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SOME MAJORIZATION INEQUALITIES FOR
CONVEX FUNCTIONS OF SEVERAL VARIABLES

JAGJIT SINGH MATHARU AND JASPAL SINGH AUJLA

(Communicated by R. Mathias)

Abstract. The purpose of this note is to prove some weak majorization inequalities involving
convex functions of several variables. A sub-additive inequality for separately matrix convex
functions is also proved.

1. Introduction

For m € N, let .4, be the algebra of all m x m complex matrices, I1,, C .4, the
set of all (Hermitian) projections in ., , -, the set of positive semi-definite matrices
in .4, and &, be the set of positive definite matrices in .#,. Let I be an interval
in R. We denote by .#,,(I) the set of all Hermitian members of ./, whose spectrum
is contained in /. By I,,, we denote the identity matrix in .#,. Let m,n € N, and let
I, J be intervals in R. Let f be a real valued function of two real variables x and y,
xel, yelJ.Let Ae #,(I), B<€ #,(J) have spectral resolutions A = Zle AP, B=
Elle u;Q;. Then f(A,B) is the matrix defined as

k1
fAB) =Y f(hi,u))Pi@Q;

i=1j=1
(Koranyi [11]). A function f: 1 xJ — R is called matrix convex if

f(a(A,C)+ (1 - a)(B,D)) < af(A,C) + (1 - ) f(B, D)

forall A, Be #,(I), C,De M,(J),0< o<1 and myn € N. A function f:IxJ—R
is called matrix convex in first variable if

fa(A,C)+(1-a)(B,C)) < af(A,C)+ (1 - a)f(B,C)

forall A, B € #y(I), C € #,(J), 0< oo <1, and m,n € N. The matrix convexity
in the second variable is defined in the same way. A function f: 1 xJ — R is called
separately matrix convex if it is matrix convex in each variable separately. The function
f is called matrix concave (separately matrix concave) if —f is matrix convex (sep-
arately matrix convex). In case m =n =1 we say f is separately convex/separately
concave accordingly. If f is positive, then f is called log convex (log concave), if
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948 J.S. MATHARU AND J. S. AUJLA

log f is convex (concave). It is immediate that a matrix convex function is separately
. . 1. .
matrix convex. The function f(s,7) = 5 s matrix convex on (0,00) X (0,00) where as
s

the function g(s,#) = st is separately matrix convex on (—ee,00) X (—eo,0). For more
concrete examples of matrix convex functions of several variables the reader is referred
to [2,6,7,8,9]

Let x = (x1,...,%,) and y = (y1,...,y,) be elements in R”. Let x' and x| be the
vectors obtained by rearranging the coordinates of x in decreasing and increasing order
respectively. The weak submajorization relation x <,, y means

q !
ZX,- <
J=1 J

=~

vh 1<k<n
1

Similarly, the weak supermajorization relation x <" y means

M~
N
bl
N
N

R

x; =

~
Il
—
~.
Il
—

Let x,y € R . Then we define the weak sublog-majorization x = wlog ¥ When

=
N
bl
N
S

xﬁg
i

~.
Il x~
~.
Il
—_

Similarly, the weak superlog-majorization relation x <"'°¢ y means

=
\’\-.<*)
N
bl
N
S

x} =

:»

1

<.
I

~.
Il

_

For a Hermitian A € #,, A ji (A), 1 < j < n denotes the eigenvalues of A arranged in

the decreasing order. We use the notation A(A) to denote the row vector ()Lll (A),...,
i (A)).

Matrix convex and separately matrix convex functions of two and more variables
have been studied and characterized in terms of Schwarz inequalities in [1, 6, 7, 8, 9].
In [1], Ando proved that the function f(s,7) = s%17% 0 < a <1 is matrix concave on
(0,00) x (0,°0) and used it to give a simple proof of Lieb’s concavity theorem.

In Section 2, we prove some majorization inequalities involving convex functions
of two variables. In Section 3, some sub-additive inequalities are proved for separately
matrix convex functions. These results can be written for functions of several variables,
however we restrict ourselves to the case of two variables for simplicity. The results
presented in this paper are motivated by the results in [3, 4, 8, 12].

2. Majorization Inequalities

In this section we shall prove some majorization inequalities. We begin with the
following lemma.
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LEMMA 2.1. [2] Let f be afunctiondefinedon I xJ, 0€INJ, A€ My(I), B€
Mu(J). Then

FUAU,V*BV) = (U V)" f(A,B) (U ®V)
for all unitaries U € My, V € My, m,n € N.

LEMMA 2.2. Let f be a separately convex function defined on I xJ and A €
Muw(I),B € My(J). Then

F((Ax,x),(By,y)) < (f(A,B)x®@y,x®Y)

for all unit vectors x € C"y € C".

Proof. First assume that A and B are diagonal. Let A = diag(ay,az,...,an) and

B=diag(by,by,...,b,). Let x= (x1,x2,...,%,)" and y = (y1,¥2,...,ys)" be unit vec-
tors. Then

F((Ax,x),(By,y)) = f(x"Ax,y"By)

m
(2 \x,| ai, 2 |YJ 2b
1 j=1

i=

N
MS

|xz\2\yj\2f(ai,bj)
=1

1]
= (x®y)" f(A,B)(x®y)
=(f(A,B)x®y,x®Yy),

—~

m n
using the separate convexity of f and the facts that 2 xr=1, 2 ly j|2 =1.
i=1 j=1

If A and B are not diagonal then their exist unitary matrices U and V such that

A=U*D\U, B=V*D,V,where D; and D, are diagonal matrices. Then
f(Ax,x), (By,y)) = f

f
< {f(D1,D2)Ux®@Vy,Ux®Vy)
— (f(D1,D2)(U 8 V)(x®Y), (U V)(xoY))
(UaV) f(D1,D)[URV)(x®y),(x®Y))
=({f(A,B)x®y,x®y),

(U*D1Ux,x),(V*DyVy,y))
(D1Ux,Ux) ,(D,Vy,Vy)))

—~

using first part of the proof and Lemma 2.1 respectively. [J

LEMMA 2.3. [5, p.281] Let A € .4, be Hermitian. Then

k k
ZA}(A) =max Y, (Aujuj), k=1,2,...,n,
i

j=1

where the maximum is taken over all choices of orthonormal vectors uy,uy,. .., uy.
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LEMMA 2.4. [4,p.228] Let A, B€ P,,. Then
A (1ogA +logB) <,, A (log(A'/2BA/?)).

THEOREM 2.5. Let f be a convex function defined on I x J and A,B € M (1),
C,D e #,(J). Then

A(flaA+ (1 —a)B,aC+ (1 —a)D)) <y A(af(A,C)+ (1 —a)f(B,D))

forall 0 <o < 1.

Proof. Let ¥1,Y2,-.-,¥Ym and Uy, U, ..., 1, be the eigenvalues of @A+ (1 — «)B
and oC+ (1 — ot)D respectively with uy,uy, ..., u, and vy,vy,...,v, as an orthonormal
system of corresponding eigenvectors. Then for each r = 1,...,mn, there exist pair
(iryjr) € {1,...,m} x {1,...,n} such that A} (f(cA+ (1 — &)B,aC+ (1 — a)D)) =
f(%i,,uj,). As f is convex and therefore separately convex, Lemma 2.2 can be applied
to f. Thus using convexity of f and Lemma 2.2 at appropriate places, we have

zk:)t}(f(aA+(1 —®)B,aC+ (1 —a)D))

r=1

Il
M=

f s 1)

,
Il
—_

Il
M=

f({(aA+ (1 = a)Bui,,ui,) ,((aC+ (1 — ) D)v;,, v, )

,g
I
_

|
M=

f(a((Aui, i), (Cvjy, v, ) + (1= o) ((Bui, i), (Dv;,, v, )

,g
I
_

N
M~

oo f ((Auiy, ui,) , (Cv;p, v ) + (1= @) f((Bui,, i) , (D, v), )

,
Il
—_

N
M~

o (f(A,Cui, @i, ui, @vj,)+ (1= ) (f(B.D)us, @vj,,u;, @v,,)

,
Il
—_

Il
M=

((af(A,C) + (1= ) f(B,D))ui, @Vj,,ui, ®vj,)

,
Il
—_

for 1 < k < mn. Hence by Lemma 2.3, we have

Eklxl(f(ocA—i—(l —a)B,aC+ (1—a)D)) <

r=1 r

DM~

A(af(A,C)+(1—a)f(B,D)).
1

This completes a proof. [J

COROLLARY 2.6. Let f be a concave function definedon I xJ and A,B € My (I),
C,D e #,(J). Then

A(f(0A+ (1 —a)B,aC+ (1 —a)D)) <" A (af(A,C)+ (1 —a)f(B,D))
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forall 0 <o < 1.

Proof. In Theorem 2.5 changing f to —f yield the desired majorization inequal-
ity, O

COROLLARY 2.7. Let f be a log-convex function defined on I xJ and A,B €
Mu(I), C,D € My(J). Then

A(f(aA+ (1= a)B,aC+ (1—a)D)) =<y A (f(A,C)*f(B,D)' ")
forall 0 <o < 1.

Proof. The function log f(s,#) is a convex function on I x J. Therefore by Theo-
rem 2.5 and Lemma 2.4, we have

A(logf(aA+(1—a)B,aC+ (1 —oa)D)) <y A(alog f(A,C)+ (1 — a)log f(B,D))
= A(log f(A,C)* +log f(B,D)!~%)

< A(log[f(A,C)*2 f(B,D)' "% f(A,C)*/?)).
= A(log f(A,C)*f(B,D)'"%)

This implies
A(f(aA+ (1= 0)B,aC+ (1 - a)D) <uiog A(F(A,C)f(B,D)'""). [

COROLLARY 2.8. Let f be a positive concave function defined on I x J and
A,Be My(l), C,D € My(J). Then

A(f(aA+(1—a)B,aC+ (1 —a)D)) <" ) (f(Ap)“f(B,D)““)
forall 0 < o < 1.

Proof. Since a positive concave function is log-concave, it follows that the func-

1
tion f~!(s,1) = 760 is log-convex. Therefore by corollary 2.7, we have
s?
k
l_I)Ll ( O(A+ (1 - )B,O(C—l— (1 — OC)D)) < H)Lil <f(A7c)*Otf(B7D)7(lfa)> ,
i=1

for 1 < k < mn, which implies

k k
147 (£, (B.0)~ =) <TTA (57 (@A + (1 - @)B,aC+ (1 - )D)).
i=1 i=1
Since A} '(R) = A (R™!) and A (RS) = A (SR) for R,S € 2, we have

Hﬂ( (A,C)*f(B,D)'~%) < \ﬁxﬁ (f(aA+ (1—a)B,aC+ (1 —a)D)).

i=1
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This completes a proof. [J

We prove our next result for separately convex functions (see [10, Theorem 4.3]).

THEOREM 2.9. Let f be a separately convex function definedon I xJ, 0 € INJ,
f(x,0)=0= f(0,y) forall x €I,y €J. Then

Af(X*AX,Y*BY)) <w A (X®Y)" f(A,B) (X ®Y))
SJorall A€ My(1),B € M, (J) and contractions X € My, Y € M,.

Proof. Let y1,Y2,...,Ym and Uy, Uy, ..., U, be the eigenvalues of X*AX and Y*BY
respectively, with uy,us,...,u, and vy, vo,...,v, as an orthonormal system of corre-
sponding eigenvectors. Then foreach r=1,...,mn, there exist pair (ir, j,) € {1,...,m} X
{1,...,n} such that A} (f(X*AX,Y*BY)) = f(1;,, ;). Since f(x,0) =0= f(0,y), we
may assume that [|Xu;|| #0, |[Yv;|| #0 for i=1,2,....m; j=1,2,....,n. As f is
separately convex, Lemma 2.2 can be applied to f. Thus using separate convexity of
S, the condition f(x,0) =0 = f(0,y) and Lemma 2.2 at appropriate places, we have

i AL(f(X*AX,Y*BY))

r=1

I
M=

f(%r?“‘jr) = f (<X*Axuir7uir> ? <Y*BYer’ er>)

‘
Il
—_

I
M=

f ({(AXu;,, Xui,) ,(BYv;,,Yv;.))
Xu;, Xu;, Yv; Yv;,
£ (g (A, T (i TV
1 a1 T | 7, 1 v,
Xu; Xu;
7 (P (A e X
] T, 1 T |

Yv-r YV',
+ (1= [1Xu, |?) -0, [V, | <Bﬁﬁ>)

k
Xu; Xu; Yv; Yv;
< Xy [P (A2, 28 Yy, |2 Bt
2 T 1 T | v, v,
r=1 r r Jr Jr
Yv;, Yv;,
0= i ) £ (01 P (B ) )
Jr Jr
k
Xu; Xu; Yv; Yv;
2 r r 2 Jr Jr
= 2, X | f<<A|Xul- T X |>"'va" <B|Yv- T T, |>
r=1 Iy ir Jr Jr
2
L1 vy >-o)

k
Xu; Xu; Yv; Yv;
<Z|xMi,|2|Yv,-,|2f(<A ><B >)
Xl a1/ \BTOw, T 7w

‘
I
_

I
M=

‘
I

Il
M=

‘
I
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Xl/ti XI/L,'
+|XM-,|2<1—|Yv-|2>f(<A—’ e )0)
‘ j NI
Xu,- Yv; Xu,- Yv;
X2 |Yv,|2< <A,B>( g Vi ) : g Vi >
j | & 0w, TR © v,

<f(A’B)(Xuir ®ijr)’ (Xuir ®ijr)>

‘
I M»
L

I
M=

‘
I
_

Il
M=

(f(ABYX@Y)(;, @v;,), (X @Y)(u;, ©v;,))

‘
I
_

Il
M=

(XQY) f(AB)X®Y)(u;, ®vj,), (u;, @v;,)),

‘
Il
—_

for 1 < k < mn. Hence by Lemma 2.3, we have
A(f(X*AX,Y*BY)) <, A (X®Y)" f(A,B) (X ®Y)).
This completes a proof. [J

COROLLARY 2.10. Let f be a separately convex function defined on I x J, 0 €
INJ, f(x,0)=0=f(0,y) forall x€ I,y € J. Then

1 k|l
x( ( 3y )) < ( ¥ f(xhy,.)Ai@B,.)
i=1 j=1 ij=1

forAy,... Ay € S, Bi,...,B €. where Zf-‘zlA,-glm, Z?/:lngln andx; €1, y; €
J.

M»

X 0 ---0 Y1 0 -0 AL 0 -+ 0
Proof TakingX=| : = il y=|: " i|anda=|04"
Xe 0 ---0 Y, 0 ---0 SRPURIIN
0 - 0 A
B, 0 -0
B= 0 B in Theorem 2.9 it follows that
0---0B

k ! k,
A (f(ZXi*A,-X,-,Zx;BJ»x,»)) (2 (X ®Y))* A,,Bj)(X,@Yj)) (D

i=1 j=1

for Ay,...,Ax € Mu(I), By,...,B; € My(J) and Xy,.... X} € My, Y1,....Y; € M,
where ZleXi*X,- <1, and le:lY;‘Yj < I,. Replacing A;, B; with x;, y; and X;, Y;
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with Al/ 2 1./ 2 respectively in (1) we have

i,j=1

( ZA 1/2 231/2 ' 1/2)> A ( kzl: (AI/Z®B1/2)f(xi,yj)(Al/2®Bl/2)> .
Jj=

Hence

k I ki
A <f(2xiAi7 2%’3/)) ~w A ( Y f(x,‘,yj)Ai®Bj> .
i=1 =1

ij=1
3. Sub-additive inequalities

To prove sub-additive inequalities for separately matrix convex functions, we use
the following lemma.

LEMMA 3.1. Let f be real valued function defined on I x J, 0 € INJ satisfying
f(x,0)=0= f(0,y), x€ I, y € J. Then the following are equivalent:

(i) f is separately matrix convex.

(ii) f(PAP,QBQ) < (PR Q)f(A,B)(PRQ) for A € My(I), BE My(J) and P €
Il,,, QeIl,, myneN.

(iii) f(X*AX,Y*BY) < (X®Y)*f(A,B)(X®Y) for A€ My(I), B M, (J) and
contractions X € My, Y € My, m,n €N.

!

k k,l
(iv) f <2Xi*AiXi, 2 Yj*Bij> < 2 (Xi@Yj)*f(Ai7Bj)(Xi®Yj) forAy,... A€

i=1 j=1 ij=1

k
Mw(1), By,....Bi € Mu(J) and Xy, ..., Xk € Moy, Y1,....Y| € My, suchthat Y X;X; <
=1
1
Ly and Y Y;Y; <1Iy.
j=1

k !
(V)f<zxiAi7 Zijj> <Y f(xi,j)(Ai®By), for Ay,..., Ay € S, Bi,...,B €
-1 =l

]

~

k
S, where Z i <y Znglnforx,- el,y;elJ.

i=1 i=1

Proof. Equivalence of first three conditions have been proved in [2]. The proof of
(iif) = (iv) and (iv) = (v) follows as in Corollary 2.10. We prove (v) = (i).
k
Let A,B € Mu(I), C € My(J) have spectral decompositions A = » A;P;, B =
i=1

Za,QJ,C 2)/,R,then20¢P+21— )Qj =1I,. Using (v) we have

] r
f(aA+(1—a)B,C) = Z)LP-F (1—0) Y 10, Y, viR:)
j=1 t=1

i=1



SOME MAJORIZATION INEQUALITIES 955

k [ r
=f< /L-(ocP,-)+2uj((1—a)Qj),Z%Rf>
i=1 j=1 t=1
<aY f(i ) (POR)+(1—0a) Y f(1,1)(Q; ©R:)

it Jit

= OCf(A,C) + (1 - OC)f(B,C)
The matrix convexity in the second variable is proved similarly. [J

THEOREM 3.2. Let f be nonnegative (nonpositive) separately matrix convex func-
tion on [0,00) x [0,00) with f(x,0) =0 = f(0,y), x,y € [0,00) and A,B € .9, C,D €
. Then there exists unitaries U, V, W, Z on My, @ M, such that

f(A+B,C+D) > U*f(A,C)U +V*f(A,D)V +W* f(B,C)W +S*f(B,D)S.

Proof. We can assume that A+B is invertible. Then X =A'/2(A+B)~"/2 and Y =
B'2(A+ B)~1/2 are contractions and A = X(A + B)X*, B=Y(A + B)Y*. Therefore
using Lemma 3.1 (iii) and the fact that for any T € #,,, TT* and T*T are unitarily
equivalent, we have

f(A,C+D)=f(X(A+B)X",C+D)
<XQL)f(A+B,C+D)(XQIL,)*
=Upf(A+B,C+D)'*(X®1,)" (X®1,)f(A+B,C+D)/*U;
for some unitary Uy and so
Uif(A,C+D)Uy < f(A+B,C+D)'?(X*X®1,)f(A+B,C+D)'2. (2
Similarly, we have
Vi f(B,C+D)Vy < f(A+B,C+D)">(Y*'Y®1,)f(A+B,C+D)"/? 3)
for some unitary V. Adding (2) and (3) we get
Uy f(A,C+D)Uy+ Vi f(B,C+D)Vy < f(A+B,C+D) 4)

using the fact that X*X +Y*Y = I,,. Similarly, there exists unitaries R, T, L, M such
that
f(A,C+D)>Rf(A,C)R+T"f(A,D)T

and
f(B,C+D)>L"f(B,C)L+M"f(B,D)M.

Thus it follows from (4) that there exists unitaries U, V, W, § such that

f(A+B,C+D)>U*f(A,C)U +V*f(A,D)V + W*f(B,C)W +S*f(B,D)S. O

The following corollary follows on applying Theorem 3.2 to —f.
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COROLLARY 3.3. Let f be a nonnegative (nonpositive) separately matrix con-

cave function on [0,0) x [0,e0) with f(x,0) =0= f(0,y) and A,B € .%},, C,D € .F,.
Then there exists unitaries U, V, W, Z on My @ M, such that

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]
[9]

[10]
[11]

[12]

f(A+B,C+D) <U*f(A,C)U +V*f(A,D)V +W* f(B,C)W +S*f(B,D)S.
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