 2.2]) Let x,y ∈ Cn and m,M ∈ C with
Re(mM) > 0 .

If
0 � Re 〈x−my,My− x〉, (18)

then

‖x‖‖y‖� Re (M +m · 〈x,y〉)
2
√

Re(mM)
� |M +m|

2
√

Re(mM)
|〈x,y〉|. (19)

The singular values of a matrix X ∈ Mn(C) are denoted by s1(X) � . . . � sn(X)
and arranged in decreasing order with repeated multiplicity. That is, for j = 1, . . . ,n ,
s j(X) is the j th largest eigenvalue of the positive semidefinite matrix |X | = (X∗X)1/2 .

The following result can be compared to [15, Corollary 2.6].
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THEOREM 2.5. Let A,B∈Mn(C) and let scalars m,M ∈C satisfy Re(mM) > 0 .
If

Re (B−mA)∗(MA−B) � 0, (20)

then

s j(AB∗) � 1

2
√

Re (mM)
s j(Re (M +mA∗B)) for j = 1, . . . ,n. (21)

If in addition A∗B is Hermitian, then (21) becomes

s j(AB∗) � |Re (M +m)|
2
√

Re (mM)
s j(A∗B) for j = 1, . . . ,n. (22)

If in addition scalars m,M are positive, then (21) reduces to

s j(AB∗) � M +m

2
√

mM
sj(Re (A∗B)) for j = 1, . . . ,n. (23)

Proof. It is known that

s j(CD∗) � 1
2
s j(C∗C+D∗D) for C,D ∈ Mn(C) and j = 1, . . . ,n

(see [2, Theorem IX.4.2, p. 262]). Hence, by putting C = 4
√

Re (mM)A and D =
1

4
√

Re(mM)
B , we find that

s j(AB∗) � 1
2
s j(
√

Re(mM)A∗A+
1√

Re(mM)
B∗B)) for j = 1, . . . ,n . (24)

Similarly as in the proof of Theorem 2.1, (20) gives

Re(mM)A∗A+B∗B � Re(MB∗A+mA∗B).

Hence √
Re(mM)A∗A+

1√
Re(mM)

B∗B � 1√
Re (mM)

Re(MB∗A+mA∗B),

because Re(mM) > 0. Using the equality Re(MB∗A+mA∗B) = Re(M +mA∗B) , we
get √

Re(mM)A∗A+
1√

Re(mM)
B∗B � 1√

Re (mM)
(Re(M +m)A∗B). (25)

Both the sides of (25) are positive semidefinite matrices. So, by Weyl’s Monotonicity
Theorem [2, Corollary III.2.3, p. 63],

s j

(√
Re (mM)A∗A+

1√
Re(mM)

B∗B

)
� s j

(
1√

Re(mM)
(Re (M +m)A∗B)

)
(26)

for j = 1, . . . ,n . Combining (24) and (26) proves (21).
Inequalities (22) and (23) follows directly from (21). �
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3. Dragomir’s condition and vectorial intervals

As shown in Section 2, crucial assumptions in the previous results are conditions
of type (8), (18) and (20). In this section we give a geometric interpretation and appli-
cations of Dragomir’s condition (18) by using vectorial intervals.

Let V be a real linear space endowed with real inner product 〈·, ·〉 and norm
‖ · ‖= 〈·, ·〉1/2 .

If ≺1 and ≺2 are two preorders on V , then for given vectors a,b ∈V , we define
≺1≺2 -interval as follows:

[a,b]≺1≺2 = {v ∈V : a ≺1 v ≺2 b}
(cf. [9, pp. 120–121]).

The dual cone of a convex cone K ⊂V is defined by

dualK = {v ∈V : 〈w,v〉 � 0 for all w ∈ K }.
We write

y ≺K x if x− y ∈ K,

and
y ≺dualK x if x− y ∈ dualK.

For notational simplicity, the symbol [a,b]K stands for the vectorial interval [a,b]≺K≺dualK .
Thus

x ∈ [a,b]K iff a ≺K x ≺dualK b.

It is well known that the distance between a number x in a real interval [a,b] ⊂ R
and the center (a+b)/2 does not exceed (b−a)/2. A similar result is as follows. (The
equivalence (b) ⇔ (c) is due to Dragomir [4, Lemma 2.1].)

LEMMA 3.1. For any vectors a,b,x ∈ V , the following statements are mutually
equivalent.

(a) There exists a convex cone K ⊂V such that x ∈ [a,b]K .

(b) 〈x−a,b− x〉� 0 .

(c) ‖x− a+b
2 ‖ � ‖ b−a

2 ‖ .

Proof. (a) ⇔ (b). If there exists a convex cone K ⊂V such that x ∈ [a,b]K , then
a≺K x≺dualK b , which means x−a∈K and b−x∈ dualK . This gives 〈x−a,b−x〉�
0, completing the proof of (b).

Conversely, assuming (b) and taking K = {t(x− a) : t � 0} , we obtain b− x ∈
dualK . Clearly, x−a∈ K . Therefore x ∈ [a,b]K . This proves (a).

(b) ⇔ (c). Apply [4, Lemma 2.1]. �

Making use of Lemma 3.1, we deduce that Dragomir’s condition (18) means

x ∈ [my,My]K for some convex cone K ⊂V . (27)
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We now interpret [3, Theorem 2.2] (see (18) ⇒ (19)) in the context of finitely
generated cones.

THEOREM 3.2. Let (V,〈·, ·〉) be a real n-dimensional inner product space, and
let {ei : i = 1, . . . ,n} and {di : i = 1, . . . ,n} be two bases in V . Assume the bases are
dual, that is 〈ei,d j〉 = δi j , the Kronecker delta, i, j = 1, . . . ,n.

(A) Let x,y ∈V and let m,M be real scalars with mM > 0 . Assume there exist index
sets I1 and I2 with I1∪ I2 = {1, . . . ,n} such that

m〈y,ei〉 � 〈x,ei〉 and 〈x,di〉 � M〈y,di〉 for i ∈ I1 , (28)

and
m〈y,ei〉 � 〈x,ei〉 and 〈x,di〉 � M〈y,di〉 for i ∈ I2 . (29)

Then (19) holds.

(B) Let x,y ∈V and let m,M be real scalars with mM > 0 . Assume that the following
three conditions are satisfied:

〈y,ei〉 �= 0 and 〈y,di〉 �= 0 for i = 1, . . . ,n, (30)

m � 〈x,ei〉
〈y,ei〉 and

〈x,di〉
〈y,di〉 � M for i = 1, . . . ,n, (31)

{i ∈ {1, . . . ,n} : 〈y,ei〉 > 0} = {i ∈ {1, . . . ,n} : 〈y,di〉 > 0}. (32)

Then (19) holds.

Proof. (A). On account of the validity of the implication (18) ⇒ (19) (see [3,
Theorem 2.2]), we only need to show (18). It is not hard to verify that

〈x−my,My− x〉=
n

∑
i=1

〈x−my,ei〉〈My− x,di〉.

Observe that
〈x−my,ei〉 = 0 = 〈My− x,di〉 for i ∈ I1∩ I2 .

Therefore we have

〈x−my,My− x〉= ∑
i∈I1

〈x−my,ei〉〈My− x,di〉+∑
i∈I2

〈x−my,ei〉〈My− x,di〉. (33)

Now, combining (28), (29) and (33), we get (18), as required.
(B). It is obvious that (30) and (32) give

{i ∈ {1, . . . ,n} : 〈y,ei〉 < 0} = {i ∈ {1, . . . ,n} : 〈y,di〉 < 0}. (34)

Denote the index sets of (32) by I1 and of (34) by I2 , respectively. From (31), (32) and
(34) it now follows that conditions (28)-(29) are true. Thus part (A) of Theorem 3.2
implies (19), as desired. �
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REMARK 3.3. It can be proven that if I1∩ I2 is the empty set, then the statements
(28)-(29) have form (27) for the cone

K = cone{di : i ∈ I1}∪{−di : i ∈ I2} = dualcone{ei : i ∈ I1}∪{−ei : i ∈ I2}.

Here the symbol coneV0 stands for the convex cone of all nonnegative linear combina-
tions of vectors in a subset V0 ⊂V .

REMARK 3.4. If {ei : i = 1, . . . ,n} is a self-dual basis, i.e., di = ei for i = 1, . . . ,n ,
then (32) is satisfied automatically. Therefore (32) can be dropped from part (B) of
Theorem 3.2. In this case, (31) can be rewritten as

m � 〈x,ei〉
〈y,ei〉 � M for i = 1, . . . ,n . (35)

The following Greub-Reinboldt’s inequality follows from (19). In particular, for
wi = 1, (37) reduces to Pólya-Szegö’s inequality (see [7]).

COROLLARY 3.5. (See [7].) Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two real
n-tuples. Suppose that m1,M1,m2,M2 are constants such that

0 < m1 � xi � M1 and 0 < m2 � yi � M2, i = 1, . . . ,n. (36)

Then, for wi > 0 ,

n

∑
i=1

wix
2
i

n

∑
i=1

wiy
2
i � (M1M2 +m1m2)2

4m1m1M1M2

(
n

∑
i=1

wixiyi

)2

. (37)

Proof. Inequality (37) is a special case of (19) for m = m1
M2

and M = M1
m2

. To see
this, set

V = Rn and 〈a,b〉 =
n

∑
i=1

wiaibi for a,b ∈ Rn . (38)

Consider the standard orthonormal basis in Rn , i.e.,

ei = di = (0, . . . ,0,1,0, . . . ,0) with 1 at i th position, i = 1, . . . ,n.

Next, observe that (36) implies

0 <
m1

M2
� xi

yi
� M1

m2
, i = 1, . . . ,n,

which gives (35). Thus conditions (30), (31) and (32) are fulfilled (see Remark 3.4). As
consequence of part (B) of Theorem 3.2, we get (19), which is equivalent to (37). �

In the next corollary, we present further sufficient conditions guaranteeing that
Greub-Reinboldt’s inequality (37) is satisfied.
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COROLLARY 3.6. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two real n-tuples.
Assume that for some positive scalars m,M, there exist index sets I1 and I2 with I1 ∪
I2 = {1, . . . ,n} such that

m
i

∑
j=1

y j �
i

∑
j=1

x j and xi− xi+1 � M(yi − yi+1) for i ∈ I1 , (39)

and

m
i

∑
j=1

y j �
i

∑
j=1

x j and xi − xi+1 � M(yi − yi+1) for i ∈ I2 (40)

with the convention that xn+1 = yn+1 = 0 .
Then the following version of Greub-Reinboldt’s inequality (37) holds:

n

∑
i=1

wix
2
i

n

∑
i=1

wiy
2
i � (M +m)2

4mM

(
n

∑
i=1

wixiyi

)2

. (41)

Furthermore, if the following three conditions hold:

i

∑
j=1

y j �= 0 and yi − yi+1 �= 0 for i = 1, . . .n, (42)

m �

i
∑
j=1

xi

i
∑
j=1

yi

and
xi − xi+1

yi − yi+1
� M for i = 1, . . . ,n, (43)

{i ∈ {1, . . . ,n} :
i

∑
j=1

y j > 0} = {i ∈ {1, . . . ,n} : yi − yi+1 > 0}, (44)

then (41) holds.
For instance, if

0 < m1 �
i

∑
j=1

x j and 0 < xi − xi+1 � M1 for i = 1, . . . ,n, (45)

and

0 < m2 � yi − yi+1 and 0 <
i

∑
j=1

y j � M2 for i = 1, . . . ,n, (46)

then (41) holds.

Proof. Consider V = Rn with the inner product given by (38). Take the basis

ei = (1, . . . ,1︸ ︷︷ ︸
i times

,0, . . . ,0), i = 1, . . . ,n.
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The dual basis of {ei : i = 1, . . . ,n} is given by

di = ( 0, . . . ,0︸ ︷︷ ︸
i−1 times

,1,−1,0, . . . ,0), i = 1, . . . ,n−1, and dn = (0, . . . ,0,1).

According to Theorem 3.2, part (A), conditions (39)-(40) imply (41).
Likewise, by virtue of Theorem 3.2, part (B), we deduce that conditions (42)-(44)

imply (41).
In particular, if (45)-(46) are met, then (42), (43) and (44) are achieved for m = m1

M2

and M = M1
m2

. In other words, conditions (45)-(46) give (41). �

We conclude this section with the observation that G-R inequality (41) holds for
any choice of pairs of dual bases e and d in Rn satisfying conditions (28)-(29) (or (30),
(31) and (32)), as described in Theorem 3.2.
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